Accepted Manuscript

Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting

Kui Huang, Hui Xia, Ying Wu, Jingyang Chen, Guangyu Cui, Fusheng Li, Yongzhi Chen, Nan Wu

PII:	\$0960-8524(18)30359-6
DOI:	https://doi.org/10.1016/j.biortech.2018.03.021
Reference:	BITE 19660
To appear in:	Bioresource Technology
Received Date:	16 January 2018
Revised Date:	3 March 2018
Accepted Date:	5 March 2018

Please cite this article as: Huang, K., Xia, H., Wu, Y., Chen, J., Cui, G., Li, F., Chen, Y., Wu, N., Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting, *Bioresource Technology* (2018), doi: https://doi.org/10.1016/j.biortech.2018.03.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Effects of earthworms on the fate of tetracycline and fluoroquinolone
2	resistance genes of sewage sludge during vermicomposting
3	
4	Kui Huang ^{1,*} , Hui Xia ¹ , Ying Wu ¹ , Jingyang Chen ¹ , Guangyu Cui ² , Fusheng Li ³ ,
5	Yongzhi Chen ¹ , Nan Wu ¹
6	
7	1 School of Environmental and Municipal Engineering, Lanzhou Jiaotong University,
8	Lanzhou 730070, China
9	2 Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
10	3 River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
11	
12	
13	*Corresponding author,
14	Kui Huang,
15	Address: Anning West Road No. 88, Lanzhou Jiaotong University, Lanzhou 730070,
16	China
17	E-mail: <u>huangk1199@hotmail.com; huangkui@mail.lzjtu.cn</u>
18	Tel: +86 182 9310 9869; Fax: +86 0931 4938027
19	
20	N
21	
22	
23	
24	
25	

26 Abstract

27 Diverse antibiotic resistance genes (ARGs) present in sewage sludge are difficult to be eliminated using conventional sludge treatment processes. To date, little remains 28 known on the fate of the ARGs during vermicomposting of sludge. This study aimed to 29 investigate the effect of earthworms on the fate of tetracycline and fluoroquinolone 30 resistance genes, and integrons during vermicomposting of sewage sludge through 31 32 contrasting two systems of sludge stabilization with and without earthworms. Compared to the control without earthworms, vermicomposting significantly (p < 0.05) decreased 33 the abundances of tetracycline and fluoroquinolone resistance genes and *int*1, with 34 complete removal for *parC*. Variations in ARGs were associated with environmental 35 factors, horizontal gene transfer, bacterial community composition, and earthworms 36 during vermicomposting. In addition, earthworms strongly affected the possible host 37 bacteria encoding ARGs and Int1, abating the pathogenic bacteria in vermicomposting 38 product. These results imply that vermicomposting could effectively reduce tetracycline 39 and fluoroquinolone resistance genes in the sludge. 40 41 Keywords: Antibiotics; Antibiotic resistance gene; Earthworms; Sewage sludge; 42

- 43 Vermicomposting
- 44
- 45
- 46
- 48

47

-

- 49
- 50

51 Introduction

52

53	The excessive use of antibiotics for human and veterinary applications results in
54	widespread occurrences of antibiotic resistance bacteria (ARB) and antibiotic resistance
55	genes (ARGs) in the natural environment. Waste water treatment plants (WWTP)
56	receive sewages from different sources, making them possible the hotspots for ARB and
57	ARGs (Guo et al., 2017; Rizzo et al., 2013). As the by-product of WWTP, high
58	abundances of diverse ARB and ARGs have also been documented in dewatered sewage
59	sludge (Li et al., 2013; Guo et al., 2017; Karkman et al., 2017). In contrast to the
60	removal efficiency of ARGs in sewage treatment, their removal in sludge treatment
61	seems less efficient (Yang et al., 2014). Moreover, the sewage sludge containing high
62	organic matter and diverse microorganisms enables the ARGs to propagate and
63	disseminate among bacterial species through horizontal gene transfer (HTG, Li et al.,
64	2013; Guo et al., 2017). The HTG can help spreading the ARGs from commensal and
65	free-living species to pathogenic ones through three canonical modes of conjugation,
66	transformation and transduction, making the ARGs difficult to be completely removed
67	from the environment (Von Wintersdorff et al., 2016). Consequently, to control the ARB
68	and ARGs in sludge, several studies have investigated their fates in different sludge
69	treatment systems (Su et al. (2015; Yang et al., 2016; Zhang et al., 2016; Yang et al.,
70	2014; Wu et al., 2016). Aerobic composting and anaerobic digestion are considered
71	potential recycling methods for treating sludge. However, previous studies showed that
72	the abundance and diversity of ARGs were significantly elevated during thermal
73	composting for sludge (Su et al. (2015; Yang et al., 2016; Zhang et al., 2016). In
74	addition, Su et al. (2015) found 156 unique ARGs and mobile genetic elements in
75	composted sewage sludge. Compared to composting, thermophilic anaerobic digestion

76	at temperatures between 50°C-55°C appears to produce better results in terms of
77	reducing the ARGs (Diehl and LaPara, 2010; Wu et al., 2016). However, only a small
78	portion of certain types of ARGs can be limited by anaerobic digestion (Yang et al.,
79	2014; Wu et al., 2016). As a result, there is an ongoing search for a suitable approach to
80	control the ARGs during sludge recycling.
81	Vermicomposting is a biochemical decomposition process of organic wastes
82	involving the interaction of earthworms and microbes. Compared to the usual compost,
83	vermicomposting product has higher contents of plant-available nutrients and much
84	more diverse agricultural and aquacultural probiotics (Huang et al., 2016; Sharma and
85	Garg, 2018). Thus, vermicompost is deemed as a microbial fertilizer mostly applied to
86	agricultural lands (Sharma and Garg, 2018) and aquacultural operations (Godara et al.,
87	2015a, 2015b). Vermicomposting for recycling sewage sludge has also been
88	successfully demonstrated by several studies (Yasir et al., 2009; Rodríguez-Canché et
89	al., 2010; Xing, et al., 2012; Fu et al., 2015; Fernández-Gómez et al., 2015; Villar et al.,
90	2016). In addition, previous studies also found that human pathogenic bacteria present
91	in the sludge could be significantly reduced after vermicomposting, in contrast to usual
92	composting methods (Rodríguez-Canché et al., 2010; Godara et al., 2015c; Soobhany et
93	al., 2017). However, to the best of our knowledge, only a few attempts have been made
94	to investigate the effects of earthworms on the fate of ARGs during sludge
95	vermicomposting.
96	It has been reported that the combined actions of earthworms and microorganisms
97	helped in degrading the organic matter component during vermicomposting
98	(Domínguez et al., 2010; Gómez-Brandón et al., 2011; Villar et al., 2016).
99	Simultaneously, earthworms also strongly affect microbial growth and reproduction
100	(Domínguez et al., 2010; Gómez-Brandón et al., 2011; Villar et al., 2016). Accordingly,

101	the microbial community is directly and indirectly regulated by the gut behavior during
102	digestion of earthworms and their non-trophic behaviors such as burrowing, mucus
103	excretion and castings (Gómez-Brandón et al., 2011; Hoang et al., 2016; Huang et al.,
104	2018). It is well known that the ARGs are harbored in possible microbial hosts (Li et al.,
105	2015). Recent studies have focused on the relationship between earthworms and
106	microbes (Gómez-Brandón et al., 2011; Yasir et al., 2009; Villar et al., 2016; Huang et
107	al., 2018), but little information is available on the relationship between earthworms and
108	possible hosts of ARGs in vermicomposting systems. To effectively eliminate the ARGs
109	in vermicompost, it is of utmost importance to investigate the effects of earthworms on
110	the ARGs and their possible host.
111	This study then aims to investigate the effects of earthworms on the fate of the
112	ARGs and to further understand the relationship between earthworms and the possible
113	hosts of ARGs. For this, tetracycline and fluoroquinolone resistance genes, the first two
114	main sub-types ARGs in sludge, were monitored during vermicomposting. Moreover,
115	the Int1 of integron gene involved in the horizontal gene transfer of the ARGs in
116	microbes was also monitored in this study.
117	
118	2 Methods
119	G
120	2.1 Materials
121	
122	The earthworm Eisenia foetida was chosen as the model species for this study.
123	Prior to the experiment, earthworms were cultured in a mixture of dewatered sludge and
124	cow dung (1:1 dry basis) for 2 months in the laboratory. The vermicomposting reactor
125	was made of a plastic box with dimensions of 46 cm \times 17 cm \times 13 cm. To provide an

aerobic environment, all reactors were drilled on the bottom. Freshly dewatered sewage

127	sludge was collected from the dewatered sludge workshop of the WWTP in Anning
128	Distinct, Lanzhou city. Then, the fresh sludge was immediately pelleted by squeezing it
129	with wire meshes having sizes of 5 mm \times 5 mm in the laboratory, following the methods
130	of Fu et al. (2015). The properties of fresh sludge are given in the Table 1.
131	
132	2.2 Experimental set up
133	9
134	Around 4 kg fresh pelleted sludge was placed into the vermicomposting reactor.
135	Then, 100 young <i>E. fetida</i> with a mean individual weight of 0.3 g and individual length
136	of 3 cm - 5 cm were randomly selected from the culture bins and inoculated into the
137	vermicomposting reactor. In parallel, the reactors containing the same sludge but
138	without earthworms were used as the control treatment. Both vermicomposting and
139	control treatments were designed with three replicates. All reactors were covered with a
140	shade cloth and kept at room temperature (18 °C- 26 °C). To maintain water moisture,
141	the tap water was sprinkled once every 3 days. To make the environment aerobic, all
142	reactors were turned over every week. After being thoroughly mixed, an approximate
143	100 g fresh sample was collected from each reactor at 20 days intervals. In this study,
144	each sample was collected in duplicate. After 80 days of experiment, earthworms and
145	their cocoons were picked up and counted by hands, respectively. The collected samples
146	were divided into two sub-samples for the other analysis. One was stored into -20 °C for
147	enzyme and DNA related analysis while the other half was dried under room condition
148	and used for measuring chemical properties.

2.3 Chemical properties analysis

152	The dry samples were ground and sieved through 80 mesh for the next chemical
153	analysis. All chemical analyses were based on the the Chinese standard of determination
154	method for municipal sludge in waste water treatment plant (CJ/T 221-2005), with some
155	modifications suggested by Huang et al. (2017). The mixed sample and deionized water
156	(dry sample/water = $1/50$, w/v) was used in measuring pH and electrical conductivity
157	using a pH meter (PHS-3C, LEICI, China) and electrical conductivity (DJS-1, LEICI,
158	China) at 20 °C, respectively. Total carbon and nitrogen were measured by an elemental
159	analyzer (Yanaco CHN CORDER MT-6, Japan). The mixture of dry sample and Milli-Q
160	water (dry sample/water = $1/200$, w/v) filtered through a 0.45 µm membrane was
161	divided into triplicates. One portion was used to determine nitrate, ammonia and
162	phosphate by ion chromatography (SHIMADZU, Japan). The other portion was used in
163	determining dissolved organic carbon (DOC) by TOC analyzer (SHIMADZU, Japan).
164	The rest of the mixture was utilized for three-dimensional fluorescence excitation
165	emission matrix spectroscopy (3D-EEM) using a fluorescence spectrophotometer
166	(RF-5300PC, SHIMADZU, Japan). Following the methods of Fernández-Gómez et al.
167	(2015), the fluorescence-based humification index of $A_{435-480}/A_{300-345}$ was calculated
168	using the fluorescence emission spectrum at an excitation wavelength of 254 nm. This
169	was determined by dividing the area from 435 nm to 480 nm by the area from 300 nm
170	to 345 nm. Dehydrogenase activity was determined by triphenyl tetrazolium chloride
171	method using chromatometry at the 485 nm by spectrophotometer.
172	
173	2.4 DNA extraction and absolute quantification of 16S rDNA gene
174	
175	Total genomic DNA was extracted with the DNA Isolation kit DNeasy®

1/6	PowerSoil® Kit (QIAGEN, Germany) according to the manufacturer's instructions. The
177	extracted DNA was stored under -20 °C before use.
178	The universal primers 341F and 518R (given in Supplementary information) were
179	used to quantify the 16S rDNA gene copies in the Thermal Cycler Dice Real Time
180	System (TP800, TaKaRa, Japan). The standard curve was established using the 16S
181	rDNA of <i>Escherichia coli</i> . The SYBR® Premix Ex Taq [™] (TaKaRa, Japan) was used as
182	the fluorescent dye for the quantitative PCR reaction. The qPCR program was
183	composed of an initial denaturation at 95 °C for 5 min, 35 cycles of 95 °C, 15 s, 57 °C,
184	30 s and 72 °C, 30 s, followed by a melting curve from 60 °C to 95 °C. The data was
185	automatically collected at the last step of each cycle. The control without DNA was also
186	set up for comparison. All templates were amplified three times.
187	
188	2.5 High-throughput quantitative PCR
189	
190	The primers for tetracycline resistance genes (<i>tet</i> C, <i>tet</i> G, <i>tet</i> M, <i>tet</i> O, <i>tet</i> W and <i>tet</i> X),
190 191	The primers for tetracycline resistance genes (<i>tet</i> C, <i>tet</i> G, <i>tet</i> M, <i>tet</i> O, <i>tet</i> W and <i>tet</i> X), fluoroquinolone resistance genes (<i>gry</i> A, <i>par</i> C and <i>qnr</i> S) and class 1 integron gene (<i>int</i> 1)
190 191 192	The primers for tetracycline resistance genes (<i>tet</i> C, <i>tet</i> G, <i>tet</i> M, <i>tet</i> O, <i>tet</i> W and <i>tet</i> X), fluoroquinolone resistance genes (<i>gry</i> A, <i>par</i> C and <i>qnr</i> S) and class 1 integron gene (<i>int</i> 1) as well as the 16S rDNA gene were used for the relative quantitative PCR. Additional
190 191 192 193	The primers for tetracycline resistance genes (<i>tet</i> C, <i>tet</i> G, <i>tet</i> M, <i>tet</i> O, <i>tet</i> W and <i>tet</i> X), fluoroquinolone resistance genes (<i>gry</i> A, <i>par</i> C and <i>qnr</i> S) and class 1 integron gene (<i>int</i> 1) as well as the 16S rDNA gene were used for the relative quantitative PCR. Additional details on the primers are given in Supplementary information. The relative
190 191 192 193 194	The primers for tetracycline resistance genes (<i>tet</i> C, <i>tet</i> G, <i>tet</i> M, <i>tet</i> O, <i>tet</i> W and <i>tet</i> X), fluoroquinolone resistance genes (<i>gry</i> A, <i>par</i> C and <i>qnr</i> S) and class 1 integron gene (<i>int</i> 1) as well as the 16S rDNA gene were used for the relative quantitative PCR. Additional details on the primers are given in Supplementary information. The relative quantification reaction was conducted with a high through-put quantitative real time
190 191 192 193 194 195	The primers for tetracycline resistance genes (<i>tet</i> C, <i>tet</i> G, <i>tet</i> M, <i>tet</i> O, <i>tet</i> W and <i>tet</i> X), fluoroquinolone resistance genes (<i>gry</i> A, <i>par</i> C and <i>qnr</i> S) and class 1 integron gene (<i>int</i> 1) as well as the 16S rDNA gene were used for the relative quantitative PCR. Additional details on the primers are given in Supplementary information. The relative quantification reaction was conducted with a high through-put quantitative real time PCR system (Applied Biosystems, ViiA TM 7, USA) at Wcgene Biotechnology Co. Ltd,
190 191 192 193 194 195 196	The primers for tetracycline resistance genes (<i>tet</i> C, <i>tet</i> G, <i>tet</i> M, <i>tet</i> O, <i>tet</i> W and <i>tet</i> X), fluoroquinolone resistance genes (<i>gry</i> A, <i>par</i> C and <i>qnr</i> S) and class 1 integron gene (<i>int</i> 1) as well as the 16S rDNA gene were used for the relative quantitative PCR. Additional details on the primers are given in Supplementary information. The relative quantification reaction was conducted with a high through-put quantitative real time PCR system (Applied Biosystems, ViiA TM 7, USA) at Wcgene Biotechnology Co. Ltd, (Shanghai, China). The FastStart Universal SYBR Green Master (ROX) (Roche, USA)
190 191 192 193 194 195 196 197	The primers for tetracycline resistance genes (<i>tet</i> C, <i>tet</i> G, <i>tet</i> M, <i>tet</i> O, <i>tet</i> W and <i>tet</i> X), fluoroquinolone resistance genes (<i>gry</i> A, <i>par</i> C and <i>qnr</i> S) and class 1 integron gene (<i>int</i> 1) as well as the 16S rDNA gene were used for the relative quantitative PCR. Additional details on the primers are given in Supplementary information. The relative quantification reaction was conducted with a high through-put quantitative real time PCR system (Applied Biosystems, ViiA TM 7, USA) at Wcgene Biotechnology Co. Ltd, (Shanghai, China). The FastStart Universal SYBR Green Master (ROX) (Roche, USA) was selected as the fluorescent dye. The PCR reaction procedure was initialized at 95 °C
190 191 192 193 194 195 196 197 198	The primers for tetracycline resistance genes (<i>tet</i> C, <i>tet</i> G, <i>tet</i> M, <i>tet</i> O, <i>tet</i> W and <i>tet</i> X), fluoroquinolone resistance genes (<i>gryA</i> , <i>par</i> C and <i>qnr</i> S) and class 1 integron gene (<i>int</i> 1) as well as the 16S rDNA gene were used for the relative quantitative PCR. Additional details on the primers are given in Supplementary information. The relative quantification reaction was conducted with a high through-put quantitative real time PCR system (Applied Biosystems, ViiA TM 7, USA) at Wcgene Biotechnology Co. Ltd, (Shanghai, China). The FastStart Universal SYBR Green Master (ROX) (Roche, USA) was selected as the fluorescent dye. The PCR reaction procedure was initialized at 95 °C for 10 min and followed by 40 cycles of 95 °C for 30 s, 60 °C for 30 s. The program

200 quantified in triplicate. A comparative CT method was used to calculate the fold change

~

201 (FC value) of each ARG, as described by Su et al. (2015).

202

2.6 PCR and high through-put sequencing of 16S rDNA 203

205	The V3-V4 region of the 16S rDNA gene was amplified using the primers 341F
206	and 806R (given in Supplementary information) conjugated with barcode base pairs. All
207	PCR reactions were carried out with the Phusion® High-Fidelity PCR Master Mix
208	(New England Biolabs). The resulting PCR products were detected using 2% agarose
209	gels and then purified by GeneJET Gel Extraction Kit (Thermo Scientific, USA). The
210	Ion Plus Fragment Library Kit 48 rxns Kit (Thermofisher, USA) was utilized in
211	establishing the sequencing library and its quality was assessed using the Qubit®2.0
212	Fluorometer (Thermo Scientific, USA). Subsequently, the library was sequenced on a
213	Life Ion S5 TM platform at Novogene Bioinformatics Technology Co., Ltd. (Beijing,
214	China).
215	The raw reads were first trimmed to obtain high-quality clean tags based on
216	Cutadapt (V1.9.1, http://cutadapt.readthedocs.io/en/stable/) quality control pipeline.
217	Then, the reads were compared to the reference database "Gold database"
218	(http://drive5.com/uchime/uchime_download.html) using the UCHIME algorithm
219	(http://www.drive5.com/usearch/manual/uchime_algo.html). After removing the
220	chimeric sequences, the high quality tagged sequences were obtained. Clustering of the
221	OTUs (Operational Taxonomic Units) were set at >97% similarity using Uparse
222	package (Uparse v7.0.1001, http://drive5.com/uparse/). A representative sequence for
223	each OTU was classified taxonomically by comparing with the SILVA SSU rRNA
224	database (http://www.arb-silva.de/) via Mothur (Schloss et al., 2009).
225	

226 2.7 Statistical analysis

227

228	Significant differences among the chemical parameters and ARGs with time
229	between vermicomposting and control treatments were analyzed by repeated measures
230	ANOVA (n=6) at 95% confidence level using STATISTIC 10.0 software. The relative
231	abundances of ARGs and bacterial community were presented as heatmap diagrams
232	generated using Heml 1.0 software. The alpha and beta diversities of bacterial
233	communities were calculated using weighted UniFrac distance between samples within
234	QIIME (Version 1.9.1, http://qiime.org/index.html/) (Li et al., 2015). LDA Effect Size
235	(LEfSe) analysis was used to differentiate the abundant and biologically relevant
236	features, ranked by effect size after undergoing linear discriminant analysis (LDA).
237	Redundancy analysis (RDA) was performed with the selected environmental variables
238	and the ARGs using CANOCO 4.5 software. A correlation matrix among ARGs and
239	bacterial community was constructed statistically, and only those with Spearman's
240	correlation coefficient (\mathbb{R}^2) of > 0.9 at <i>P</i> < 0.01 were retained (Junker and Schreiber,
241	2008). Cytoscape 3.6.0 software was used to visualize the network graphs using the
242	attribute circular layout (Li et al., 2015).
243	
244	3. Results and Discussions
245	
246	3.1 Effects of earthworms on sludge stabilization
247	
248	The stability and maturity of sludge should be assessed using a set of
249	complementary parameters while considering the complexity of sludge samples,
250	(Fernández-Gómez et al., 2015). Consequently, the content and characteristic of

dissolved organic carbon (DOC) as well as microbial activity and abundance were 251 252 combined to evaluate sludge stabilization in the present study. As shown in Fig. 1a, DOC contents significantly decreased in both vermicomposts and control treatments but 253 with significant differences (F=8871.5, p < 0.001). Specifically, a more rapid decrease in 254 DOC content was observed in the treatment with earthworms compared to those without 255 earthworms. The DOC contents in the final vermicomposting products and control were 256 at 3.78 mg/kg and 15.61 mg/kg, respectively. Accordingly, a threshold of DOC lower 257 than 4.0 mg/kg in the manure vermicompost suggests that a manured vermicomposting 258 product was harvested in this study (Xing et al., 2012). Fig. 1b displays the change of 259 humification index based on A435-480/A300-345 during the experiment derives from the 260 3D-EEM results. Compared to the control, vermicomposting produced significantly 261 higher values (HST test, p < 0.001) fro humification index from the 60th day of the 262 experiment, which indicates that the activity of earthworms boosted the humification 263 process in the last 20 days. The humification index of vermicomposting product was 264 associated with the gradual increment in humic-like and fulvic-like substances in the 265 vermicompost, as shown in Supplementary information. Similarly, Xing et al. (2012) 266 reported that earthworms could influence the conversion of aromatic-like and 267 protein-like substances into humic-like and fulvic-like substances during 268 vermicomposting. 269

As depicted in Fig. 1c, a gradually decreasing trend of dehydrogenase activity was observed in both treatments, with the vermicomposting product having significantly (F=379.3, p<0.05) lower value. For the bacterial 16S rDNA gene abundance, it increased continuously in the control treatment, which was significantly higher (F=5541.6, p<0.001) than those in the vermicomposting treatment. Whereas, vermicomposting treatment displayed an increase on the first 20 days followed by a

276	sharp decrease on the 40 th day, and finally stabilized towards the end. This break point
277	at the beginning of vermicomposting could be probably due to the fact that the addition
278	of earthworms carrying a certain amount of mucus stimulated microbial activity and
279	bacterial numbers within the initial experiment (Huang and Xia, 2018). In contrast,
280	vermicomposting product with lower microbial activity and abundance but higher
281	humification index implies that the sludge was stabilized and matured by earthworms.
282	
283	3.2 Effects of earthworms on bacterial community during sludge stabilization
284	
285	After sequencing and quality filtering, an average of 847 high quality OUTs were
286	obtained in each sample. Compared to the control, vermicomposting exhibited a
287	relatively higher Shannon and Chao 1 indices during the experiment (shown in
288	Supplementary information), indicating that the inoculation of earthworms could
289	enhance the diversity and evenness of the bacterial community in the sludge. In addition,
290	the compositions of bacterial community showed distinct variations in both treatments
291	(Fig. 2a). Proteobacteria, Bacteroidetes, Actinobacteria, Saccharibacteria, and
292	Frimicutes were the five most dominant phyla in the initial substrate, accounting for
293	over 90% of the bacterial 16S rRNA gene abundance. Being the most abundant phylum
294	in the sludge, Saccharibacteria decreased dramatically from the 20 th day, and almost
295	disappeared in the final products of both treatments. In contrast, Proteobacteria,
296	Bacteroidetes, and Frimicutes became abundant from the 20 th day onwards in the
297	reactors. Moreover, from the 40 th day, a remarkable difference in bacterial community
298	compositions between vermicomposting and control was observed. At the end of the
299	incubation, the vermicomposting product was already dominated by Proteobacteria
300	(31.3%), Bacteroidetes (27.1%), and Actinobacteria (21.1%). In contrast, the

Proteobacteria (56%), Bacteroidetes (16.3%), and Frimicutes (15.4%) were found to 301 302 dominate in the end products without earthworms. Yasir et al. (2009) also reported that the largest group were the Proteobacteria (47.9%), followed by Bacteroidetes (31.2%) 303 and Actinobacteria (6.4%) in the vermicompost obtained from cow dung and sludge. 304 Further analysis using LDA effect size revealed significant differences (p < 0.05) 305 between vermicomposting and control treatments, as displayed in Fig. 2b. Results 306 showed that the Actinobacteria, specifically the Micrococcales, significantly increased 307 in the vermicomposting system. The Actinobacteria are capable of decomposing 308 refractory organic matter and producing antibiotics, which are considered estimators of 309 composting product (Xiao et al., 2011). The higher abundance of the Actinobacteria 310 should be linked with the gut digestion of earthworms and their castings (Knapp et al., 311 2009; Yasir et al., 2009). Pathma and Sakthivel (2013) reported that the abundance of 312 the Micrococcales could reach to 12% in the vermicomposting product. In addition, the 313 Rhizobials also became enriched as part of the agricultural probiotics in the final 314 vermicomposting product, suggesting that the earthworms promoted the potential of 315 vermicompost from sludge as microbial fertilizer. On the other hand, the control 316 treatment had higher abundances of the Bacteroidales and Pseudomonadales, which are 317 often considered strong degraders of organic matter (Gao et al., 2016). The anaerobic 318 environment and non-stable product without earthworms could be responsible for the 319 enrichment of the degrading-bacteria. 320

321

322 *3.3 Effects of earthworms on the ARGs and Intl*

323

324 Six tetracycline resistance genes (*tet*C, *tet*G, *tet*M, *tet*O, *tet*W, *tet*X), three

fluoroquinolone resistance genes (gryA, parC, qnrS), and class 1 integron (Int1) were

monitored during sludge stabilization, as shown in Fig. 3. For tetracycline resistance, 326 327 the *tet*X was detected as the dominant gene, followed by *tet*G and *tet*M in all reactors (Fig. 3a). Compared to the initial sludge, the tetracycline resistance genes in control 328 treatments increased by 1-27 fold during the experiment, showing the largest increment 329 in *tetX*. This finding indicates that the potential host bacteria with ARGs propagated in 330 the reactor. However, except for *tet*X and *tet*G, other tetracycline resistance genes 331 showed a declining trend after vermicomposting. In contrast to the control product, the 332 abundances of the tetC, tetG, tetM, tetO, tetW and tetX in the end vermicompost were 333 reduced by 83.1%, 39.6%, 99%, 80.2%, 94.1% and 60.9%, respectively. Such result 334 indicates that the inoculation of earthworms could attenuate the abundance of 335 tetracycline resistance genes. In addition, the effects of earthworms on all of tetracycline 336 resistance genes were exceedingly significant (p < 0.001) during vermicomposting, as 337 described in Fig. 3b. As for fluoroquinolone resistance genes, there is a similar trend to 338 tetracycline resistance genes, displaying lower content of fluoroquinolone resistance 339 genes in vermicomposting treatment (Fig. 3a). Compared to the end-product of the 340 control, the abundances of gryA, parC, qnrS in the vermicompost decreased by 57.2%, 341 100% and 90%, respectively. Moreover, the Int1 content in both reactors increased in 342 the first stages of the incubation decreased towards the end (Fig. 3a). Compared to the 343 control, the abundance of Int1 was 68.1% lower in the final vermicomposting product, 344 suggesting that vermicomposting abated the potential risk of the ARGs dissemination. 345 The increased abundances of ARGs in the control system is similar to previous 346 studies in sludge composting (Su et al. 2015; Wei et al., 2014). Su et al. (2015) reported 347 that the total ARGs and tetracycline resistance genes detected significantly increased 348 during sludge composting process. Although high temperature can slightly reduce the 349 proportion of ARGs in the thermophilic stage, the abundance of tetX still increased in 350

351	the maturation phase (Wei et al., 2014; Zhang et al., 2016). However, high removal
352	efficiency for ARGs was observed in the composting system treating animal wastes
353	(Zhang et al. 2017; Qian et al., 2018). This difference could be explained by the
354	environmental pressures that anaerobic gut microorganisms dominating in animal
355	wastes could not survive in aerobic and high temperature conditions during composting
356	(Su et al., 2015). In the present study, earthworms significantly lowered the abundances
357	of the ARGs and Int1 during vermicomposting (Fig. 3b), notably for the complete
358	removal of the parC. This finding could be mainly associated with earthworms being
359	able to regulate the bacterial community and environmental factors in vermicomposting
360	system. Similarly, over 80% of ARGs abundance was significantly reduced after
361	short-term gut digestion process in a larvae (Wang et al., 2017). Further, antibiotics
362	decomposition was accelerated by earthworms associated with symbiotic
363	microorganisms (Cao et al., 2018), diminishing the selective pressure of antibiotic
364	microbes (Zhang et al., 2013; Qian et al., 2016), thus resulting in the reduction of ARGs.
365	However, the final vermicompost still containing a certain amount of ARGs is
366	consistent with the vermicompost produced from swine manure by larvae (Wang et al.,
367	2017).
368	
369	3.4 Relationships among environmental factors, ARGs and bacterial community in
370	vermicomposting
371	
372	The relationship between environmental parameters and ARGs was evaluated by
373	RDA analysis (Fig. 4). Results showed that the selected variables could account for
374	74.3% of the total variations in the first two axes. The tetG, tetM, tetX, tetW, tetO, qnrS

and Int1 correlated positively with pH, NH_4^+ , phosphate, total carbon and total nitrogen

(p < 0.05) in the control treatment after 40 days. Meanwhile, Int1 exhibited significant 376 (p<0.05) positive relationship with tetG, tetM, tetX, tetW, tetO, qnrS, indicating that 377 these ARGs could rapidly be disseminated through horizontal gene transfer in the 378 control treatment from the 40th day. Qian et al. (2016) highlighted that *Int*1 played an 379 important role in the variation of ARGs during composting of manure wastes. 380 Interestingly, vermicomposting displayed a significantly negative relationship (p < 0.05) 381 with the ARGs profile during vermicomposting. Accordingly, the frequency of 382 horizontal gene transfer was affected by pH, temperature and cell density (Johnsen and 383 Kroer, 2006). Thus, an affinity of ARGs and Int1 should be linked with a higher 384 microbial number in the control (Fig. 1). Moreover, the high nutrient enriched in control 385 could be another contributor for the distribution of ARGs (Zhao et al., 2017). The above 386 results suggest that the environmental factors strongly affected the variation of ARGs, 387 especially in control system. 388

Network analysis could provide new insights into ARGs and their possible hosts in 389 complex environmental scenarios if the ARGs and the co-existing bacterial taxa had 390 significantly positive correlations (Li et al., 2015; Qian et al., 2018). As shown in Fig. 5, 391 there are two different network modules in control and vermicomposting systems. A 392 total of 12 bacterial orders emerged as possible hosts for the co-occurring ARGs in 393 vermicomposting system. The dominant possible hosts encoding ARGs were affiliated 394 with Proteobacteria and Antinobacteria in vermicomposting. In addition, the control 395 396 showed 11 possible host bacterial orders carrying ARGs, with the largest group in Proteobacteria, followed by the Bacteroidetes, and Frimicutes. In this study, the possible 397 host bacteria group was consistent with the dominant bacteria in each treatment system, 398 which indicates that the bacterial community plays an important role in varying the 399 ARGs during vermicomposting process. Such result is coherent to previous studies of 400

401	sludge composting system (Su et al., 2015; Zhang et al., 2016). However, the members		
402	of Bacteroidetes that dominated in vermicomposting did not carry any ARGs in this		
403	study, suggesting that the earthworms also exerted a strong effect on the possible		
404	bacterial host during vermicomposting. The forward gut organs and anaerobic		
405	environment of the gut could directly shift bacterial community (Drake and Horn, 2007;		
406	Gómez-Brandón et al., 2011). Mucus excretion and aerobic burrowing of earthworms		
407	also modified microbial community diversity (Huang et al., 2018; Hoang et al., 2016).		
408	Similar finding was reported by Wang et al., (2017), where they suggested that ARG		
409	attenuation during vermicomposting with larvae was significantly correlated with		
410	changes in microbial community succession, especially reduction in Clostridiales and		
411	Bacteroidales.		
412	In vermicomposting system, the members of Antinobacteria (Corynebacteriales,		
413	PeM15, Actinomycetales, Solirubrobacterales and Micromonosporales) encoded several		
414	ARGs such as tetC, tetG, tetX and gryA, which was related to the excretion of their		
415	antibiotics. The Antinobacteria contain resistance genes as a self-protecting mechanism		
416	towards antibiotics (Thaker et al., 2013). Additionally, the Int1 was present in		
417	Lactobacillales and Rhodocyclales, and positively correlated with the qnrS. The Int1		
418	was not fully removed by vermicomposting, which could be due to the contributions of		
419	the gut microbiota of earthworms, since the members of Lactobacillales and		
420	Rhodocyclales inhabited and predominated in the gut of earthworms (Wüst et al., 2017).		
421	In control system, the gene-type <i>tet</i> X was strongly harbored in Flavobacteriales.		
422	Also, Pseudomonadales encoded four ARGs including tetM, tetC, tetG and gryA. The		
423	Acinetobacter and Pseudomonas genera, as members of Pseudomonadales, have been		
424	affirmed as the persistent ARGs in manure-treated soils (Leclercq et al., 2016).		
425	Moreover, Zhang et al. (2016) also found that the Pseudomonadales, Bacillales, and		

426	Bacteroidales were significantly correlated with some tetracycline resistance genes		
427	during sludge composting. The Int1 also showed significant correlation ($p < 0.01$) with		
428	tetG and tetM in the control system. Previous studies have reported that the Int1 was		
429	commonly associated with multiple drug resistant genes (Chen et al., 2015). Compared		
430	to vermicomposting system, the Int1 harbored in different bacterial hosts and encoding		
431	different ARGs suggest that the addition of earthworms could lead to dissimilar		
432	dissemination of ARGs.		
433	It is worthy to note that Flavobacteriales, Campylobacterales and Spirochaetales		
434	enriched human pathogenic bacterial species, which also took along diverse ARGs (tetX,		
435	tetG and tetO) in control system as compared to vermicomposting system. The ability of		
436	earthworms to effectively decrease pathogenic bacterial abundance has been		
437	documented by several studies (Rodríguez-Canché et al., 2010; Soobhany et al., 2017).		
438	This could be mainly due to the excretion of fibrinolytic enzymes and antibacterial		
439	substances from earthworms, which have negative effects against the pathogenic		
440	bacteria (Li et al., 2011). Additionally, considering that the complex relationships		
441	among earthworms, environmental factors, microbial communities and ARGs are		
442	present in a vermicomposting system, it is still difficult to exactly know the main		
443	contributor to the abundance and diversity of ARGs in this study. Hence, investigations		
444	on the underlying mechanisms regarding how earthworms affect ARGs are still required		
445	to be explored further.		
446			
447	4. Conclusions		
448			
449	Compared to the control without earthworms, the abundances of tetracycline and		
450	fluoroquinolone resistance genes, and class 1 integron were reduced by		

451	vermicomposting, with 100% removal for parC. The variations of ARGs were
452	influenced by environmental factors, bacterial community abundance and horizontal
453	gene transfer, notable for the control system. The members of Proteobacteria and
454	Antinobacteria were the potential hosts in vermicomposting. The inoculation of
455	earthworms strongly affected the possible host bacteria encoding ARGs and Int1,
456	decreasing the pathogenic bacteria in vermicomposting product. This study suggests
457	that vermicomposting could be effectively used to lower tetracycline and
458	fluoroquinolone resistance genes of the sludge.
459	
460	E-supplementary data for this work can be found in e-version of this paper online.
461	
462	Acknowledgement
463	
464	We thank for the funding of the National Science Foundation of China (NSFC,
465	51568035) and the National Science Foundation of Gansu Province (17JR5RA104) for
466	this study. We also appreciate for the help of Prof. FU Xiaoyong (Lanzhou Jiaotong
467	University) for the chemical analysis.
468	
469	References
470	(1) Cao, J., Wang, C., Dou, Z., Liu, M., Ji, D., 2018. Hyphospheric impacts of
471	earthworms and arbuscular mycorrhizal fungus on soil bacterial community to promote
472	oxytetracycline degradation. J. Hazard. Mater. 341, 346-354.
473	(2) Gao, P., Xu, W., Sontag, P., Li, X., Xue, G., Liu, T., Sun, W., 2016. Correlating
474	microbial community compositions with environmental factors in activated sludge from
475	four full-scale municipal wastewater treatment plants in Shanghai, China. Appl.

- 476 Microbiol. Biotechnol. 100(10), 4663-4673.
- 477 (3) Chen, B., Liang, X., Nie, X., Huang, X., Zou, S., Li, X., 2015. The role of class I
- 478 integrons in the dissemination of sulfonamide resistance genes in the Pearl River and
- 479 Pearl River Estuary, South China. J. Hazard. Mater. 282, 61-67.
- 480 (4) Guo, J., Li, J., Chen, H., Bond, P. L., Yuan, Z., 2017. Metagenomic analysis reveals
- 481 wastewater treatment plants as hotspots of antibiotic resistance genes and mobile
- 482 genetic elements. Water Res. 123, 468-478.
- 483 (5) Diehl, D. L., LaPara, T. M., 2010. Effect of temperature on the fate of genes
- 484 encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic
- and aerobic digesters treating municipal wastewater solids. Environ. Sci. Technol.
- 486 44(23), 9128-9133.
- 487 (6) Domínguez, J., Aira, M., Gómez-Brandón, M., 2010. Vermicomposting: earthworms
- 488 enhance the work of microbes. In Microbes at work (pp. 93-114). Springer Berlin
- 489 Heidelberg.
- 490 (7) Drake, H. L., Horn, M. A., 2007. As the worm turns: the earthworm gut as a
- 491 transient habitat for soil microbial biomes. Annu. Rev. Microbiol. 61, 169-189.
- 492 (8) Fernández-Gómez, M. J., Nogales, R., Plante, A., Plaza, C., Fernández, J. M., 2015.
- 493 Application of a set of complementary techniques to understand how varying the
- 494 proportion of two wastes affects humic acids produced by vermicomposting. Waste
 495 Manage. 35, 81-88.
- 496 (9) Fu, X., Huang, K., Chen, X., Li, F., Cui, G., 2015. Feasibility of vermistabilization
- for fresh pelletized dewatered sludge with earthworms *Bimastus parvus*. Bioresour.
- 498 Technol. 175, 646-650.
- 499 (10) Godara, S., Sihag, R. C., Gupta, R., 2015a. Effect of pond fertilization with
- vermicompost and some other manures on the growth performance of Indian major

- 501 carps. J. Fish. Aquat. Sci. 10 (3): 199-211.
- 502 (11) Godara, S., Sihag, R. C., Gupta, R., 2015b. Effect of pond fertilization with
- vermicompost and some other manures on the hydrobiological parameters of treated
- 504 pond waters. J. Fish. Aquat. Sci. 10: 212-231.
- 505 (12) Godara, S., Sihag, R. C., Gupta, R., 2015c. Effect of pond fertilization with
- vermicompost and some other manures on the pathogenic bacterial populations of
- treated pond waters. Res. J. Microbiol. 10: 230-245.
- 508 (13) Gómez-Brandón, M., Aira, M., Lores, M., Domínguez, J., 2011. Epigeic
- 509 earthworms exert a bottleneck effect on microbial communities through gut associated
- 510 processes. PloS one. 6(9), e24786.
- 511 (14) Hoang, D. T., Razavi, B. S., Kuzyakov, Y., Blagodatskaya, E., 2016. Earthworm
- 512 burrows: kinetics and spatial distribution of enzymes of C-, N-and P-cycles. Soil Biol.
- 513 Biochem, 99, 94-103.
- 514 (15) Huang, K., Xia, H., Li, F., Wei, Y., Cui, G., Fu, X., Chen, X., 2016. Optimal growth
- 515 condition of earthworms and their vermicompost features during recycling of five
- 516 different fresh fruit and vegetable wastes. Environ. Sci. Pollut. Res. 23(13),

517 13569-13575.

- (16) Huang, K., Xia, H., Cui, G., Li, F., 2017. Effects of earthworms on nitrification and
 ammonia oxidizers in vermicomposting systems for recycling of fruit and vegetable
 wastes. Sci. Total Environ. 578, 337-345.
- 521 (17) Huang, K., Xia, H., 2018. Role of earthworms' mucus in vermicomposting system:
- 522 Biodegradation tests based on humification and microbial activity. Sci. Total Environ.
- 523 610-611, 703-708.
- 524 (18) Johnsen, A. R., Kroer, N., 2006. Effects of stress and other environmental factors
- 525 on horizontal plasmid transfer assessed by direct quantification of discrete transfer

- 526 events. FEMS Microbiol. Ecol. 59(3), 718-728.
- 527 (19) Junker, B. H., Schreiber, F., 2008. Correlation Networks. In Analysis of Biological
- 528 Networks. Wiley-Interscience.
- 529 (20) Karkman, A., Do, T. T., Walsh, F., Virta, M. P., 2017. Antibiotic-Resistance Genes
- 530 in Waste Water. Trends Microbiol.
- 531 (21) Knapp, B. A., Podmirseg, S. M., Seeber, J., Meyer, E., Insam, H., 2009.
- 532 Diet-related composition of the gut microbiota of Lumbricus rubellus as revealed by a
- molecular fingerprinting technique and cloning. Soil Biol. Biochem. 41(11), 2299-2307.
- 534 (22) Leclercq, S. O., Wang, C., Sui, Z., Wu, H., Zhu, B., Deng, Y., Feng, J., 2016. A
- 535 multiplayer game: species of Clostridium, Acinetobacter, and Pseudomonas are
- responsible for the persistence of antibiotic resistance genes in manure-treated soils.
- 537 Environ. Microbiol. 18(10), 3494-3508.
- 538 (23) Li, B., Yang, Y., Ma, L., Ju, F., Guo, F., Tiedje, J. M., Zhang, T., 2015.
- 539 Metagenomic and network analysis reveal wide distribution and co-occurrence of
- environmental antibiotic resistance genes. ISME J. 9(11), 2490-2502.
- 541 (24) Li, W., Wang, C., Sun, Z., 2011. Vermipharmaceuticals and active proteins isolated
- from earthworms. Pedobiologia. 54, 49-56.
- 543 (25) Li, W., Shi, Y., Gao, L., Liu, J., Cai, Y., 2013. Occurrence, distribution and
- 544 potential affecting factors of antibiotics in sewage sludge of wastewater treatment plants
- 545 in China. Sci. Total Environ. 445-446, 306-313.
- 546 (26) Pathma, J., Sakthivel, N., 2013. Molecular and functional characterization of
- 547 bacteria isolated from straw and goat manure based vermicompost. Appl. Soil Ecol. 70,
- 548 33-47.
- 549 (27) Qian, X., Sun, W., Gu, J., Wang, X. J., Sun, J. J., Yin, Y. N., Duan, M. L., 2016.
- 550 Variable effects of oxytetracycline on antibiotic resistance gene abundance and the

551	bacterial community during aerobic composting of cow manure. J. Hazard. Mater. 315,
552	61-69.
553	(28) Qian, X., Gu, J., Sun, W., Wang, X. J., Su, J. Q., Stedfeld, R., 2018. Diversity,
554	abundance, and persistence of antibiotic resistance genes in various types of animal
555	manure following industrial composting. J. Hazard. Mater. 344, 716-722.
556	(29) Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., Michael, I.,
557	Fatta-Kassinos, D., 2013. Urban wastewater treatment plants as hotspots for antibiotic
558	resistant bacteria and genes spread into the environment: a review. Sci. Total Environ.
559	447, 345-360.
560	(30) Rodríguez-Canché, L. G., Vigueros, L. C., Maldonado-Montiel, T.,
561	Martínez-Sanmiguel, M., 2010. Pathogen reduction in septic tank sludge through
562	vermicomposting using Eisenia fetida. Bioresour. Technol. 101(10), 3548-3553.
563	(31) Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E.
564	B., Lesniewski, R. A., Oakley, B. B., Parks D. H., Robinson, C. J., Sahl, J. W., Stres, B.,
565	Thallinger, G. G., Van Horn, D. J., Weber, C. F., 2009. Introducing mothur: open-source,
566	platform-independent, community-supported software for describing and comparing
567	microbial communities. Appl. Environ. Microbiol. 75(23), 7537-7541.
568	(32) Sharma, K., Garg, V. K., 2018. Vermicomposting: A Green Technology for Organic
569	Waste Management. In Waste to Wealth (pp. 199-235). Springer, Singapore.
570	(33) Soobhany, N., Mohee, R., Garg, V. K., 2017. Inactivation of bacterial pathogenic
571	load in compost against vermicompost of organic solid waste aiming to achieve
572	sanitation goals: A review. Waste Manage. 64, 51-62
573	(34) Su, J. Q., Wei, B., Ou-Yang, W. Y., Huang, F. Y., Zhao, Y., Xu, H. J., Zhu, Y. G.,
574	2015. Antibiotic resistome and its association with bacterial communities during sewage
575	sludge composting. Environ. Sci. Technol. 49(12), 7356-7363.

- 576 (35) Thaker, M. N., Wang, W., Spanogiannopoulos, P., Waglechner, N., King, A. M.,
- 577 Medina, R., Wright, G. D., 2013. Identifying producers of antibacterial compounds by
- screening for antibiotic resistance. Nat. Biotechnol. 31(10), 922-927.
- 579 (36) Villar, I., Alves, D., Pérez-Díaz, D., Mato, S., 2016. Changes in microbial
- 580 dynamics during vermicomposting of fresh and composted sewage sludge. Waste
- 581 Manage. 48, 409-417.
- 582 (37) Von Wintersdorff, C. J., Penders, J., van Niekerk, J. M., Mills, N. D., Majumder, S.,
- van Alphen, L. B., Savelkoul, P. H., Wolffs, P. F., 2016. Dissemination of antimicrobial
- resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol.
- 585 7(110), 173.
- 586 (38) Wang, H., Sangwan, N., Li, H. Y., Su, J. Q., Oyang, W. Y., Zhang, Z. J., Gilbert, J.
- 587 A., Zhu, Y. G., Ping, F., Zhang, H. L., 2017. The antibiotic resistome of swine manure is
- significantly altered by association with the Musca domestica larvae gut microbiome.
- 589 ISME J. 11(1), 100-111.
- 590 (39) Wu, Y., Cui, E., Zuo, Y., Cheng, W., Rensing, C., Chen, H., 2016. Influence of
- 591 two-phase anaerobic digestion on fate of selected antibiotic resistance genes and class I
- integrons in municipal wastewater sludge. Bioresour. Technol. 211, 414-421.
- 593 (40) Wüst, P. K., Horn, M. A., Drake, H. L., 2011. Clostridiaceae and
- 594 Enterobacteriaceae as active fermenters in earthworm gut content. ISME J. 5(1),
- 595 92-106.
- 596 (41) Xiao, Y., Zeng, G. M., Yang, Z. H., Ma, Y. H., Huang, C., Xu, Z. Y., Huang, J., Fan,
- 597 C. Z., 2011. Changes in the actinomycetal communities during continuous thermophilic
- 598 composting as revealed by denaturing gradient gel electrophoresis and quantitative PCR.
- 599 Bioresour. Technol. 102(2), 1383-1388.
- 600 (42) Xing, M., Li, X., Yang, J., Huang, Z., Lu, Y., 2012. Changes in the chemical

- 601 characteristics of water-extracted organic matter from vermicomposting of sewage
- sludge and cow dung. J. Hazard. Mater. 205-206, 24-31.
- 603 (43) Yang, L., Zhang, S., Chen, Z., Wen, Q., Wang, Y., 2016. Maturity and security
- assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs)
- with sewage sludge. Bioresour. Technol. 204, 185-191.
- 606 (44) Yang, Y., Li, B., Zou, S., Fang, H. H., Zhang, T., 2014. Fate of antibiotic resistance
- 607 genes in sewage treatment plant revealed by metagenomic approach. Water Res. 62,
- 608 97-106.
- 609 (45) Yasir, M., Aslam, Z., Kim, S. W., Lee, S. W., Jeon, C. O., Chung, Y. R., 2009.
- 610 Bacterial community composition and chitinase gene diversity of vermicompost with
- antifungal activity. Bioresour. Technol. 100(19). 4396-4403.
- 612 (46) Zhang, J., Chen, M., Sui, Q., Tong, J., Jiang, C., Lu, X., Zhang, Y. X., Wei, Y., 2016.
- 613 Impacts of addition of natural zeolite or a nitrification inhibitor on antibiotic resistance

614 genes during sludge composting. Water Res. 91, 339-349.

- 615 (47) Zhang, L., Gu, J., Wang, X., Sun, W., Yin, Y., Sun, Y., Guo, A. Y., Tuo, X., 2017.
- Behavior of antibiotic resistance genes during co-composting of swine manure with

617 Chinese medicinal herbal residues. Bioresour. Technol. 244(1), 252-260.

- 618 (48) Zhang, W., Huang, M. H., Qi, F. F., Sun, P. Z., Van Ginkel, S. W., 2013. Effect of
- trace tetracycline concentrations on the structure of a microbial community and the
- 620 development of tetracycline resistance genes in sequencing batch reactors. Bioresour.

621 Technol. 150, 9-14.

- 622 (49) Zhao, Z., Wang, J., Han, Y., Chen, J., Liu, G., Lu, H., Yan, B., Chen, S. 2017.
- 623 Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic
- resistance genes in adjacent environment of mariculture. Environ. Pollut. 220, 909-918.

626	
627	
628	
629	Captions of tables and figures
630	
631	Table 1 Chemical properties of the initial sludge used
632	
633	Fig. 1 Changes of DOC, humification index, dehydrogenase activity and 16S rDNA
634	gene abundance of vermicomposting and control treatments during sludge stabilization
635	process.
636	Fig. 2 Bacterial community of weighted UniFrac distances (a) and of LDA score
637	diagram (b) in vermicomposting and control treatments during sludge stabilization
638	process.
639	Fig. 3 Abundances of ARGs (a) of vermicomposting and control treatments and their
640	significant differences (b) during sludge stabilization period.
641	Fig. 4 Redundancy analysis of the relationship between environmental factors and
642	antibiotic resistance genes.
643	Fig. 5 Network analysis of co-occurring ARGs and possible host bacteria (top 50 order)
644	based on Pearson's correlation coefficients (P < 0.01, $R^2 > 0.90$) in control (a) and
645	vermicomposting (b) systems.
646	
647	

648649 Table 1 Chemical properties of the initial sludge used.

Parameters	Initial sludge	
pH	6.80 ± 0.03	
Water content (%)	78.4 ± 0.30	
Electrical conductivity (mS/m)	1.71 ± 0.01	
Organic matter (%)	66.0 ± 0.70	
Total nitrogen (g/kg)	60.97 ± 0.03	
Total carbon (g/kg)	261.56 ± 0.21	
Ammonium (mg/kg)	947.27 ± 87.86	
Nitrate (mg/kg)		
Phosphate (mg/kg)	604.13 ± 115.63	

Fig. 1 Changes in DOC, humification index, dehydrogenase activity and bacterial 16S rDNA gene abundance in the vermicomposting and control treatments during sludge stabilization process. Data are presented as mean \pm standard deviation (n=6). Repeated measures ANOVA was used to test for significant differences between vermicomposting and control treatments with experimental time.

- 695
- 696
- 697
- 698
- 699

700 **(a)** IS Proteobacteria E40 Bacteroidetes E60 Saccharibacteria Actinobacteria E80 Firmicutes BRC1 C20 Chloroflexi E20 Thermomicrobia Ignavibacteriae C40 Synergistetes C60 Others **C80** Weighted Unifrac Distance 0 0.25 0.5 0.75 1 ասհանակությունությունություն Relative Abundance in Phylum Level 0.05 0.1 0.15 0.2 0 701 702 **(b)** Control Vermicomposting Actinobacteria p _unidentified_Actinobacteria f Xanthomonadaceae g_Pseudoxanthomonas s_Pseudoxanthomonas_sp_enrichment_culture o Rhizobiales f_Porphyromonadaceae g Tissierella o_Bacteroidales f__Famijy_XI c Bacteroidia g_Pseudomonas f Pseudomonadaceae o_Pseudomonadales -6.0 - 4.8 - 3.6 - 2.4 - 1.2 0.06.0 3.6 4.8 1.2 2.4 LDA SCORE (log 10) 703 704 Fig. 2 Bacterial community clustering based on weighted UniFrac distances (a) and the 705

LDA score diagram (b) of vermicomposting and control treatments during sludge stabilization process. The tree was calculated by weighted UniFrac distance based on relative abundances at the phylum level. LDA score ($Log_{10} > 3.0$) was adopted as those that differentiate key OTUs between vermicomposting and control samples.

Fig. 3 Abundances of ARGs (a) in vermicomposting and control treatments and their
significant differences (b) during sludge stabilization period. Repeated measures
ANOVA was used to test for significant difference between vermicomposting and
control treatments with experimental time.

Fig. 4 Redundancy analysis (RDA) of the relationship between environmental factors
(red arrows) and antibiotic resistance genes (blue arrows). IS means initial sludge. 20,
40, 60 and 80 behind E and C represent sampling days of 20, 40, 60 and 80 from
earthworms and control reactors, respectively.

Fig. 5 Network analysis of co-occurring ARGs (relative abundance) and possible host bacteria (top 50 Orders) based on Pearson's correlation coefficients (p < 0.01, $\mathbb{R}^2 > 0.90$) in control (a) and vermicomposting (b) systems. The node represents an ARG or bacterium, where the node size is proportional to each abundance. An edge represents a positive significant correlation, where the edge thickness is proportional to Pearson's correlation coefficients.

C

758

750 751

Highlights

- 1. Fate of selected ARGs and Int1 during vermicomposting was studied.
- 2. Earthworms significantly reduced the selected ARGs and Int1.
- 3. Proteobacteria and Antinobacteria were potential host of ARGs in vermicomposting.
- 4. Earthworms strongly affected the possible host bacteria encoding ARGs and *Int1*.