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a b s t r a c t 

We consider an optimal control problem for a non-autonomous model of ODEs that de- 

scribes the evolution of the number of customers in some firm. Namely we study the 

best marketing strategy. Considering a L 2 cost functional, we establish the existence and 

uniqueness of optimal solutions, using an inductive argument to obtain uniqueness on the 

whole interval from local uniqueness. We also present some simulation results, based on 

our model, and compare them with results we obtain for an L 1 cost functional. For the L 1 

cost functional the optimal solutions are of bang-bang type and thus easier to implement, 

because at every moment possible actions are chosen from a finite set of possibilities. For 

the autonomous case of L 2 problem, we show the effectiveness of the optimal control strat- 

egy against other formulations of the problem with simpler controls. 
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1. Introduction 

Firms spend millions of euros on marketing budgets. The CMO report conducted in 2017 by the Fuqua School of

Business, the American Marketing Association and Delloite shows that firms allocate, in general, between 10% and 20% of

their revenues on marketing budgets, depending on the sector where they operate. Considering the high amounts involved,

it is very important to optimize that allocation. However, as stated by Gupta and Steenburgh [6] allocating marketing

resources is a complex decision that until recently has been done based on very simple heuristics or decision rules. 

Among marketing decisions and strategy is the decision to invest in referrals programs. These programs encourages

current customers to recruit new customers based on rewards [15] . Contrary to other marketing programs purely based

on spontaneous word-of-mouth, referral programs are marketer directed with possibility to control message content [3] .

However, studies that help marketers to decide about the resource allocation to referral programs are scarce. 

For decades, firms have been searching for the best way to maximize profits and reduce costs. Classical models usually

look for ways that help firms allocating their marketing resources while maximizing profits [1] . However, more recently

models have tried to maximize customer equity (the net present value of the future profit flow over a customers lifetime

[12] through an optimal marketing resources allocation [8] ). In this sense, and based on the assumption that the number

of customers in a market is limited, it is important to attract/capture new customers at earliest as possible as, otherwise,
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they can be attracted/captured by competitors. At the same time, a customer late attraction/caption will also reduce their

customer equity. 

Following the growing interest of social networks by product marketing managers, recently the classic epidemiologic

models have been applied with success to specific marketing communication strategy, commonly referred as viral marketing.

An application of epidemiology to a real-world problem can be found in [14] . 

Previously, in [17] the authors of this work proposed a compartmental model suitable to describe the dynamics of the

number of customers of a given firm. That model was given by a system of ordinary differential equations whose variables

correspond to groups of customers and potential customers divided according to their profile and whose parameters reflect

the structure of the underlying social network and the marketing policy of the firm. Understand the flows between these

groups and its consequences on the raise of customers of the firm was the main goal. Highlight the usefulness of these

models in helping firms deciding their marketing policy was another objective. 

Election campaign managers and companies marketing products/services managers, are interested in spreading a mes-

sage by a given deadline, using limited resources. So, the optimal resource allocation over the time of the campaign is

required and the formulation of such situation as an optimal control problem is suggested. In [7] , that problem is tackled

using two epidemic models, a SIS and a SIR. 

In this paper, we consider a modified version of model [17] , governed by the system of ordinary differential equations: ⎧ ⎨ ⎩ 

˙ R = −λ2 R + λ1 C − γ (t) R + α β(t) P R/N 

˙ C = −λ1 C + λ2 R − γ (t) C + (1 − α) β(t) P R/N 

˙ P = −β(t) P R/N + γ (t)(R + C) 

(1)

with initial conditions 

R (0) , C(0) , P (0) � 0 , 

where R is the number of referral customers, C is the number of regular customer, P is the number of potential customers

and N = R + C + P . 

The parameters of the model represent the following: λ1 is the natural transition rate between regular customers and

referral costumers, given by the number of regular customers that become referral customers without external influence

over the number of regular customers (by “without external influence” we mean without being influenced by referral

customers); λ2 is the natural transition rate between referral costumers and regular customers, given by the number of

referral customers that become regular customers without external influence over the number of referral customers; γ ( t )

is the time varying customer defection rate, equal to the number of customers that cease to be customers over the number

of customers (we assume that this rate is the same among regular and referral costumers); β( t ) is the pull effect due to

marketing campaigns, corresponding to the quotient of the outcome of marketing campaigns by the number of potential

customers (by “outcome of marketing campaigns” it is meant the number of potential customers that become customers

in the sequence of marketing campaigns per unitary marketing cost per time unit); finally, α is the percentage of referral

costumers among the new customers. 

The main difference between the above model and the model presented in [17] is that, instead of using a single

compartment corresponding to potential clients and assuming that a fixed percentage of those potential clients are referral

clients, in [17] , the potential clients are divided in two subpopulations (corresponding to potential regular clients and

potential referral clients). 

We stress that by using time varying parameters, β( t ) and γ ( t ), in (1) we obtain a non-autonomous model that is poten-

tially more realistic. The objective of this paper is to consider an optimal control problem for such non-autonomous model.

2. Optimal control problem 

Inspired in [7] , we assume that the campaigner can allocate its resources in two ways. At time t , he can directly recruit

individuals from the population with rate u 1 ( t ), to be clients (via publicity in mass media). In addition, he can incentivize

clients to make further recruitments (e.g. monetary benefits, discounts or coupons to current customers who refer their

friends to buy services/products from the company). This effectively increases the “spreading rate” at time t from β( t ) to

β(t) + u 2 (t) where u 2 ( t ) denotes the “word-of-mouth” control signal which the campaigner can adjust at time t . 

The diagram of the non-autonomous model we propose is shown in Fig. 1 . The respective equations are the following: ⎧ ⎨ ⎩ 

˙ R = −λ2 R + λ1 C − γ (t) R + α1 u 1 P + α2 (β(t) + u 2 ) P R/N 

˙ C = −λ1 C + λ2 R − γ (t) C + (1 − α2 )(β(t) + u 2 ) P R/N + u 1 (1 − α1 ) P 
˙ P = −(β(t) + u 2 ) P R/N − u 1 P + γ (t) R + γ (t) C 

(2)

with initial conditions 

R (0) , C(0) , P (0) � 0 . (3)

The parameters u 1 , u 2 will be taken in the space L ∞ functions such that u 1 ∈ [0, u 1 max ] and u 2 ∈ [0, u 2 max ]. 

Our purpose is to minimize the number of potential customers and the cost associated to the control of the market-

ing campaigns. To obtain the best reduction in the number of potential customers, we minimize the evolution history,
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Fig. 1. The compartmental model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P ( t ), 0 ≤ t ≤ t f . Note that minimizing the number of potential customers correspond to maximizing the number of customers

(potential and referral) and that by minimizing the evolution history of potential customers, instead of the final number,

we are increasing the customer equity. 

We consider the optimal control problem: 

J (P, u 1 , u 2 ) = 

∫ t f 

0 

κ1 P + κ2 u 

2 
1 + κ3 u 

2 
2 dt −→ min 

⎧ ⎨ ⎩ 

˙ R = −λ2 R + λ1 C − γ R + α1 u 1 P + α2 (β(t) + u 2 ) P R/N 

˙ C = −λ1 C + λ2 R − γC + (1 − α2 )(β(t) + u 2 ) P R/N + u 1 (1 − α1 ) P 
˙ P = −(β(t) + u 2 ) P R/N − u 1 P + γ R + γC 

P 

(C(0) , R (0) , P (0)) = (C 0 , R 0 , P 0 ) , 

where 0 < κ1 , κ2 , κ3 < ∞ and R 0 , C 0 , P 0 are non-negative, the state variables are absolutely continuous functions,

(C(·) , R (·) , P (·)) ∈ AC([0 , t f ] ; R 

4 ) , and the controls are Lebesgue integrable, ( u 1 ( · ), u 2 ( · )) ∈ L 1 ([0, t f ]; [0, u 1 max ] × [0, u 2 max ]). 

In Sections 3 to 5 we show that a solution of problem ( P ) exists and is unique in the whole interval [0, t f ]. To establish

the existence of solution, we use a standard result that assures the existence of an optimal control pair (u ∗
1 
, u ∗

2 
) and a

corresponding solution of the initial value problem that minimizes the cost functional over L 1 ([0, t f ]; [0, u 1 max ] × [0, u 2 max ]).

The fact that the optimal controls are bounded, assures that the optimal controls are in fact in L ∞ ([0, t f ]; [0, u 1 max ] × [0,

u 2 max ]) (see Section 4 ). 

To obtain uniqueness, we assume, by contradiction, that there are two distinct optimal pairs of state and co-state

variables 

((C, P, R ) , (p 1 , p 2 , p 3 )) and ((C ∗, P ∗, R 

∗) , (p ∗1 , p 
∗
2 , p 

∗
3 )) , 

which correspond to two distinct optimal controls (u, v ) and ( u ∗, u ∗), verifying (7) and (8) . The existence of some compact

positively invariant region �, which is independent on the controls, allows us to prove that there is a contradiction unless

the state variables, the co-state variables and the optimal controls are the same on a small time interval [0, T ]. The next

step consists in describing an iterative procedure that allows one to extend the uniqueness of solution to the interval

[0 , (k + 1) T ] , assuming we have uniqueness on the interval [0, kT ]. This allows us to conclude that we have the required

uniqueness on the whole interval after a finite number of steps. 

3. Existence of an optimal solution 

To prove that there is an optimal solution of problem ( P ), we will use a result that ensures the existence of the solution

for optimal control problems contained in Theorem III.4.1 and Corollary III.4.1 in [4] , Theorem 1 below. Problem ( P ) is an

optimal control problem in Lagrange form: 

J(x, u ) = 

∫ t 1 

t 0 

L (t , x (t ) , u (t )) dt −→ min , {
x ′ (t) = f ( t, x (t) , u (t) ) , a.e. t ∈ [ t 0 , t 1 ] , 
x (t 0 ) = x 0 , 

x (·) ∈ AC ( [ t 0 , t 1 ] ; R 

n ) , u (·) ∈ L 1 ([ t 0 , t 1 ] ;U ⊂ R 

m ) . (4) 

In the above context, we say that a pair (x, u ) ∈ AC([ t 0 , t 1 ] ; R 

n ) × L 1 ([ t 0 , t 1 ] ;U) is feasible if it satisfies the Cauchy problem

in (4) . We denote the set of all feasible pairs by F . Next, we recall 

Theorem 1 (See [4] ) . For problem (4) , suppose that f and L are continuous and there exist positive constants C 1 and C 2 such

that, for t ∈ R , x, x , x ∈ R 

n and u ∈ R 

m , we have 
1 2 
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(a) ‖ f (t, x, u ) ‖ ≤ C 1 (1 + ‖ x ‖ + ‖ u ‖ ) ; 
(b) ‖ f (t, x 1 , u ) − f (t, x 2 , u ) ‖ ≤ C 2 ‖ x 1 − x 2 ‖ (1 + ‖ u ‖ ) ; 
(c) F is non-empty; 

(d) U is closed; 

(e) there is a compact set S such that x ( t 1 ) ∈ S for any state variable x; 

(f) U is convex, f (t, x, u ) = α(t, x ) + β(t, x ) u, and L (t, x, ·) is convex on U; 

(g) L (t, x, u ) ≥ c 1 | u | β − c 2 , for some c 1 > 0 and β > 1 . 

Then, there exist ( x ∗, u ∗) minimizing J on F . 

Applying Theorem 1 to our problem we obtain the following result: 

Theorem 2. There exists an optimal control pair (u ∗
1 
, u ∗

2 
) and a corresponding solution of the initial value problem in ( P ), ( R ∗,

C ∗, P ∗), that minimizes the cost functional J in ( P ) over L 1 ([0, t f ]; [0, u 1 max ] × [0, u 2 max ]) . 

Proof. We first note that, adding the equations in (2) , we conclude that the total population is constant: N(t) = C 0 + R 0 +
P 0 := N 0 . Thus C ( t ), R ( t ), P ( t ) ≤ N 0 . Additionally, P ( t ) R ( t )/ N ( t ) ≤ P ( t ) ≤ N 0 . We immediately obtain a) and b). 

Conditions c) and d) are immediate from the definition of F since U = [0 , u 1 max ] × [0 , u 2 max ] . 

We conclude that all the state variables are in the compact set 

{ (x, y, z) ∈ (R 

+ 
0 ) 

3 : 0 ≤ x + y + z = N 0 } 
and condition e) follows. 

Since the state equations are linearly dependent on the controls and L is quadratic in the controls, we obtain f). Finally, 

L = κ1 I + κ2 u 

2 
1 + κ3 u 

2 
2 ≥ min { κ2 , κ3 } (u 

2 
1 + u 

2 
2 ) = min { κ2 , κ3 }‖ (u 1 , u 2 ) ‖ 

2 

and we establish g) with c 1 = min { κ2 , κ3 } . 
Thus the result follows from Theorem 1 . �

4. Characterization of the optimal controls 

In this section, using the Pontryagin Maximum Principle [13] , we characterize the solutions that, according to Theorem 2 ,

the solution exist. 

Note that Theorem 1 does not require U to be a bounded set and thus, in general, the L 1 optimal controls predicted by

Theorem 1 are not necessarily in L ∞ . As a consequence, in general, one can not assure that the optimal controls satisfy the

Pontryagin Maximum Principle, see [13] . 

However, in our case, the compacity of the set [0, u 1 max ] × [0, [ u 2 max ] assures that the control minimizers, u 1 
∗ and u 2 

∗,

are in L ∞ as required by the Pontryagin Maximum principle. Furthermore, in our context, there are no abnormal minimizers

[2] since in our case only initial conditions are imposed and, in particular, the state variables are free at the terminal time.

Thus, we can fix the cost multiplier associated with the Lagrangian L to be minus one. 

The Hamiltonian associated with problem ( P ) is given by: 

H(t, (C, R, P ) , (p 1 , p 2 , p 3 ) , (u 1 , u 2 )) = κ1 P + κ2 u 

2 
1 + κ3 u 

2 
2 + p 1 (−λ2 R + λ1 C − γ (t) R + α1 u 1 P + α2 (β(t) + u 2 ) P R/N) 

+ p 2 (−λ1 C + λ2 R − γ (t) C + (1 − α2 )(β(t) + u 2 ) P R/N + u 1 (1 − α1 ) P ) 

+ p 3 (−(β(t) + u 2 ) P R/N − u 1 P + γ (t) R + γ (t) C) 

In what follows, we use the operator ∂ i to denote the partial derivative with respect to the i th variable. 

Theorem 3 (Necessary optimality conditions) . 

If (( C ∗, R ∗, P ∗), ( u 1 
∗, u 2 

∗)) is a minimizer of problem ( P ), then there are multipliers (p 1 (·) , p 2 (·) , p 3 (·)) ∈ AC([0 , t f ] ; R 

3 ) such

that ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ p 1 = λ2 (p 1 − p 2 ) + γ (t)(p 1 − p 3 ) 

+ [ p 3 − α2 p 1 − (1 − α2 ) p 2 ] (β(t) + u 2 ) P (C + P ) /N 

2 

˙ p 2 = λ1 (p 2 − p 1 ) + γ (t)(p 2 − p 3 ) 

−[ p 3 − α2 p 1 − (1 − α2 ) p 2 ] (β(t) + u 2 ) P R/N 

2 

˙ p 3 = −κ1 + [ p 3 − α1 p 1 − (1 − α1 ) p 2 ] u 1 

+ [ p 3 − α2 p 1 − (1 − α2 ) p 2 ] (β(t) + u 2 ) R (C + R ) /N 

2 

(5)

for almost all t ∈ [0, t f ], with transversality conditions 

p 1 (t f ) = p 2 (t f ) = p 3 (t f ) = p 4 (t f ) = 0 . (6)
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Furthermore, the optimal control pair is given by 

u 1 
∗ = min 

{
max 

{
0 , 

[ p 3 − α1 p 1 − (1 − α1 ) p 2 ] P 
∗

2 κ2 

}
, u 1 max 

}
(7) 

and 

u 2 
∗ = min 

{
max 

{
0 , 

[ p 3 − α2 p 1 − (1 − α2 ) p 2 ] P 
∗R 

∗

2 κ3 N 

∗

}
, u 2 max 

}
. (8) 

Proof. Properties (5) and (6) are a consequence of Pontryagin Maximum Principle. 

The optimality conditions on the set 

{ t ∈ [0 , t f ] : 0 < u 1 
∗(t) < u 1 max ∧ 0 < u 2 

∗(t) < u 2 max } 
yield 

∂H 

∂ u 1 
∗ = 0 ⇔ u 1 

∗ = 

p 3 − α1 p 1 − (1 − α1 ) p 2 
2 κ2 

P 

and 

∂H 

∂ u 2 
∗ = 0 ⇔ u 2 

∗ = 

p 3 − α2 p 1 − (1 − α2 ) p 2 
2 κ3 

P R 

N 

. 

If t ∈ int { t ∈ [0 , t f ] : u 1 
∗(t) = u 1 max } , then the maximality condition is 

∂H 

∂ u 1 
∗ ≤ 0 ⇔ 

p 3 − α1 p 1 − (1 − α1 ) p 2 
2 κ2 

P ≥ u 1 max 

and if t ∈ int { t ∈ [0 , t f ] : u 2 
∗(t) = u 2 max } , then the maximality condition is 

∂H 

∂ u 2 
∗ ≤ 0 ⇔ 

p 3 − α2 p 1 − (1 − α2 ) p 2 
2 κ3 

P R 

N 

≥ u 2 max . 

Similarly, if t ∈ int { t ∈ [0 , t f ] : u 1 
∗(t) = 0 } , then the maximality condition is 

∂H 

∂ u 1 
∗ ≥ 0 ⇔ 

p 3 − α1 p 1 − (1 − α1 ) p 2 
2 κ2 

P ≤ 0 

and if t ∈ int { t ∈ [0 , t f ] : u 2 
∗(t) = 0 } , then the maximality condition is 

∂H 

∂ u 2 
∗ ≥ 0 ⇔ 

p 3 − α2 p 1 − (1 − α2 ) p 2 
2 κ3 

P R 

N 

≤ 0 . 

�

5. Uniqueness of solution 

In this section we prove the uniqueness of the optimal solution of ( P ) in the whole interval [0, t f ]. The proof of this

result is inspired on [5,10] . Namely, on [5] uniqueness is established in a sufficiently small interval for some autonomous

epidemiological models and in [10] the result is proved for a general non-autonomous version of one of those models and

uniqueness is established on the whole interval. 

Theorem 4. The solution of the optimal control problem ( P ) is unique. 

Theorem 4 establishes the uniqueness of the optimal solution of ( P ) throughout the time interval where the optimal

control problem was considered, [0, t f ]. The proof of this result is done in two steps. Namely, on a first moment we establish

the uniqueness on a sufficiently small time interval [0, T ] and afterwards we show that the result can be extended to the

whole time interval by using an induction argument. 

In more detail, to prove uniqueness on a small time interval, we use a contradiction argument adapted from the

argument used in [5] , in the autonomous context, and also considered in [10] , for a nonautonomous model. We start by

assuming that there are two distinct optimal pairs of state and co-state variables corresponding to two different optimal

controls. Making a change of variables we are able to prove that we have a contradiction unless the state and co-state

variables are the same in some sufficiently small time interval and, using the characterization of the optimal controls given

by (7) and (8) we conclude that the optimal controls coincide in that small time interval [0, T ]. 

The second step in the argument, consists in noting that there are two possibilities: T = t f or T < t f . In the first case

the proof is completed. Otherwise, noting that the estimates used to obtain T in the first place are only related with the

maximum value of the parameters and the bounds for the state and co-state variables on some invariant region that is

independent on the controls and using for initial conditions at time T the values of the state trajectories at the right-end of

the interval [0, T ], we obtain uniqueness on the interval [ T , 2 T ]. Iterating the procedure, after a finite number of steps, we

obtain uniqueness in whole the interval [0, t f ]. 

The proof of Theorem 4 may be found in Appendix A . 
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Table 1 

Values of parameters. 

Parameter Value 

α1 0.05 

α2 0.10 

λ1 0.002 

λ2 λ1 C 0 / R 0 

Fig. 2. Recruitment rate functions and defection rate functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Simulation 

The optimal control problem is numerically solved using a Runge–Kutta fourth order iterative method. First we solve

the system (2) , (3) , by the forward Runge–Kutta fourth order procedure, and obtain the values of the state variables ( C , R

and P ). Using those values, then we solve the system (5) with the transversality conditions (6) , by backward fourth order

Runge–Kutta procedure, and obtain the values of the co-state variables. The controls are updated by a convex combination

of the previous values and the new values computed according with (7) –(8) . The iteration is stopped when the values of

the unknowns at the earlier iteration are very close to the ones at the current iteration. 

In what follows, we assume that the maximum rate of direct recruitment of individuals from the population is

u 1 max = 0 . 06 (cf. [7] ). The word-of-mouth control is potentiated by the referrals and is expected that all of them may act

as spreaders, so u 2 max = 1 . 0 . The terminal time is t f = 7 time units and the remaining parameters are fixed according to

Table 1 . The initial conditions are the following: 

C 0 = 0 . 009 , R 0 = 0 . 001 and P 0 = 0 . 99 

We consider that the weight values are κ1 = 1 , κ2 = 1 . 5 and κ3 = 0 . 01 . 

We study next the optimal control problem with time dependent rates β( t ) and γ ( t ). After, in Section 6.2 , we analyse

the effect of some parameters ( γ , κ2 , β and t f ) on the cost functional J of the proposed model. 

6.1. Variable recruitment rate β( t ) and variable defection rate γ ( t ). 

Inspired in [7] , to model the varying interest of a population in recruit new customers during the campaign duration,

we consider three different functions β1 ( t ), β2 ( t ) and β3 ( t ). They model the cases of increasing, decreasing and fluctuating

interest as the action of the referral customers develops, respectively. The respective functions, exhibited in Fig. 2 (A), are

defined as 

β1 (t) = 0 . 01 + 

0 . 99 

1 + e −2 t+8 
, 

β2 (t) = 0 . 01 + 0 . 99 

(
1 − 1 

1 + e −2 t+6 

)
, 

β3 (t) = 0 . 01 + 0 . 49 ( 1 − cos (2 πt + 0 . 26) ) , 

The increasing recruiting rate, β1 ( t ), may represent the increasing interest of people by election candidates as we approach

the polling date. The decreasing recruiting rate, β2 ( t ), may represent gradual loss of interest of people in some product after

its release (e.g a newly launched smartphone). Fluctuating recruiting rate, β3 ( t ), may represent changes in demand of a prod-

uct with time (e.g seasonal products that have great demand in a given season but little demand during the rest of the year).

Three distinct scenarios are also proposed to the defection rate to complement the three cases proposed to the recruit-

ment rate. In the first scenario we propose that the defection rate is invariant. In second we suggest that the decreasing
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Fig. 3. Optimal control and state variables, with control and without control, of the marketing model, time-varying rate β1 and time-varying rate γ 1 . Top 

row: (A) regular customers C and potential customers P, (B) referral customers R. Bottom row: (C) optimal control u 1 , (D) optimal control u 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

recruiting rate is followed by an increasing defection rate. In last scenario we propose that the oscillating interest is

accompanied by an also oscillating defection rate. The γ i ( t ) functions for i = 1 , 2 , 3 , exhibited in Fig. 2 (B), are as follows: 

γ1 (t) = γ0 , 

γ2 (t) = 0 . 01 + 

0 . 18 

1 + e −2 t+7 
, 

γ3 (t) = γ0 ( 1 − 0 . 9 cos (2 πt + 0 . 26) ) , 

where γ0 = 0 . 10 . 

In the case of the increasing interest of a population in recruiting new customers, during the campaign duration (rates

β1 and γ 1 ), the solution for the optimal control problem and solution to the no control problem is illustrated in Fig. 3 . In

what concerns the optimal solution, the number of referral customers grows vigorously and reaches its maximum, close to

0.02, almost at the terminal time. We also notice that the number of customers, referral and regular, evidence a very light

decrease when approaching the end of time interval. On the other hand, the number of referral and regular costumers, of

the no control solution, are lower than the ones of the optimal solution. In the solution of the no control problem, of the

two remaining scenarios, the number of costumers is also lower than the one of optimal solution (see Figs. 4 to 6 ). 

In Figs. 3 (C), 3 (D), while the first control, u 1 , is maximum in almost all the time interval, second control, u 2 , is maximum

on a central part of the interval since t 1 (close to 1) up to t 2 (between 5 and 6). The controls we obtain for the following

two cases, displayed in Figs. 4 (C), 4 (D), 5 (C), 5 (D), are analogous to these ones. 

In the case of the decreasing interest of a population in recruiting new customers, during the campaign duration (rates

β2 and γ 2 ), the solution for the optimal control problem and solution of no control problem are exhibited in Fig. 4 .

Relatively to the optimal solution, the evolution of the number of referrals also grows vigorously in the beginning, but slow

down in the second half of time interval. When approaching terminal time, the number of customers, referral and regular,

exhibit a reduction bigger than the preceding case. This behaviour is motivated by the recruitment rate β2 . 

In the case of the periodic interest of a population in recruiting new customers, during the campaign duration, the

solution for the optimal control problem with the L 2 objective and the solution of the no control problem are displayed in

Fig. 5 . The periodic nature of the parameters β3 and γ 3 influences the evolution of the three state variables. Relatively to

the optimal solution, the variation of the number of customers, referral and regular, is, in general, similar to the first case. 

The optimal control problem with L 1 objective functional, presented in Appendix B , was also considered in case where

the interest in recruiting new customers is periodic (third case). The optimal solution, obtained analogously with the

Runge–Kutta scheme presented above, and the no control solution are presented in Fig. 6 . Relatively to such optimal
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Fig. 4. Optimal control and state variables, with control and without control, of the marketing model, time-varying rate β2 and time-varying rate γ 2 . Top 

row: (A) regular customers C and potential customers P, (B) referral customers R. Bottom row: (C) optimal control u 1 , (D) optimal control u 2 . 

Fig. 5. Optimal control and state variables, with control and without control, of the marketing model, time-varying rate β3 and time-varying rate γ 3 . Top 

row: (A) regular customers C and potential customers P, (B) referral customers R. Bottom row: (C) optimal control u 1 , (D) optimal control u 2 . 
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Fig. 6. Optimal control and state variables, with control and without control, of the marketing model with L 1 objective, time-varying rate β3 and time- 

varying rate γ 3 . Top row: (A) regular customers C and potential customers P, (B) referral customers R. Bottom row: (C) control u 1 and scaled switching 

function 
1 , (D) control u 2 and scaled switching function 
2 . 

Fig. 7. Comparison of controls u 1 and u 2 for the L 1 -type objective ( J 1 ) and L 2 -type objective ( J 2 ) with rates β3 and γ 3 . 

 

 

 

 

 

 

 

 

 

solution, the customers, referral and regular, stop growing when the first control, u 1 , becomes inactive and their maximums

are smaller than those that were obtained with the quadratic objective. It can also be observed that the switching functions

satisfy the strict bang-bang property (cf. [11] ) associated to the Pontryagin Maximum Principle. 

Fig. 7 compares the optimal controls for the linear functional, J 1 , with the quadratic functional, J 2 . The first control

variable u 1 differ on a terminal interval t i < t < t f where we see that the J 1 control is inactive while the J 2 control is active

(maximum). The second control u 2 shows also differences for the two functionals at beginning and at end of time interval.

In Fig. 7 (B) we can see that these differences are somehow compensated. Like in other analogous works where the upper

bound equals the value one and the graphics of control solutions are similar (e.g [16] ), the optimal state variables of the

two functionals are almost identical. 

6.2. Comparison of optimal control with simpler controls. 

The recruiting rate, β , and the defection rate, γ , are constant in this section. The goal of this section is to compare the

effectiveness of optimal control strategy with other simpler control strategies that do not require any optimization technique.
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Fig. 8. Evolution of the value of the objective functional J with: (A) variation of the defection rate γ with κ2 = 15 , (B) variation of the weight parameter 

κ2 with γ = 0 . 1 . Parameter values: β = 1 , t f = 7 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As in [7] , we compare the optimal control problem with three more problems. Namely: (1) the problem without control

(controls are zero); (2) problem where controls are constant with u ′ 1 (t) = (1 − α1 ) u 1 max / 2 and u ′ 2 (t) = α2 u 2 max / 2 
1 ; (3)

problem with heuristic controls, know as follow P nc ( t ), P nc ( t ) R nc ( t ) (see [7] ), where controls are u ′′ 
1 
(t) = (1 − α1 ) u 1 max P nc (t)

and u ′′ 
2 
(t) = α2 u 2 max P nc (t) R nc (t) 1 , being P nc ( t ) and R nc ( t ) the fractions of potential customers and referral customers,

respectively, when no control is applied. 1 

In order to compare the optimal strategy with the remaining strategies, using ranges of values for parameters γ , β , t f
and κ2 similar to [7] , we use by default, in what follows, the weight values: κ1 = 1 /t f , κ2 = 15 and κ3 = 1 . 

In Fig. 8 (A) we display the evolution of the cost function, for the four problems (or strategies) above mentioned, with

variation of the defection rate γ . The cost functional J for the constant control strategy and follow P nc ( t ), P nc ( t ) R nc ( t ) strategy

is bigger than J for no control. On the other hand, J for the optimal control strategy is smaller than J for no control strategy

for γ lower than 1.0, but these J s coincide when γ is greater or equal to 1.0. We may conclude that when γ ≥ 1 the optimal

control is ineffective and there is no need of any marketing campaign. 

In Fig. 8 (B) we display the evolution of the cost function with variation of the weight parameter κ2 . The cost functional

J for the constant control strategy and follow P nc ( t ), P nc ( t ) R nc ( t ) strategy are bigger than the J for the optimal control. We

can also see that J for the no control strategy is bigger than J for the optimal control strategy when κ2 is small, but these

strategies tend to have the same values of J as we consider bigger values for κ2 . 

We also compared the evolution of the cost function of the optimal control model with the other three strategies for

the variation of β ( β ∈ [0, 3]) and t f ( t f ∈ [4, 14]). The resulting figures are not displayed because, in these cases, the optimal

control strategy was the one with smaller values of cost function and no tendency to approach to one of the other strategies

was exhibited. Hence, in these cases the optimal control is recommended. 

7. Conclusions 

In this paper we have considered an optimal control problem for a nonlinear system of ordinary differential equations

that describes the evolution of the number of regular customers and referral customers in some firm. The aim is to study,

considering several types of behaviour for the population, the best marketing strategy in the decision to invest in referrals

programs. 

The existence and uniqueness of optimal solutions was established for an L 2 cost functional model. Some simulation

results of such model were presented and compared with the ones obtained for the model with an L 1 cost functional. The

optimal solutions for the problem with linear lagrangian are of bang-bang type. 

While performing the numerical simulations, we have noticed that, for some values of the cost weights κ1 , κ2 and κ3 ,

the solutions for the quadratic objective model are slightly better than the ones for the linear objective model. Nevertheless,

the strategy obtained for the linear objective model is easier to implement, since at each time interval the possible actions

are taken from a finite set of possibilities, and thus may be more appealing to the marketing managers. 

For the autonomous case of quadratic cost functional model, we have shown the effectiveness of the optimal control

strategy over the constant control strategy, a heuristic control strategy and the no control. 
1 Since u 2 ( t ), in most cases, has rather low values, we multiply u 2 max by an small constant, α2 . 
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Appendix A. Proof of Theorem 4 

Proof. We assume that we have two optimality systems corresponding to trajectories and state equations ( R , C , P ), ( p 1 ,

p 2 , p 3 ) and ( ̄R , C̄ , P̄ ) , ( ̄p 1 , p̄ 2 , p̄ 3 ) and we will show that the two coincide in some small interval. Consider the change of

variables 

R (t) = e θt r(t ) , C(t ) = e θt c(t ) , P (t ) = e θt q (t) 

and 

p 1 (t) = e −θt ϕ 1 (t) , p 2 (t) = e −θt φ2 (t) , p 3 (t) = e −θt φ3 (t) . 

Recall that N 0 = R (t) + C(t) + P (t) is constant and that the region { (P, C, R ) ∈ (R 

+ 
0 
) 3 : P + C + R = N 0 } is forward invariant.

By the first equation in (2) we get 

θe θt r + e θt ˙ r = −λ2 e 
θt r + λ1 e 

θt c − β1 e 
θt r + αu 1 e 

θt q + αu 2 e 
2 θt rq/N 

and thus 

θ r + 

˙ r = −λ2 r + λ1 c − β1 r + αu 1 q + α e θt u 2 rq/N. 

Subtracting the corresponding barred equation from the above equation we get 

θ (r − r̄ ) + 

˙ r − ˙ r̄ = −(λ2 + β1 )(r − r̄ ) + λ1 (c − c̄ ) + α(u 1 q − ū 1 ̄q ) + α e θt (u 2 rq − ū 2 ̄r ̄q ) /N. 

Multiplying by (r − r̄ ) , integrating from 0 to T and noting that r(0) = r̄ (0) we have 

1 

2 

(r(T ) − r̄ (T )) 2 + θ

∫ T 

0 

(r − r̄ ) 2 dt = −(λ2 + β1 ) 

∫ T 

0 

(r − r̄ ) 2 dt + λ1 

∫ T 

0 

(c − c̄ )(r − r̄ ) dt 

+ α

∫ T 

0 

(u 1 q − ū 1 ̄q )(r − r̄ ) dt + 

α e θT 

N 

∫ T 

0 

(u 2 rq − ū 2 ̄r ̄q )(r − r̄ ) dt 

and there are C 1 , C 2 > 0 such that 

1 

2 

(r(T ) − r̄ (T )) 2 + θ

∫ T 

0 

(r − r̄ ) 2 dt = (λ1 / 2 + αC 1 + αC 2 e 
θT /N − λ2 − β1 ) 

∫ T 

0 

(r − r̄ ) 2 dt + λ1 / 2 

∫ T 

0 

(c − c̄ ) 2 dt 

+ αC 1 

∫ T 

0 

(u 1 − ū 1 ) 
2 dt + 

αC 1 + αC 2 e 
θT 

N 

∫ T 

0 

(q − q̄ ) 2 dt 

+ 

α2 C 1 C 2 e 
θT 

N 

∫ T 

0 

(u 2 − ū 2 ) 
2 dt (A.1) 

By the second equation in (2) we get 

θe θt c + e θt ˙ c = −λ1 e 
θt c + λ2 e 

θt r − β2 e 
θt c + (1 − α) u 2 e 

2 θt rq/N + (1 − α) u 1 e 
θt q 

and thus 

θc + 

˙ c = −λ1 c + λ2 r − β2 c + (1 − α) u 2 e 
θt rq/N + (1 − α) u 1 q. 

Subtracting the corresponding barred equation from the above equation we get 

θ (c − c̄ ) + 

˙ c − ˙ c̄ = −(λ1 + β2 )(c − c̄ ) + λ2 (r − r̄ ) 

+(1 − α) e θt (u 2 rq − ū 2 ̄r ̄q ) /N + (1 − α)(u 1 q − ū 1 ̄q ) . 

Multiplying by (c − c̄ ) , integrating from 0 to T and noting that c(0) = c̄ (0) we have 

1 

2 

(c(T ) − c̄ (T )) 2 + θ

∫ T 

0 

(c − c̄ ) 2 dt = −(λ1 + β2 ) 

∫ T 

0 

(c − c̄ ) 2 dt + λ2 

∫ T 

0 

(c − c̄ )(r − r̄ ) dt 

+ 

(1 − α) e θT 

N 

∫ T 

0 

(u 2 rq − ū 2 ̄r ̄q )(c − c̄ ) dt + (1 − α) 

∫ T 

0 

(u 1 q − ū 1 ̄q )(c − c̄ ) dt 

and there are C 3 , C 4 > 0 such that 

1 

2 

(c(T ) − c̄ (T )) 2 + θ

∫ T 

(c − c̄ ) 2 dt = (λ2 / 2 + (1 − α) C 3 e 
θT /N + (1 − α) C 4 − λ1 − β2 ) 

∫ T 

(c − c̄ ) 2 dt 

0 0 
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+(λ2 / 2 + (1 − α) C 3 e 
θT /N) 

∫ T 

0 

(r − r̄ ) 2 dt 

+(1 − α)(C 3 e 
θT /N + C 4 ) 

∫ T 

0 

(q − q̄ ) 2 dt 

+ 

(1 − α) C 3 e 
θT 

N 

∫ T 

0 

(u 2 − ū 2 ) 
2 dt + (1 − α) C 4 

∫ T 

0 

(u 1 − ū 1 ) 
2 dt (A.2)

By the third equation in (2) we get 

θe θt q + e θt ˙ q = −u 2 e 
2 θt qr/N − u 1 e 

θt q + β1 e 
θt r + β2 e 

θt c 

and thus 

θq + 

˙ q = −u 2 e 
θt qr/N − u 1 q + β1 r + β2 c. 

Subtracting the corresponding barred equation from the above equation we get 

θ (q − q̄ ) + 

˙ q − ˙ q̄ = − e θt (u 2 qr − ū 2 ̄q ̄r ) /N − (u 1 q − ū 1 ̄q ) + β1 (r − r̄ ) + β2 (c − c̄ ) . 

Multiplying by (q − q̄ ) , integrating from 0 to T and noting that q (0) = q̄ (0) we have 

1 

2 

(q (T ) − q̄ (T )) 2 + θ

∫ T 

0 

(q − q̄ ) 2 dt = −e θT 

N 

∫ T 

0 

(u 2 qr − ū 2 ̄q ̄r )(q − q̄ ) dt −
∫ T 

0 

(u 1 q − ū 1 ̄q ) 
2 dt 

+ β1 

∫ T 

0 

(r − r̄ )(q − q̄ ) dt + β2 

∫ T 

0 

(c − c̄ )(q − q̄ ) dt 

and there are C 5 , C 6 > 0 such that 

1 

2 

(q (T ) − q̄ (T )) 2 + α

∫ T 

0 

(q − q̄ ) 2 dt = (β1 / 2 − e θT C 5 /N) 

∫ T 

0 

(r − r̄ ) 2 dt + β2 / 2 

∫ T 

0 

(c − c̄ ) 2 dt 

+(β1 / 2 + β2 / 2 − e θT C 5 /N − C 6 ) 

∫ T 

0 

(q − q̄ ) 2 dt 

−e θT C 5 
N 

∫ T 

0 

(u 2 − ū 2 ) 
2 dt − C 6 

∫ T 

0 

(u 1 − ū 1 ) 
2 dt (A.3)

To obtain a bound for the controls we use the conditions given by (7) and (8) . We have 

(u 1 − ū 1 ) 
2 ≤

[
(p 3 − p 1 α − p 2 (1 − α)) P/ (2 κ2 ) − ( ̄p 3 − p̄ 1 α − p̄ 2 (1 − α)) ̄P / (2 κ2 ) 

]2 

≤ (C 7 + 

˜ C 7 e 
θT )[(p − p̄ ) 2 + (φ1 − φ̄1 ) 

2 + (φ2 − φ̄2 ) 
2 + (φ3 − φ̄3 ) 

2 ] (A.4)

and 

(u 2 − ū 2 ) 
2 ≤

[
(p 3 − p 1 α − p 2 (1 − α)) P R/ (2 κ3 N) − ( ̄p 3 − p̄ 1 α − p̄ 2 (1 − α)) ̄P R̄ / (2 κ3 N) 

]2 

≤ (C 8 + 

˜ C 8 e 
θT )[(p − p̄ ) 2 + (r − r̄ ) 2 + (φ1 − φ̄1 ) 

2 + (φ2 − φ̄2 ) 
2 + (φ3 − φ̄3 ) 

2 ] . (A.5)

Next, using (A.4) and (A.5) , we obtain 

1 

2 

(φ1 (0) − φ̄1 (0)) 2 + θ

∫ T 

0 

(φ1 − φ̄1 ) 
2 dt ≤ (C 9 + 

˜ C 9 e 
θT ) 

∫ T 

0 

(u 2 − ū 2 ) 
2 

+(φ1 − φ̄1 ) 
2 + (φ2 − φ̄2 ) 

2 + (φ3 − φ̄3 ) 
2 + (c − c̄ ) 2 + (p − p̄ ) 2 dt 

≤ (C 10 + 

˜ C 10 e 
θT ) 

∫ T 

0 

(φ1 − φ̄1 ) 
2 + (φ2 − φ̄2 ) 

2 

+(φ3 − φ̄3 ) 
2 + (c − c̄ ) 2 + (p − p̄ ) 2 + (r − r̄ ) 2 dt, (A.6)

1 

2 

(φ2 (0) − φ̄2 (0)) 2 + θ

∫ T 

0 

(φ2 − φ̄2 ) 
2 dt ≤ (C 11 + 

˜ C 11 e 
θT ) 

∫ T 

0 

(u 2 − ū 2 ) 
2 + (φ1 − φ̄1 ) 

2 

+(φ2 − φ̄2 ) 
2 + (φ3 − φ̄3 ) 

2 + (r − r̄ ) 2 + (p − p̄ ) 2 dt 

≤ (C 12 + 

˜ C 12 e 
θT ) 

∫ T 

0 

(φ1 − φ̄1 ) 
2 + (φ2 − φ̄2 ) 

2 + (φ3 − φ̄3 ) 
2 

+(p − p̄ ) 2 + (r − r̄ ) 2 dt (A.7)

and 

1 

2 

(φ3 (0) − φ̄3 (0)) 2 + θ

∫ T 

(φ3 − φ̄3 ) 
2 dt ≤ (C 13 + 

˜ C 13 e 
θT ) 

∫ T 

(u 1 − ū 1 ) 
2 + (u 2 − ū 2 ) 

2 + (φ1 − φ̄1 ) 
2 dt 
0 0 
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+(φ2 − φ̄2 ) 
2 + (φ3 − φ̄3 ) 

2 + (r − r̄ ) 2 + (c − c̄ ) 2 dt 

≤ (C 14 + 

˜ C 14 e 
θT ) 

∫ T 

0 

(φ1 − φ̄1 ) 
2 + (φ2 − φ̄2 ) 

2 

+(φ3 − φ̄3 ) 
2 + (p − p̄ ) 2 + (r − r̄ ) 2 + (c − c̄ ) 2 dt. (A.8) 

Let 

�(t) = (r(t) − r̄ (t)) 2 + (c(t) − c̄ (t)) 2 + (q (t) − q̄ (t)) 2 

and 


(t) = (φ1 (t) − φ̄1 (t)) 2 + (φ2 (t) − φ̄2 (t)) 2 + (φ3 (t) − φ̄3 (t)) 2 . 

Adding equations (A.1) , (A.2) , (A.3) , (A.6) , (A.7) and (A.8) we obtain for the sum of left-hand sides 

1 

2 

�(T ) + 

1 

2 


(0) + θ

∫ T 

0 

�(T ) + 
(T ) dt 

and thus 

1 

2 

[�(T ) + 
(0)] + α

∫ T 

0 

�(T ) + 
(T ) dt ≤ ˜ C 

∫ T 

0 

�(T ) + 
(T ) dt + 

ˆ C e αT 

∫ T 

0 

�(T ) + 
(T ) dt 

witch is equivalent to 

1 

2 

[�(T ) + 
(0)] + (θ − ˜ C − ˆ C e θT ) 

∫ T 

0 

�(T ) + 
(T ) dt ≤ 0 . (A.9) 

We now choose θ so that 

θ > 

˜ C + 

ˆ C 

and note that θ− ˜ C 
ˆ C 

> 1 . Subsequently, we choose T such that 

T < 

1 

θ
ln 

(
θ − ˜ C 

ˆ C 

)
. 

Then, 

θT < ln 

(
θ − ˜ C 

ˆ C 

)
⇒ e αT < 

θ − ˜ C 

ˆ C 
. 

It follows that θ − ˜ C − ˆ C e θT > 0 , so inequality (A.9) can hold if and only if, for all t ∈ [0, T ], we have r(t) = r̄ (t) ,

c(t) = c̄ (t ) , q (t ) = q̄ (t ) , φ1 (t ) = φ̄1 (t ) , φ2 (t ) = φ̄2 (t) , and φ3 (t) = φ̄3 (t) . But this is equivalent to R (t) = R̄ (t ) , C(t ) = C̄ (t) ,

P (t) = P̄ (t ) , p 1 (t ) = p̄ 1 (t ) , p 2 (t ) = p̄ 2 (t) and p 3 (t) = p̄ 3 (t) . 

This establishes the uniqueness of the optimal control on the interval [0, T ]. 

We have two possibilities. If T ≥ t f , then we have uniqueness on the whole interval and we are done. Otherwise, if T < t f ,

considering the optimal control problem whose initial conditions on time T coincide with the values of the state variables

on the end-time of the interval [0, T ], we can obtain uniqueness on [ T , 2 T ] (note that, by the forward invariance of the set 

S = { (C, P, R ) ∈ (R 

+ 
0 ) 

3 : C + R + P ≤ C 0 + R 0 + P 0 } , 
and since the constants ˜ C and 

̂ C in (A.9) depend only on the values of the several state and co-state variables on S, we still

have the same T ). Iterating the procedure, we conclude that we have uniqueness on the whole interval [0, t f ], after a finite

number of steps. The proof is complete. �

Appendix B. The optimal control problem with the L 1 objective functional 

A quadratic objective favours lower rates: a recruitment rate lower than the maximum, u + , contributes with a value,

much smaller, than u + , to the cost (note that u 2 + � u + ). This feature is not related to the system, but is imposed by the

choice of the functional and the maximum value of u + . Hence, the linear objective, by incorporating the totality of controls,

may be a more adequate choice. 

Let us consider the linear objective: 

J 

′ (P, u 1 , u 2 ) = 

∫ t f 

0 

κ1 P + κ2 u 1 + κ3 u 2 dt 

where 0 < κ1 , κ2 , κ3 < ∞ are weights that balance out the relative importance of the three terms. 

Using the adjoint variables p = (p 1 , p 2 , p 3 ) , the Hamiltonian of the linear objective functional and system (2) is the

following: 

H 

′ (t, (C, R, P ) , (p 1 , p 2 , p 3 ) , (u, v )) = κ1 P + κ2 u 1 + κ3 u 2 
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+ p 1 (−λ2 R + λ1 C − γ (t) R + α1 u 1 P + α2 (β(t) + u 2 ) P R/N) 

+ p 2 (−λ1 C + λ2 R − γ (t) C + (1 − α2 )(β(t) + u 2 ) P R/N + u 1 (1 − α1 ) P ) 

+ p 3 (−(β(t) + u 2 ) P R/N − u 1 P + γ (t) R + γ (t) C) 

We obtain the adjoint equations by 

˙ p 1 ( t ) = −∂H 

′ 
∂R 

, ˙ p 2 ( t ) = −∂H 

′ 
∂C 

and 

˙ p 3 ( t ) = −∂H 

′ 
∂P 

, 

whose expressions are as in (5) . 

Once the terminal state, ( R ( t f ), C ( t f ), P ( t f )), is free, the transversality conditions are again 

p 1 (t f ) = p 2 (t f ) = p 3 (t f ) = 0 . 

Since H 

′ is linear in the control, this minimization problem can easily be solved [9,16] . Defining the so-called switching

functions , 
1 and 
2 as 


1 (t) = κ3 + (α1 p 1 (t) + (1 − α1 ) p 2 (t) − p 3 (t )) P (t ) 

and 


2 (t) = κ3 + (α2 p 1 (t) + (1 − α2 ) p 2 (t) − p 3 (t )) P (t ) R (t ) /N. 

Then the minimum condition for the optimal controls u 1 ( t ), u 2 ( t ), is equivalent to the minimization problem


i (t) u i (t) = 

min 
0 � u i � u i max 


i (t) u i , i = 1 , 2 . This gives the following control functions: 

u i ( t ) = 

{ 

0 if 
i (t) > 0 

u i max if 
i (t) < 0 

singular if 
i (t) = 0 on an open subset of [0 , t f ] 
, i = 1 , 2 . (B.1)

We do not discuss singular controls, since singular arcs never appeared in our computations. In view of the transversality

conditions, the terminal values of the switching functions are: 
1 (t f ) = κ2 and 
2 (t f ) = κ3 . According with the definition

of control (B.1) , we may conclude that u 1 (t f ) = u 2 (t f ) = 0 , as with the quadratic functional. 
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