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A B S T R A C T

Field ion microscopy (FIM) allows to image individual surface atoms by exploiting the effect of an intense
electric field. Widespread use of atomic resolution imaging by FIM has been hampered by a lack of efficient
image processing/data extraction tools. Recent advances in imaging and data mining techniques have renewed
the interest in using FIM in conjunction with automated detection of atoms and lattice defects for materials
characterization. After a brief overview of existing routines, we review the use of machine learning (ML) ap-
proaches for data extraction with the aim to catalyze new data-driven insights into high electrical field physics.
Apart from exploring various supervised and unsupervised ML algorithms in this context, we also employ ad-
vanced image processing routines for data extraction from large sets of FIM images. The outcomes and limita-
tions of such routines are discussed, and we conclude with the possible application of energy minimization
schemes to the extracted point clouds as a way of improving the spatial resolution of FIM.

1. Introduction

Field ion microscopy (FIM), invented in 1951 by Erwin Müller [1,
2], is a high electric field technique which uniquely enables imaging of
surfaces with atomic resolution. FIM is based on ionization of an ima-
ging gas in the vicinity of a field-emitter tip as a consequence of the
locally high electric field. The high electric field is achieved by applying
a high voltage of a few kilovolts onto a very sharp needle-shaped spe-
cimen maintained at a temperature usually below 80 K. Specimens are
either electropolished [3] or milled with a focused ion beam (FIB) [4]
into a very sharp needle tip with an end radius below 100 nm. The
advantage of using FIB for specimen preparation lies in its site specific
application for extracting tips in microstructure regions of high interest
such as across internal interfaces. An excellent review on using FIB for
site specific specimen preparation can be found in reference [4].

Once the specimen is mounted an imaging gas is introduced. The
introduced imaging gas gets attracted by the cold surface due to po-
larization forces. The gas atoms then thermally accommodate with the
cold tip surface by performing a series of “ hops”. Surrounding the tip
surface there exists a critical zone, where the maximum ionization oc-
curs. This surface usually lies around 1–4 Å above the tip [5]. During
the “ hops”, the ionization probability for the gas atoms can be con-
siderable as they spend a significant amount of time in the critical
surface. As a consequence an electron can tunnel from the imaging gas

atom into the tip. The ionized gas atom is accelerated away from the
positively biased tip and towards the detector, where gas ions con-
tribute to image formation.

The surface is the intersection of the crystalline lattice with the
imposed end shape, often approximated as nearly-spherical. Owing to
the discreteness of the atomic arrangement at these scales the tip apex
curvature is, in reality, made of atomic scale crystallographic terrace
features where some of the top, edge and corner atoms are naturally
protruding, producing local electrostatic field enhancement. This means
that these exposed atomic terrace positions are sites of magnified
electrostatic field strength and also of aberrated field direction. The
amount of gas atoms ionizing depends on such a local enhancement of
the electric field. This variation in electric field strength across the
surface atoms gives the final contrast in the FIM image. The contrast in
FIM also depends on the gas supply function and adsorption behavior
[6-8]. Atomic resolution can be attained in some cases on certain high
index facets where the surface field distribution is corrugated enough to
give contrast in the image. By collecting the gas ions on a phosphor
screen, an image is formed that reveals the distribution of the electro-
static field near the surface and the current created by the number of
incoming imaging gas ions.

Historically, images were collected on a film in a dark room after
sufficient exposure on the screen was achieved by field ionization [1].
Eventually, field ion microscopes were fitted with a stack of micro-
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channel plates (MCP) in-front of the phosphor screen. The image on the
phosphor screen can be recorded with a high-resolution high-frame-rate
camera. The MCPs act as a photo multiplier by creating an electron
cascade in response to the gas ion impact. Another variant of FIM is
referred to as eFIM™, which is performed on a local electrode atom
probe (LEAP) [9] using the delay-line detector used in the atom probe
mode.

The atomic resolution of FIM made it a popular technique for
studying internal interfaces [10-12] and dislocations [13-15] at un-
precedented atomic positioning resolution. When exposing the tip not
only to the minimum field strength required for ionizing the imaging
gas but also for evaporating the tip atoms themselves continually, the
method is rendered depth sensitive. This means that the specimen can
be investigated tomographically along the tip longitudinal axis, which
has led to the development of 3DFIM [16]. The emergence of atom
probe tomography (APT), which is additionally able to characterize the
chemical identity of the imaged atoms, has led to some decline in the
usage of the FIM technique by the materials science community.
Nevertheless 3DFIM offers the important advantage over APT of a
significantly higher spatial resolution with 100% positional detection
efficiency in 3 dimensions in some cases. This high degree of positional
accuracy allows characterization even down to single point defects in a
material, a feature not offered by any other technique. This causes
currently an increased interest in the 3DFIM technique.

Ultimately, owing to all the advances in detector technology, 3DFIM
is capable of producing large and accurate tomographic datasets con-
taining information on sequential atomic positions. These large datasets
lead to a new tremendous challenge of how to manage the data.
Presently, there is a lack of efficient data handling and data treatment
algorithms to extract pertinent information from these datasets in an (a)
automated; (b) fast; (c) user-independent; (d) and error quantified
manner. For instance, characterization of a volume of 0.001 μm3(a ty-
pical sample size analyzed in 3DFIM) produces in the range of 2×105

images (assuming a constant field evaporation rate and capture speed).
Hence, there is a great need for efficient algorithms and data mining
routines to fully exploit the potential of 3DFIM. To this end, M. Dagan
et al. [17] have proposed an atom by atom data extraction routine for
reconstructing 3DFIM data. Building on their work we recently pro-
posed a new method to extract atomic positions from 3DFIM data-
sets [18]. With this article, we focus our attention on using various
modern image processing and machine learning algorithms for ex-
tracting information from 3DFIM.

The developments in Artificial Intelligence (AI), especially in com-
puter vision have been explosive. Modern machine learning algorithms
enable a fully automated detection and classification of objects in a
picture. We give an overview about these advanced data mining tools
and how they can be utilized to extract the wealth of information from
3DFIM images. We have implemented some of these concepts within a
set of routines in Python™ (Python Software Foundation; Python
Language Reference, version 2.7; Available at http://www.python.org)
employing the SciPy package [19]. These routines allow us to extract
the relevant information from a large number (order of several 10,
000 s) of FIM images in very short computational times (order of
minutes).

2. Existing Data Extraction Routines for 3D Field Ion Microscopy

A 3DFIM experiment produces a series of images of the continually
field evaporating surface. A main challenge lies not in acquiring such
large datasets but rather in analyzing them. The article by Vurpillot
et al. [20] serves as an excellent review for the current state-of-the-art
and the main issues associated with data extraction from large FIM
datasets. We briefly review here the available analysis methods and also
some recent developments. Broadly speaking the analysis methods can
be categorized into an atom by atom approach and a geometrical ap-
proach.

The first approach towards advanced 3DFIM analysis was already
developed in the early 70s for characterizing radiation damage in me-
tals at the atomic scale [21, 22]. In these early approaches FIM images
were captured on film which later were developed and manually ana-
lyzed individually. The captured FIM images were dissected atom-by-
atom and the positions of atoms and defects were marked manually.
Owing to the associated cumbersome analysis methods, systematic FIM
studies of more complex atomic scenarios remained an exception.
Taking the additional disadvantage of 3DFIM of being insensitive to the
chemical nature, APT became gradually the more dominant technique.
Yet, FIM's ability to characterize atomistic defects such as vacancies in
three dimensions is still unparalleled with any other technique. In this
context the drastic increase in computing power became an essential
asset when Dagan et al. developed an automated method to reconstruct
3DFIM data atom by atom [20, 23]. The algorithm takes advantage of
layer by layer evaporation and the atoms are identified based on a
threshold intensity. The final coordinates are converted to real space
based on theoretical nearest neighbor distances. This work led to a rise
in interest around the physics of image formation in FIM and also in the
use of the associated computationally enhanced analysis techniques.

The geometrical approach to 3DFIM atomic position reconstruction
introduced by Vurpillot et al. consists in stacking the digital images
obtained from a 3DFIM experiment [16]. The image stack is then cor-
rected, assuming a known projection law, a specimen's geometry and a
constant evaporation rate. The stacking approach does not provide
atomistic precision but is rather used for investigation of segregation,
clustering and fine scale precipitation studies [24-28]. This method can
also be used to identify crystallographic planes and dislocations which
are hard to spot in a 2DFIM image.

Both the atom by atom reconstruction approach and the geometrical
method suffer from their own limitations. For instance, the atom-by-
atom approach is limited to regions with atomic resolution, and thus a
3D reconstruction is only possible around certain high index facets. The
geometrical approach looses the atomic positioning precision due to the
simplistic geometrical assumptions of the tip shape. In the following
sections we showcase how various data extraction methods can be
employed to further improve the atom-by-atom analysis approach and
recover as much positioning information as possible. In addition, the
use of machine learning algorithms to extract the physics behind field
ionization and evaporation is also explored.

3. Supervised and Unsupervised Machine Learning

Machine learning (ML) algorithms are currently exploited to derive
systematic insights from very rich experimental datasets and for solving
complex problems in various disciplines [29]. Progress in ML has led to
decision rules that can in some cases be automatically derived by spe-
cific algorithms that are capable of learning, whilst exploiting the speed
and the robustness of the available advanced computer infrastructure.

Machine-learning methods can be grouped into two major cate-
gories depending on the approach to a given problem viz. supervised
and unsupervised learning [30]. Supervised learning algorithms try to
identify the relationship between input and output. This dependency is
learned as a function f(x) by using a set of labeled data {X=[ai,bi] ,
i=1,…,N} consisting of N pairs (a1,b1), (a2,b2) , ... , (aN,bN), where the
input variables ai are D-dimensional vectors ai ∈ RD and the output
variables (or system responses) bi are discrete values (e.g., Boolean) for
classification problems and continuous values (b ∈ R) for regression
tasks. Support Vector Machines (SVMs) and Artificial Neural Networks
(ANN) are widely used techniques that fall in this category. Typical
tasks that can currently routinely be carried out by a supervised ma-
chine learning algorithm are image segmentation and classification. In
the computer vision community, semantic segmentation, which is an
extremely challenging task, aims to partition the image into semanti-
cally meaningful parts (such as differentiating a cat, a car or Einstein in
the same image), and to classify each part into one of the predetermined
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classes making use of ML or the more advanced deep learning
methods [31]. 3DFIM represents a very good example of a complex
problem where rather large experimental datasets are available and
which are to date widely under-exploited. For the case of FIM data
analysis, this concept could help in determining whether a group of
pixels represents, e.g. an atom, a defect such as a vacancy, a dislocation
or a grain boundary. This idea can be also extended to 3DFIM, where
the data can be subjected to systematic segmentation and classification
into sub-volumes that may contain or represent these various features.
The motivation for using such algorithms lies in enabling the automated
reconstruction of a fully atomically-resolved three dimensional point
cloud representing the imaged specimen, including its population of
crystalline defects. However, to apply deep learning algorithms for se-
mantic segmentation, the structure of 3DFIM data must be defined
precisely, followed by labeling of a large enough dataset to be used as a
training dataset for the algorithm.

Unsupervised learning refers to any ML process that attempts to
learn the structure in an unlabeled dataset {X=[ai], i=1,…,N}, where
ai ∈ RD in the absence of the output variables bi [30]. Various clustering
techniques and dimensionality reduction routines fall into this cate-
gory. The fact that the unsupervised learning techniques do not need a
labeled training dataset is a considerable advantage. However, since
there is usually no sufficiently robust or large dataset in this field to
train the algorithm reliably enough, accuracy that can be obtained by
these methods is usually lower than that achieved by the help of su-
pervised learning algorithms. In this paper, we focus on unsupervised
methods to identify the underlying structure of the FIM data, to vi-
sualize them and to label them for further application of supervised
learning techniques.

4. Advanced Data Mining Routines for 3D Field Ion Microscopy

In this section we describe the advanced data mining routines which
include unsupervised learning routines (Section 4.1) and a routine
purely based on image processing (Section 4.2). To demonstrate the
utility of these methods we apply them to a 3DFIM dataset obtained for
bcc tungsten. The specimen for 3DFIM was obtained from a tungsten
wire oriented along the [011] direction. A very sharp needle like shape
was achieved by using electrochemical polishing at 5–8 V using AC in a
5% molar NaOH solution. The local radius across the main [011] pole
was estimated to be approximately 20 nm by the ring counting
method [32]. 3DFIM experiments were performed on a 3DAP-LAR
FIM [33]. FIM images were obtained on a phosphor screen, and re-
corded using a CCD camera (AVT Stingray) at 15 fps rate. The resolu-
tion of each recorded image was set to 1280 pixels× 960 pixels. From
this complete image, a region of interest (ROI) was selected around the
(222) crystallographic plane. Each image of the ROI is 150×150 pixels
in size. A set of (222) planes was chosen for the data analysis as the
atomic density of these planes in a body centered cubic structure is
sufficiently low to produce atomic resolution in FIM. In the following, “
FIM image” generally refers to the selected ROI image of
150×150 pixels.

4.1. Unsupervised Machine Learning Applied to 3DFIM

Here we use unsupervised machine learning to understand the un-
derlying structure of 3DFIM data and use this information to test su-
pervised learning algorithms for data extraction. It will be seen that the
extracted structure of 3DFIM data is related to various field evaporation
phenomena. Although these phenomena of field evaporation have been
long established, the ability of a machine to decipher this structure from
3DFIM data serves as a proof of concept.

4.1.1. Dimensionality Reduction
In problems with high levels of complexity, one of the challenges

lies in extracting information from a dataset that is made of a large

number of samples and where each sample has high-dimensionality.
The 3DFIM dataset used herein contains 10,000 FIM images each with
an image size of 150×150 pixels, i.e. 22,500 dimensions (considering
only the ROI). Relevant extraction of information from such data re-
quires identifying pertinent variables, determining the interaction of
these variables with each other, and then reformulating the data using
exclusively these specific variables. This procedure is referred to as
“dimensionality reduction” and simplifies any further processing.
Mathematical hurdles of working with high-dimensional data are often
called the “curse of dimensionality” [34]. When the dimensionality of
the data increases, a good representation of the data in 2D or 3D Eu-
clidean spaces can be very helpful to reveal various phenomena present
in the data but such a representation might not always be possible [35].

For data with high dimensionality, two complementary strategies
are employed to either avoid or at least reduce issues related to di-
mensionality. First, there are often a number of input variables that do
not or only weakly affect the output and can hence be considered as
irrelevant and ignored. Second, the dependencies amongst the pertinent
variables are established. Once the relevant variables have been es-
tablished, the dimensionality of the observed data tends to be still
larger than necessary. Let us consider two highly correlated variables
where information about one can be derived from the other.
Correlations between such variables can be sometimes very complex
and retaining only one of them might not be sufficient to encompass the
whole information. Hence, instead of arbitrarily removing a variable
from the pair, the best is to reduce the dimensionality of the data by
trying to find a new set of transformed variables that keeps as much of
the available information as possible.

The new set of variables must possess the following features: It must
1)~contain fewer variables than the original set and 2) preserve the
most important information contained in the initial dataset. We hence
seek a transformation that contains and shows the same information
from a different perspective, i.e. a projection which preserves the
geometry whilst representing the relevant objects [36]. Linear and
nonlinear transformations of the input used herein are referred to as
projections, mainly because all these transformations aspire to preserve
the characteristics that are geometrical or have a geometrical inter-
pretation. In other words, when there is a dependency amongst two or
more variables, their joint distribution does not spread over the whole
space. The dependencies in the data create a structure in the distribu-
tion, that can be seen in the form of a geometrical locus. Dimensionality
reduction attempts to eliminate any redundancies in the initial set of
variables. Linear multivariate analyses such as principal component
analysis (PCA) or multidimensional scaling (MDS) have long been used
to find such projections, but cannot always reveal low-dimensionality
structures when the manifold formed by the geometrical loci of data is
curved [37]. Hence, there has been recent interest in algorithms iden-
tifying non-linear manifolds in data [35, 36, 38]. There are many,
somewhat heuristic, methods to discover non-linear manifolds based on
the preservation of the geometric properties of local neighborhoods
within the data, whilst embedding, unfolding or otherwise projecting
the data to occupy fewer dimensions. Algorithms such as Isometric
feature mapping (Isomap) or maximum variance unfolding (MVU) at-
tempt to preserve local distances. They estimate global manifold
properties by continuation across neighborhoods and then project the
manifold to lower dimensions by classical methods such as PCA or MDS.
In the following, we discuss the application of a linear method (PCA)
and a non-linear method (Isomap) to the 3DFIM dataset.

4.1.1.1. Principal Component Analysis. PCA is a popular technique for
dimensionality reduction that aims to identify the most consequential
basis to re-express a given dataset. The new basis should reveal the
underlying structure in the dataset and filter out the noise [35].
Mathematically, we can define PCA as follows: For N high
dimensional input variables {X=[ai], i=1,…,N}, where ai ∈ RD,
PCA is employed to find a linear subspace with lower dimensionality d
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(d ≤ D), such that the maximum variance is maintained in the
subspace. The linear subspace can be defined by d orthogonal vectors
also called principal components, say u1,u2,…,ud, forming a new
coordinate system. Ideally d ≪ D (worst case would be d=D). In
other words, PCA aims to reduce the dimensionality of the data, whilst
preserving its information content which comes from the variation (or,
equivalently, minimizing the loss of information). The principal
components are given by the top eigenvectors of the D×D
covariance matrix = ∑ ⋅C X XN i i i

T1 , with i running over the rows of
the matrix X [35].

Fig. 2 shows the result of projecting our 3DFIM dataset onto its first
two principal components. The corresponding PCA analysis took
0.788 s on a Quad cores Intel Xeon CPU E3 running at 3.6 GHz. In
Fig. 2, each point represents one micrograph (with a dimensionality of
150×150), and is color-coded according to the number of atoms in the
first terrace of the corresponding picture (see Fig. 1). The numbers on
the outer circle represent the average number of atoms on the first
terrace of images in the corresponding slice of the circle. The PCA result
reveals a cyclic pattern in the 3DFIM dataset and a specific grouping of
the colors. Note that starting with the gray color cloud to the left re-
presenting a terrace of 27 atoms and going counter-clockwise the
number of atoms in the terrace gradually decreases until 3, before a
jump to the next terrace occurs.

4.1.1.2. Isomap. Isomap is a nonlinear dimensionality reduction
method that is built on a linear dimensionality reduction approach,
more precisely it is built upon a classical multidimensional scaling
(MDS) (see reference [39] for details). In MDS, the input X is projected
into a smaller subspace with dimension d by preserving the pairwise
Euclidean distances |Xi− Xj|2, or the dot products Xi ⋅ Xj, i.e. the L2

norm. The orthogonal vectors, w1,w2,…,wd, which form the subspace
are the top d eigenvectors of the N×N Gram matrix with elements
Gij= Xi ⋅ Xj [36]. Isomap also tries to preserve the local geometry of the
data. To this end, one assumes that the high-dimensional data in X lie
on a low-dimensional manifold M, and one replaces the Euclidean
distances between the points in the high-dimensional space with the
distances on this manifold. Since the manifold is unknown, to a first
approximation, a k-nearest neighbor graph between points in the
dataset is considered, where k needs to be chosen such that any two
data points in the dataset are connected by at least one path but it
should not become too large to have a computationally efficient
approach. The shortest path between the points is then used to
approximate the distance on the manifold.

The complete Isomap algorithm has three main steps [36]:

1. Constructing a k-nearest neighbor graph based on the distances
dX(i,j) between pairs of points i,j in the input space X. Either all the
points within some fixed radius are connected to each point, or each

point is connected with each of its k-nearest neighbors. These
neighborhood relations are expressed as a weighted graph G over all
the data points, where edges are represented as weights dX(i,j) be-
tween the neighboring points.

2. The geodesic distances dM(i,j) between all pairs of points on the
manifold M are estimated by Isomap from computing their shortest
path distances dG(i,j) in the graph G.

3. Finally a MDS is applied to a matrix of graph distances
DG={dG(i,j)}, which embeds the data in a d-dimensional Euclidean
space Y which preserves the manifold's estimated intrinsic geo-
metry. The coordinate vectors yi for points in Y are chosen to
minimize the cost function:

= −E τ D τ D| ( ) ( )|G Y L2 (1)

where DY denotes the matrix of Euclidean distances
dY(i,j)= |yi− yj| and A| |L2 the L2 matrix norm ∑ Ai j ij,

2 . Distances
are converted into the inner products by the τ operator, these
characterize the geometry of the data in a form that supports effi-
cient optimization. The global minimum of Eq. (1) is achieved by
setting the coordinates yi to the top d eigenvectors of the matrix DG.

Fig. 3 shows the result of applying Isomap to the 3DFIM dataset. The
corresponding Isomap analysis took 162.56 s on a Quad cores Intel
Xeon CPU E3 running at 3.6 GHz. Each point in Fig. 3 represents one
micrograph (with dimensionality of 150×150) in a reduced 2-di-
mensional space. Each image is color-coded according to the number of
atoms in the first terrace. Again, the numbers on the outer circle re-
present the averages over the number of atoms in the first terrace of
pictures whose Isomap representations are in a slice of the circle with a
corresponding angle. The Isomap result reveals a similar cyclic beha-
vior in the dataset as found with PCA. This cyclic behavior detected by
both linear and non linear dimensionality reduction algorithms is a
consequence of the field evaporation behavior in crystalline materials.
Field evaporation in many pure and crystalline materials occurs layer-
by-layer and proceeds from atoms sitting at the ledge of a terrace and
towards the center. When a terrace field evaporates the atoms sitting on
the ledge disappear decreasing the number of atoms on the terrace as
the evaporation proceeds. As shown in Fig. 4 (b), by evaporating atoms
from the surface of the sample during FIM, the first terrace area de-
creases until it evaporates completely and the subsequent terrace is
exposed. This field evaporation behavior is seen for all terraces. The
number of cycles is a measure of the number of atomic terraces eva-
porated/analyzed during the 3DFIM.

Fig. 4 (a) shows the angles of the first 500 3DFIM images after
projection onto the Isomap space with horizontal axes (see Fig. 3). Each
period of this plot represents the field evaporation of one terrace from
the moment of its exposure to the surface until its complete

Fig. 1. FIM image of pure bcc W obtained using He as
imaging gas. Regions with atomic resolution are high-
lighted. The region marked by 1, is used for identifying all
the atoms (marked in red in the upper right corner).
Machine learning is then used to assign correct labels to
those atoms that assemble crystallographic planes. In this
case, atoms labeled blue belong to the first, black to the
second and purple to the third plane layer, respectively,
assembling altogether a pyramid type motif (lower right
corner). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of
this article.)

S. Katnagallu et al. Materials Characterization xxx (xxxx) xxx–xxx

4



Fig. 2. PCA applied to the 3DFIM dataset. Each point re-
presents one FIM picture in this dataset, and its color in-
dicates the number of atoms in the first terrace of the cor-
responding picture. The numbers on the outer circle
represent the averages over the number of atoms in the first
terrace for that particular arc of the circle. The bottom
figure shows the variance captured by the 1. (2., 3., …)
Eigenvector divided by the total variance in blue (light
blue, orange,…). 35.5% of the variance can be preserved in
the subspace formed by the first 2 eigenvectors and 68.5%
by the first 10 Eigenvectors. The brown box labeled “Rest”
indicates the variance that cannot be captured by the first
10 Eigenvectors. (For interpretation of the references to
color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Isomap manifold learning on the 3DFIM dataset. Each
point represents one picture in the reduced dimensional
space, and its color indicates the number of atoms in the first
terrace of the corresponding picture. The numbers on the
outer circle represent the averages over the number of atoms
in the first terrace of pictures. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to
the web version of this article.)
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evaporation. Fig. 4 (b) depicts the evolution of the FIM pictures and the
number of atoms in the first terrace during one of these periods
(highlighted in Fig. 4 (a) by the red dashed rectangle).

Although Isomap is built on an MDS approach, the MDS algorithm
applied to the same dataset is not able to reveal the cyclic pattern ob-
served within the data (see Fig. 5). The reason is that the objective
function in MDS aims to preserve the pairwise Euclidean distances in
the low-dimensional space and therefore it fails to appropriately re-
present the 3DFIM dataset. A comparison between the projections ob-
tained from Isomap and PCA shows that the Isomap projection reveals
finer details and enables a better separation between micrographs based
on the number of atoms in the first terraces (see the color of points in

Fig. 3). However, there is still an overlap of colors especially in the
images with a higher number of atoms in the first terrace. The reason is
that for high numbers of atoms in the first terrace, the number of
available configurations that these atoms can adopt is significant.
Hence an ideal projection would be one that could distinguish the data
based on the configuration of atoms in the corresponding image. To this
end, the local information within the images should also be taken into
account whilst calculating the similarity (e.g. pair distances) between
images. This could be achieved by using autoencoders in combination
with convolutional neural networks, which is beyond the scope of the
current article. (See reference [40] for additional details.)

We showed here that a complex 3DFIM dataset can be used as input

Fig. 4. (a) Angles of the first 500 3DFIM images after pro-
jection onto the Isomap space with horizontal axes (see
Fig. 3). (b) Evolution of a terrace seen from FIM pictures and
the number of atoms in the first terrace of the highlighted
period in (a) (red dashed rectangle). (For interpretation of
the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. MDS applied to the 3DFIM dataset. Each point represents one picture in the reduced dimensional space, and its color indicates the number of atoms in the first terrace of the
corresponding FIM picture. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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for dimensionality reduction efficiently unraveling the underlying
structure of the data. Further we discussed that the structure revealed
by the linear and non-linear dimensionality reduction is in fact a con-
sequence of the field evaporation behavior of a pure and crystalline
material. The output of these algorithms was able to classify the data
according to the number of atoms on the first terrace and also, to some
extent, the configurations formed by those atoms. Further analyses can
be performed in the direction of analyzing the stability of certain
configurations for a given crystallographic plane. In the following, we
describe some advanced image processing methods and clustering al-
gorithms which can be used to maximize the data extracted from
3DFIM.

4.2. Image Processing Based Data Extraction Routines Applied to 3D Field
Ion Microscopy

In a recent paper [18], we showed an improved method for re-
constructing 3DFIM data. It was also shown recently [41] that the
higher the intensity of an imaged position, the less representative is the
imaged position of the true atomic position, which implies that the
positions of atoms imaged in the center of a terrace are more accurate.
Keeping this in mind, we developed another new routine for 3DFIM
data reconstruction. In every 3DFIM data extraction routine, the first
step is to determine the overall depth of the analyzed volume. In an
atom-by-atom approach, this problem boils down to calculating the
number of planes of interest that have evaporated, which can be di-
rectly derived from monitoring the intensity in the center of the image.
As the evaporation proceeds from the edge of the terrace inwards, the
intensity in the center keeps increasing. As the terrace collapses, the
atoms left on the terrace are imaged brightly. The reason is the high
local curvature leading to an increase in the local field, thus increasing
the current of gas ions originating from above of these specific atoms.
Such an analysis is shown in Fig. 6 revealing a clear periodic behavior
where each peak indicates the final image of a terrace before complete
evaporation. The same information can be obtained from an ML ap-
proach as was shown by the dimensionality reduction using PCA and
Isomap (see Fig. 4 (a)). The number of peaks in this intensity variation
thus gives the number of planes evaporated.

After this number is computed, the image at which a new plane is
exposed can also be calculated based on the peak positions. The de-
termination of the depth of the data enables the next steps of the data
extraction procedure. These steps can be classified into three categories
a) identification of atoms (atom detection; Section 4.2.1) b) assigning
the right crystallographic plane to the identified atoms (plane

detection; Section 4.2.2) and c) depth assignment based on the number
of planes evaporated. Depth assignment is easier to implement and as
described above capitalizes on layer-by-layer evaporation, whilst the
first two steps employ a plethora of algorithms encompassing various
methods to build a 3D point cloud. The aim in the following is to look at
these algorithms in terms of applicability and efficiency.

4.2.1. Atom Detection
Atom detection is the extraction of x and y coordinates of each atom

from the digital FIM images. A closer inspection of a FIM image reveals
that the images are made by a superposition of Gaussian-like distribu-
tions of intensities centered around the atomic positions. These atomic
positions are also distorted by the image projection from the specimen
onto the screen and by the atomic arrangement surrounding the imaged
atom. Certain high index planes posses enough corrugation in the
electric field so as to enable the ionization of gas atoms almost at every
atomic site. The probability of field ionization and hence the intensity
of the imaged spot depends on the electric field strength at that atomic
site. This explains the intensity differences between the brightly imaged
ledge atoms and dimly imaged interior terrace atoms. Dagan's rou-
tine [17] was based on identifying the atoms which were imaged above

Fig. 6. Intensity at the center of the FIM image versus the image number. Peaks indicate the number of planes evaporated. Compare with Fig. 4 which also shows the same periodic
behavior, a consequence of layer-by-layer evaporation.

Fig. 7. A schematic showing the resulting intensity (solid green) of two overlapping
Gaussians (dashed green) and the application of a Laplacian operator (red) localizing the
two individual contributions. The second derivative (blue) of the Laplacian operator
becomes negative in the relevant regions. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

S. Katnagallu et al. Materials Characterization xxx (xxxx) xxx–xxx

7



a certain threshold intensity. As every atom gets brighter and brighter
until it field evaporates, each atom can be detected over the course of
the evaporation of a complete plane. This protocol also requires
tracking the identified atoms until evaporation. Dagan's routine is well
suited for reconstructing the data to get a statistical distribution of
defects and/or ad-atoms. In order to understand the physics of field
ionization and field evaporation, as well as to characterize the atomic
strains in the imaged lattice, it becomes critical to identify and track
every atom right from the moment of its exposure to the surface. In this
effort, we developed an alternative method based on edge detection to
identify almost all atoms in each image. Two methods for identifying
atoms based on edge detection are explained below.

4.2.1.1. Gaussian edge detection. Since the Gaussian-shaped intensity
distribution of each atom overlaps with that of the neighboring atoms,
detection of individual atoms in a FIM image is not a trivial task. This is
particularly the case for atoms from the center of the terrace, where the
overlap is much higher as the intensity distribution spreads more
widely. To make these intensity distributions more distinguishable
from each other, we apply a Laplace operator on the images. As shown
in Fig. 7 for a one-dimensional Gaussian distribution, the application of
a Laplacian operator localizes the intensity distribution for individual
Gaussian distributions. In Fig. 7 the solid green line is formed by the
combination of two individual overlapping Gaussian distributions (the
dashed green lines). The red line shows that, by applying the Laplacian
operator, the two maxima corresponding to the individual Gaussian
intensities (dashed green lines) can now be discriminated as a
maximum and a shoulder. These principles are extended to the two
dimensional FIM images. Fig. 8 (b) shows the result of applying the
Laplacian operator to an original image shown in Fig. 8 (a). For
detecting the atoms, as shown in Fig. 7, the second derivative (blue
line) of the localized Laplacian-modified signal can be used as it is more
negative in the regions close to the original positions of the two atoms.
In a similar way we use the second derivative of the Laplacian-modified
image to identify the regions occupied by the atoms and then, the
atom's positions are assigned according to the identified region's
centroid.

4.2.1.2. C spline fitting and peak detection. Recently, we showed that the
local electric field on the atomic sites rearranges over the course of field
evaporation giving an impression of atomic movement in FIM
images [41]. Another conclusion from this work was that atom
positions extracted from less intense parts of the images are least
erroneous. Hence for an accurate reconstruction, the information from

the center of the terrace needs to be maximized as the corresponding
intensity is relatively low. We therefore describe next a method to
extract atom positions from the center of a terrace.

The key idea is to improve the edge detection at the center of the
terrace by improving the signal to noise ratio (SNR). This is achieved by
averaging a certain number of similar images of a given terrace.
Provided that the evaporation rate is slow, more images can be re-
corded for a fixed analysis volume. The images required for this routine
are the images of a terrace when it first appears. The image index
corresponding to a terrace's first exposure to the surface can be inferred
from the analysis shown in Fig. 6. The blue circles indicate the images
where a new terrace has been exposed to the surface, right after eva-
poration of the previous terrace. To average a certain number of images
with the identified image index, a comparison of similarity for the next
few images is performed. The comparison is based on a structure si-
milarity index measure (SSIM) [42]. The SSIM for two images i and j is
given by

= ⋅ ⋅i j l i j c i j s i jSSIM( , ) [ ( , )] [ ( , )] [ ( , )] ,α β γ (2)

which is a function of the intensity in both images l(i,j) given by the
mean of the pixel values, the contrast of both images c(i,j) given by the
variance of the pixel values, and the texture of both images s(i,j) given
by the covariance of the pixel values in images i and j. α, β and γ are
weights given to each term. In this case all the weights are set to 1. SSIM
is 1 if the images are identical and is 0 when the images are completely
different.

Thus, the number of images to be averaged is automatically iden-
tified based on the computed SSIM. The threshold value was set so that
the images to be averaged over should not differ by more than 0.90 of
the SSIM. This value was set based on visual inspection of images where
a SSIM of 0.90 corresponds to one to two atoms being evaporated from
the first terrace in the image. Once the number of images to be averaged
over is identified, a resultant averaged image is computed. Now the
atoms are identified in this image based on a different edge based de-
tection method. First the averaged image is fitted with a cubic spline
function in two-dimensions. Using C-spline basis functions to represent
a set of samples is advantageous. Operations such as derivation, in-
tegration etc., which assume that the data samples are drawn from an
underlying continuous function can be computed from the spline
coefficients1. A Laplacian operator is then convolved with the fitted C-
spline function to identify the edges of the given image. The output of

Fig. 8. Gaussian edge based detection of atoms in FIM image's ROI. Identified atoms shown in (b) from the original image (a) using this procedure are marked in green. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

1 https://docs.scipy.org/doc/scipy/reference/tutorial/signal.html.
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the previous operation is used to compute the maxima inside these
edges. These local maxima are then recorded as atomic positions. For
the case of the tungsten FIM images around the (222) plane where 67
(222) planes were evaporated, the above explained procedure was able
to identify 98% of atoms. This value was derived based on inspecting
nearest neighbor distances between the identified atoms and counting
only atoms without abnormal (very short) distances. The various steps
of the explained method are shown in the Fig. 9 for one of the (222)
planes.

4.2.2. Plane Determination
Once the atoms are identified, the detected positions have to be

correctly assigned to their corresponding crystallographic planes. As
can be seen in Fig. 9 (“Original image”), at least two (222) terraces are
imaged in the chosen ROI. The outermost terrace is bounded by the
brightly imaged atoms and the atoms lying outside this boundary are
not of the first terrace. In order to correctly assign the depth coordinate,
these atoms need to be classified into those belonging to the top terrace
and those not. The methods used to achieve this goal are based on
image processing algorithms or on spectral clustering.

4.2.2.1. Image processing based techniques. Classifying the atoms
according to their crystallographic planes is not trivial, especially
using image processing based techniques. Image processing based
algorithms rely on identifying the boundaries of the outermost
terrace. Since atoms at the ledge of the terrace have a smaller
number of nearest neighbors and are the sites of higher electric field,
they appear more brightly in FIM. Thus the atoms imaged from the
ledge are more similar to themselves than the images of atoms from the
terrace's center. This information can be exploited by virtue of the “
entropy” of the image [43]. The entropy, H, of the image is given as

∑= −H p plog ( ),
k

k k2
(3)

where k is the number of gray levels and pk is the probability associated
with gray level k. Since the atoms at the ledge sites are imaged similarly
the pixels in the imaged atoms are associated with a similar pk. An
implementation of this entropy as a filter can be used to identify the
ledge atoms. Which gives us the boundary for the outermost terrace.
The entropy can thus be used as a way to classify atoms to their
corresponding terraces. The result of this entropy filter on one of the
FIM images is shown in Fig. 10. Other image processing based
techniques for this task are watershed segmentation and Fourier
filtering based methods. A detailed explanation of these methods is
beyond the scope of the current article.

Fig. 9. C spline fitting and local maxima based detection of atoms in an averaged image. The average image is computed based on the difference image and the spline edge filter and peak
based detection are applied to identify the atoms. All atoms are identified due to improved SNR and are marked in blue. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 10. A successful application of the entropy based filter to identify the outermost
terrace atoms.
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4.2.2.2. Spectral clustering. The task of identifying elements in a given
dataset based on similarity or dissimilarity amongst them is defined as
clustering [44]. Clustering is a type of unsupervised learning in which
the goal is to partition a set of elements into groups called clusters.
Differences between various clustering algorithms are mainly about the
ways similarity between the data points is measured [45], typically
through various distortion or distance measures. We now discuss the so-
called spectral clustering applied to plane determination.

Eigenvector techniques are frequently employed in multi-
dimensional data in order to extract the underlying correlations of the
data (see Section 4.1.1). Similarly one can apply such techniques for
clustering. Spectral clustering is an Eigenvector based technique. In
spectral clustering, we benefit from the node-node adjacency matrix of
the graph. For a given graph containing N nodes (each node corre-
sponds to one point in the dataset), we create a N×N adjacency ma-
trix, in which each entry (i,j) corresponds to the weight of the edge
between the nodes i and j. This essentially corresponds to the similarity
between samples i and j in the dataset. Such weights wij are recorded in
a matrix W. As we are working with undirected graphs, the matrix is
assumed to be symmetric. It implies that wij=wji∀ (i,j). Now any
clustering algorithm will try to minimize the weights across the clus-
ters. In spectral clustering, the minimization function is constructed
based on the adjacency weight matrix and another diagonal matrix
called a degree matrix D. Each element in D is the degree of every
vertex in the similarity graph, such that dii is equal to the sum of the
weights of the incident edges, so = ∑ =d wii j

n
ij1 .

In addition, we formally define the Laplacian matrix L as follows: L
is defined by subtracting the weighted adjacency matrix from the de-
gree matrix. Hence we have L= D−W. The graph Laplacian matrix
defined in this way conceals both its structural and its eigenvector
behavior. Such a graph Laplacian can now be adopted to identify the
pertinent clusters in the data. The number of connected components in
the underlying graph can be related to the number of eigenvectors with
zero eigenvalues for the Laplacian matrix L as they are equal.

The result of spectral clustering applied to our 3DFIM dataset is
shown in Fig. 11. As a notion of similarity a combination of two metrics
is used. The first metric is the distance between each of the identified
atoms, the second is the intensity of the identified atom. Spectral
clustering was able to identify two distinct planes in each FIM image as
can be seen in Fig. 11. Some points near the top right corner were as-
sociated to the wrong cluster. This solution to plane determination is
still not completely efficient and, here again, the ML could provide
significant improvement. The ML algorithms need labeled training data,

which will be first labeled by employing the image processing and
clustering algorithms outlined herein. The accuracy of these algorithms
on each image then needs to be manually verified and that data can be
used as a training dataset.

4.2.3. Atom Tracking
Since atoms are imaged multiple times before their evaporation,

each atom can be tracked through multiple images. This allows us to
identify the position of each imaged atom as a function of its sur-
rounding configuration and also of the operating conditions. In a recent
work we used this approach to track the atoms' image positions. We
concluded that after field evaporation events there is a local re-
arrangement of the local electric field, leading to a more precise un-
derstanding of how field ion images are formed. Depending on the task
and the reconstruction routine used, it might be necessary to track
atoms. In the following we describe another clustering algorithm to
easily track atoms through multiple images if required.

4.2.3.1. Hierarchal clustering. Tracking the same atom imaged multiple
times can be considered as a clustering problem. The identified (x,y)
coordinates need to be clustered along z such that the final clustering
construction is comprised of a set of subsets K=K1,K2,…,Kn in M,

where = ⋃
=

M K
i

n

i
1

and Ka ∩ Kb=∅, ∀ a≠b [46]. The method used here

to cluster these data points is hierarchical clustering [47]. In an
agglomerative hierarchical clustering, initially every data point is
considered as a cluster. These clusters are then merged successively
until the sought after cluster construction is found. The merging of
clusters is based on a criterion which is a measure of similarity of these
clusters. Here, we use a single linkage criterion to connect the clusters.
In this criterion, the distance between any two clusters is defined as the
shortest distance between any data point of one cluster to any member
of the other. The clustering decision is made based on which of the
cluster distances is the minimum and those two clusters are merged.
The result of using a single linkage hierarchical algorithm on (x,y)
coordinates in images corresponding to the evaporation of one (222)
terrace is shown in the Fig. 12. The result is the clustering of theses (x,y)
coordinates to form individual atoms tracked through successive
images. Each cluster is assigned a number as indicated by the color
bar in Fig. 12. Visual inspection reveals that coordinates corresponding
to the same atom through the successive images do not displace by
more than 10 pixels. This value was used as a decision metric for the
single linkage criterion. The physical grounds for these displacements
are discussed in a recent article [41].

5. A Word About 3D Field Ion Microscopy Reconstruction

After the data are extracted and labeled correctly, in accordance
with previous sections, the data need to be converted to absolute length
scales, that are meaningful to materials physics. Previous atom-by-atom
approaches, used to calibrate the measured distances between atoms on
the image with theoretical nearest neighbor spacing for the crystal-
lographic plane analyzed. Such conversions to an absolute length scale
inherently assume that there are no surface relaxations for atoms im-
aged and atoms are at their equilibrium positions. Fig. 13 shows a ty-
pical 3D reconstruction of extracted 3DFIM data. The x and y co-
ordinates are in pixels and the z axis is the plane number. The
periodicity of the reconstruction is evident as planes in the figure. The
noticeable noise in the reconstruction still needs to be understood. One
of the sources could be attributed to errors in data extraction. But also,
as mentioned before, the image of the local electric field is not directly
correlated with the true atomic positions. Nevertheless the distortion in
the reconstructed volume can be expunged by invoking a molecular
static relaxation protocol, in which the reconstructed volume is encased
in a similarly oriented perfect lattice. The encasing is done after re-
moving the equivalent atomic sites from the perfect volume. Then using

Fig. 11. Two clusters resulting from spectral clustering indicating two planes present in
the given FIM images.
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a potential for the material analyzed, a molecular relaxation is done on
the encased data in LAMMPS [48]. Employing such a routine also
preserves the defects recorded in the analyzed volume. The application
of this routine on an analyzed 3DFIM volume of W with vacancies can
be found in reference [18].

These conversions and relaxations do not affect the statistical dis-
tributions of point defects [23], and hence the precision of re-
construction is not a key requirement. On the other hand, if 3DFIM is
employed for characterization and quantification of lattice strains, or
strains surrounding crystalline defects the precision of the reconstruc-
tion needs to be greatly improved. It is important to make a distinction
between the resolution of a FIM image and its intrinsic precision. The
resolution within a FIM image can be seen as the size of the atom in the
image which is determined by the size of the ionization zone, the lateral
velocity of the gas atom at the time of ionization and the inherent
Heisenberg's uncertainty [49, 50]. Whereas the precision of FIM is how
well the imaged atom positions correspond to the true atomic sites.
Improving the resolution of FIM images can only originate from a re-
duction in the base temperature of the specimen. However, extracting
precise information on the atomic locations requires a thorough com-
prehension of the image formation in FIM, which directly relates to the
details of the complexity of the electric field distribution and its re-
arrangement when an atom has field evaporated. The presence and the
type of defects in the material affects the local bonding and the local
arrangement of the atoms on the surface, and hence their effect on the

local electric field needs to be precisely quantified. This may be
achieved, for instance, by applying ML to the vast amounts of labeled
data accessible by 3DFIM.

6. Outlook

Field ion microscopy has provided a unique vantage point for
atomic scale characterization of materials. The inherent resolution of
FIM and the ability to also gather three dimensional information from
materials through 3DFIM, puts the technique far ahead of any other
contemporary microscopy technique. But the lack of advanced data
processing and extraction routines are one of the reasons that likely
hindered FIM from becoming a mainstream characterization technique.
This article has detailed a burgeoning framework that will allow full
data extraction, which we hope will support the renewed interest in
FIM and its extension to 3DFIM. The pure image processing techniques
have helped us to semi-automate the data extraction from FIM images.
The application of machine learning algorithms to our data not only
showed the behavior of field evaporation but also helped us to improve
the accuracy of the reconstructed data. The layer by layer field eva-
poration behavior was evident when using PCA or Isomap algorithms
on the 3DFIM data. Also using Isomap clustered the images better with
respect to number of atoms an image had on its first terrace. The semi
automated data extraction routine based on image processing has been
helpful not only to improve the data extraction but also helps us to get
much more accurately labeled data which can be used as a training
dataset for supervised machine learning. With the use of such advanced
algorithms for data extraction, we hope not only to completely auto-
mate the data extraction from 3DFIM but also identify and characterize
various material defects. Apart from data extraction, machine learning
has been gaining popularity in identifying fundamental physics phe-
nomena [51]. The physics of image formation in FIM is still not com-
pletely understood, and it is our firm belief that machine learning can
be a powerful tool in this direction.

The discussed methods have been implemented in a set of Python
routines. These routines are available upon request to the authors.
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Fig. 12. Atoms tracked through a sequence of 69 images
using hierarchal clustering. Each color indicates the cluster of
imaged positions of one atom through the sequence. Images
on the left show the start (left bottom) and the end (left top)
images of the 69 images sequence. (For interpretation of the
references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 13. Final 3D reconstruction of data extracted from 3DFIM, the dimensions are ar-
bitrary image units.
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