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ABSTRACT 

The digitalization of the healthcare system has resulted in a deluge of clinical Big Data 

and has prompted the rapid growth of data science in medicine. Data science, which is the field 

of study dedicated to the principled extraction of knowledge from complex data, is particularly 

relevant in the critical care setting. The availability of large amounts of data in the intensive 

care unit, the need for better evidence-based care, and the complexity of critical illness makes 

the use of data science techniques and data-driven research particularly appealing to 

intensivists. Despite the increasing number of studies and publications in the field, so far there 

have been few examples of data science projects that have resulted in successful 

implementations of data-driven systems in the intensive care unit. However, given the 

expected growth in the field, intensivists should be familiar with the opportunities and 

challenges of Big Data and data science. In this paper, we review the definitions, types of 

algorithms, applications, challenges, and future of Big Data and data science in critical care. 
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INTRODUCTION  

The digitalization of the healthcare system is changing the way we practice medicine 

and conduct clinical research.
1,2

 The widespread implementation of electronic health records 

(EHRs) is paving the way for Big Data research and is bringing the world of data science to the 

patient’s bedside.
2-4

 Within the healthcare system, the intensive care unit (ICU) presents a 

particularly convincing case for using data science to improve patient care.
5
 For one, the 

evidence supporting many of the interventions performed in the ICU is rather scarce and 

practice variability is abundant.
5,6

 In addition, the complexity of critical illness makes the 

traditional reductionist approach to medical research insufficient, that is, single drug 

intervention trials or single pathway biomarker studies are unlikely to satisfy the clinical 

realities of the ICU.
5
 Critical care research requires an integrative approach that embraces the 

complexity of critical illness and the computational technology and algorithms that can make it 

possible.
7,8

 Moreover, the data required to do this are being generated and digitized in troves. 

EHRs, bedside monitors, medication pumps, and ventilators are continuously generating new 

minable data, and soon the advancement of modern molecular diagnostics will result in a 

deluge of “omics” data derived from the genome, transcriptome, microbiome, and a long list of 

other “-omes” (Figure 1).  

As Big Data and data science gradually infiltrate most aspects of clinical research and –

ultimately– clinical care in the ICU, it is increasingly evident that intensivists should be familiar 

with the promise and perils of these approaches. In this paper, we will review the definitions, 

types of algorithms, applications, challenges, and future of Big Data and data science in critical 

care. 

 

DEFINITIONS IN DATA SCIENCE 

Big Data can be defined as digital data that is generated in high volume and high variety 

and that accumulates at high velocity, resulting in datasets too large for traditional data-

processing systems.
2,9

 In practice, Big Data in healthcare depends on both the breadth and the 

depth of the data being captured. For example, administrative healthcare datasets with few 

data elements per patient record (low depth) are usually considered Big Data problems when 

they contain millions of records (wide breadth). On the other hand, when applying next-

generation sequencing and other “omics” approaches (high depth), just a few dozen patients 

can become a Big Data problem (narrow breadth).
10

 

Data science can be defined as “the set of fundamental principles that support and 

guide the principled extraction of information and knowledge from data.”
9
 A closely related 

term is data mining, which is the actual extraction of knowledge from data via machine learning 

algorithms that incorporate data science principles.
9
 Machine learning is the field of study that 

focuses on how computers learn from data and the development of algorithms that make this 

learning possible.
11

 Finally, another important concept in data science is domain expertise, 

which in healthcare can be defined as the understanding of real-world clinical problems and the 

realities of patient care that help frame and contextualize the application of data science to 

healthcare problems.
8,9,11
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These and other pertinent definitions in data science are presented in Table 1. 

 

 

THE ECOSYSTEM OF DATA SCIENCE IN HEALTHCARE 

The data revolution in healthcare would not be possible if it were not for several key 

developments, including: (1) the data science movement that has transformed other industries; 

(2) the extraordinary growth in computational power; (3) the availability of open source tools 

and low-cost equipment to perform advanced analyses; and (4) the increasing availability of 

educational resources and advanced degrees in data science and related fields.
12

 Open source 

programming and scripting languages, such as R and Python, have extensive libraries of 

statistical packages and machine learning algorithms that are relatively easy to use by 

researchers with some training and have greatly democratize the access to data science 

techniques. Educational resources, such as graduate programs in data science, are also 

increasingly available. Notable amongst these are massive open online courses (MOOCs), which 

have led to increased popularity of data science and the applications of machine learning 

techniques to real-world problems.
13

 There are now a multitude of courses from prestigious 

institutions that cover data science and machine learning, and many of them are free. This 

provides the interested researcher with educational opportunities from world-class experts at 

the touch of a button. Other websites contain user-created code to run machine learning 

algorithms from scratch (e.g., https://github.com/), or host data science competitions for 

participants around the world (e.g., https://www.kaggle.com/). This rich online environment is 

ideal for data scientists to learn and grow, with the field of medicine benefitting from advances 

shared around the world freely through the internet. 

 

 

TYPES OF ALGORITHMS IN DATA SCIENCE 

Machine learning algorithms are generally divided into two categories: supervised and 

unsupervised learning algorithms.
11

 Semi-supervised algorithms represent a hybrid of the two 

but have been used less often in healthcare problems. Finally, deep learning algorithms defy 

this classification, even though they derive from artificial neural network algorithms which are 

generally classified as supervised algorithms. The most defining characteristic of deep learning 

is their focus on learning data representations (or features) that can then be used in supervised, 

unsupervised, or semi-supervised problems. We review these types of algorithms in more detail 

below (and also in Figure 2 and Table 2). 

 

Supervised learning algorithms 

Supervised learning algorithms are used to uncover the relationship between variables 

of interest and one or more target outcomes.
11,14

 For supervised problems, the target 

outcome(s) must be known. For example, if researchers want to know whether a set of clinical 

features (e.g., vital signs, laboratory tests, etc.) can predict ICU mortality, they could apply a 

supervised learning algorithm to a dataset in which each patient record contains the set of 

clinical features of interest and a label specifying their outcome (“survived” or “not survived” in 

this case) (Table 1). Examples of supervised learning algorithms include regression-based 

methods (e.g. linear and logistic regression, lasso, elastic net), tree-based methods (e.g., 
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classification and regression trees, random forest, gradient boosted trees), k-nearest neighbor, 

artificial neural networks, and support vector machines (Table 2).
15

 

 

Unsupervised learning algorithms 

 Unsupervised learning algorithms are used to uncover naturally occurring patterns or 

groupings in the data, without targeting a specific outcome.
11

 The most compelling use case of 

unsupervised learning in healthcare is in precision medicine, in which the goal is to uncover 

subsets of patients who share similar clinical or molecular characteristics and are –in theory– 

more likely to respond to targeted therapies directed at their shared underlying 

pathobiology.
16,17

 For example, an unsupervised learning algorithm may be used to uncover 

subgroups of patients with sepsis that have distinct molecular and clinical characteristics and 

will respond differently to specific drugs, such as corticosteroids.
18

 Some examples of 

unsupervised learning algorithms include clustering algorithms (e.g., hierarchical clustering, k-

means clustering), latent class analysis, and principal component analysis (Table 2).
11,14,19

 

 

Deep learning algorithms 

Deep learning algorithms are designed to extract meaningful features from the data in 

order to represent information in an increasingly higher order of hierarchical complexity in the 

form of stacked layers of nodes (or “neurons”).
20

 For example, if the input is a photo of several 

people, the first layer of nodes might simply extract straight lines, curves, and color hues. 

Deeper layers may combine some of those lines, curves, and hues to represent eyes, noses, 

ears, and other more complex features. After deeper layers of nodes have perceived 

increasingly more complex features in an unsupervised way, they can then be used to perform 

specific tasks, like match the faces in the photo to certain specific people with known features. 

In medical applications, deep learning has been used, for example, to detect diabetic 

retinopathy on funduscopic images,
21

 detect cancer in skin photographs,
22

 or predict clinical 

outcomes using EHR data.
25,26

 

 

DATA SCIENCE APPLICATIONS IN CRITICAL CARE  

Predictive and prognostic models 

The most common applications of data science to critical care problems are predictive 

and prognostic models using supervised learning algorithms. Although identical from a 

modeling perspective, predictive and prognostic models can be distinguished semantically by 

the fact that predictive models are generally trained to predict the likelihood of a condition, 

event, or response, while prognostic models are specifically trained to predict the likelihood of 

a condition-related endpoint or outcome, such as mortality (Table 1).
16,27

 This distinction, 

however, is not always clear in the literature and, depending on the use case, might be 

irrelevant.  

One of the oldest and best-known prognostic models to estimate risk of mortality in ICU 

patients is the Acute Physiology and Chronic Health Evaluation (APACHE) score, which was first 

developed in the 1980’s by Knaus and colleagues using logistic regression.
28,29

 Since then, many 

other groups have developed predictive and prognostic models using larger, more granular 

datasets and applying modern machine learning methods. For example, Churpek and 

colleagues developed a logistic regression model in a dataset of over 250,000 hospital 
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admissions that accurately estimated the risk for ICU transfer, cardiac arrest, or death in ward 

patients.
31

 In a follow-up study, the same group showed that more modern machine learning 

methods, such as random forests and gradient boosted machines, could more accurately 

predict clinical deterioration compared to classical logistic regression.
15

 In another example, 

Joshi and colleagues used 54 clinical variable time series to predict 30-day mortality in ICU 

patients in the publicly-available Multiparameter Intelligent Monitoring in Intensive Care 

(MIMIC) dataset.
32

 They clustered the physiologic measurements into organ specific patient 

states and achieved a state-of-the-art 30-day mortality prediction area under the receiver 

operating characteristic curve (AUC) of 0.91. 

Predictive models aimed at identifying patients with specific condition or those more 

likely to respond to a specific therapy are more commonly used in the field of oncology, with 

multiple examples of biomarker-based models used to diagnose particular subtypes of cancer 

that respond to targeted therapy.
4,16

 However, there are some examples in the critical care 

literature, particularly in sepsis and septic shock.
33,34

 For example, Wong and colleagues used a 

combination of a classification and regression tree-based biomarker risk model and gene 

expression profiles in pediatric sepsis patients to identify a subgroup of patients who were 

more likely to benefit from corticosteroids.
18

 

 

Clustering and phenotyping  

Unsupervised learning algorithms in critical care have mainly been used to uncover 

naturally occurring subgroups or clusters of patients who share similar clinical and/or molecular 

characteristics. These clusters are oftentimes called phenotypes, subphenotypes, or subtypes, 

although there is still little consensus on the terminology.
16

 For example, Calfee and colleagues 

applied Latent Class Analysis and identified two subphenotypes of acute respiratory distress 

syndrome (ARDS) using clinical and cytokine data from two ARDS randomized controlled 

trials.
37

 The subphenotypes identified had distinct differences in inflammatory profiles, 

response to ventilator strategies, and clinical outcomes. Knox and colleagues used self-

organizing maps and k-means clustering to identify four distinct clusters of patients with sepsis-

associated multiple organ dysfunction syndrome that were independently associated with 

outcomes after adjusting for severity of illness.
38

 Luo and colleagues analyzed multiple 

physiological variable trends of patients in the MIMIC dataset and applied non-negative matrix 

factorization to group related trends, which were shown to effectively predict 30-day mortality 

while maintaining model interpretability.
39

  Finally, Vranas and colleagues applied clustering 

analysis to discover and validate six clinically recognizable subgroups of ICU patients that 

differed significantly in all baseline characteristics and clinical trajectories despite sharing 

common diagnoses.
40

 

 

Applications with non-traditional data types 

Natural language processing  

Much of the data used in critical care studies, such as vital signs or laboratory test 

results, are structured data that can be easily entered into a relational database or spreadsheet 

and be sorted, summarized, etc. However, there is a significant amount of clinical information 

contained in the form of unstructured clinical narratives (e.g., progress notes, discharge 

summaries, nursing notes, diagnostic reports, etc.).
41

 Methods for analyzing narrative data, 
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generally known as natural language processing (NLP), are designed to extract features from 

texts that can be then used in task-specific algorithms for different purposes, for example, 

prognostic modeling. Lehman and colleagues used clinical data and unstructured progress 

notes from the first 24 hours of ICU admissions to estimate the risk of in-hospital mortality.
42

 

They inferred topic models from progress notes and achieved an AUC of 0.82, which was 

superior to severity of illness scores based only on structured clinical variables. Ghassemi and 

colleagues further investigated the prognostic power of topics as features from the first 24 

hours and achieved an AUC of 0.85 for in-hospital mortality when combining text and 

structured data.
43

 Weissman and colleagues applied NLP to analyze discharge documents of 

ARDS survivors and found that ARDS itself is rarely mentioned in those documents, as opposed 

to more frequent mentions of “mechanical ventilation” and “ICU stay”.
45

 On the other hand, 

their NLP based document classifier reported 100% accuracy for ARDS identification, suggesting 

that NLP can be used to effectively identify patients with certain types of conditions. 

 

Physiologic waveform analysis  

Physiologic waveform data from bedside monitors and wearable devices is increasingly 

being used in data science studies in critical care. Many institutions collect and store physiologic 

monitor data, such as electrocardiography, photoplethysmography, impedance pneumography, 

invasive arterial manometry, end-tidal capnography, and electroencephalography. The publicly 

available MIMIC databases contains physiologic waveform data for ICU patients at Beth Israel 

Deaconess Medical Center, which has facilitated the development of the state-of-the-art 

waveform analysis in the field.
46

 For example, researchers have used waveform data to 

estimate cardiac output data using pulse contour analysis techniques,
47

 detect hypovolemia 

using photoplethysmography data,
51

 and predict hyperlactatemia using combined physiologic 

data.
54

  

 

Image analysis  

The advancement in the field of deep learning, which is particularly useful for image 

analysis, has resulted in a rapid increase in the number of studies in this area in the last few 

years.
55

 However, none of the current published studies have tested the usefulness of 

automated image analysis in an ICU setting. The rapid growth of this field, however, will 

undoubtedly result in many use cases applicable to critical care situations. Perhaps most 

pertinent to critical care clinicians is the advancement in techniques to detect pulmonary 

pathology in chest radiographs,
23,24

 as well as normal and abnormal findings in brain and 

abdominal imaging.
55

 These techniques could be particularly helpful in ICUs with limited 

availability of specialists who can accurately interpret radiographic images in a timely fashion, 

but their effectiveness and safety should first be thoroughly tested before any clinical 

implementation may be considered.   

 

CHALLENGES AND PITFALLS OF DATA SCIENCE IN CRITICAL CARE  

Like most emerging technologies, the products of data science research in critical care 

will undoubtedly go through a series of hype and disillusionment cycles before becoming 

accepted and proven assets in the study and care of critically ill patients. One of the first 

challenges that data science faces in critical care is that, despite the increasing number of 
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studies and publications in the field, so far there have been few examples of data science 

projects that have resulted in successful implementations of data-driven systems in the ICU.
11

 

This lack of exposure in the clinical setting inevitably results in a degree of mistrust by clinicians 

in these data-driven systems.
58,59

 While clinicians are happy to use similar systems to browse 

their smart TVs, shop online, or interact with social media apps, they are wary of the idea of 

sharing clinical decision-making responsibilities with machine learning algorithms, particularly if 

they view them as “black boxes”.
59

 It is likely that only the implementation of well-designed, 

interpretable, and effective data-driven systems in the ICU will make clinicians start to gain 

trust in them. Furthermore, the implementation of these data-driven systems must be 

performed under the rigorous auspices of well-controlled experimental studies, including (but 

not limited to) simulation testing, pre- and post-intervention studies, and randomized 

controlled trials. The medical informatics literature has good examples of using scientifically 

rigorous approaches to the implementation and testing of digital solutions like clinical decision 

support tools and can serve as a model to follow.
60-62

 

Clinicians and researchers appraising a data-driven system and the literature that 

supports it must be aware of common pitfalls that can raise concerns about its value. The 

effectiveness of a data-driven system goes beyond a measure of performance, like an AUC or a 

p-value. In order to be effective, a data-driven system must produce actionable outputs for the 

right patients, at the right time. For example, the output can be predictive information that can 

help a clinician decide the most effective treatment for a particular patient as soon as a 

diagnosis is made. Furthermore, when evaluating the clinical implementation of such a system, 

it is important to know whether it has been tested in an experimental setting and whether it 

has shown a meaningful impact in a population similar to the one for which it is being 

considered.  

Unfortunately, bad data science abounds. We must make a collective effort to ensure 

that only good data science evolves into data-driven systems that can be safely tested and used 

in critically ill patients. The ease of access to large amounts of data and computing power can 

lead to data mining “fishing expeditions” that can result in low-quality research.
3
 Poorly framed 

clinical problems, bad data, or debatable methodologies will result in flawed data science, and 

it can create more problems than it solves.
3,6,59

 Using epidemiological best practices to analyze 

retrospective data, including thoughtfully adjusting for confounding variables, is just as 

important in large datasets as it is in smaller ones. In addition, a model may fit well only on the 

training data but generalize poorly to other data, a phenomenon known as overfitting (see 

Table 1). Overfitting may happen when algorithms learn from idiosyncrasies –or noise– in the 

training data and techniques such as cross-validation and regularization can be used to mitigate 

this problem.
63,64

  

Poorly implemented digital technologies can harm patients,
65

 and only a rigorous 

approach to their evaluation and implementation can mitigate this risk. Partnerships between 

data scientists, clinical domain experts, medical informaticians, and implementation science 

specialists will result in more effective and safer data-driven systems. Clinicians with data 

science skills, clinical research expertise and an intimate knowledge of the clinical realities in 

the ICU can help data science teams capture the right data, address the right clinical problems, 

and produce the right actionable knowledge.
10

 Furthermore, clinician input can help minimize 

the number of unnecessary alerts or prompts these systems might produce, thereby reducing 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 9

the risk of alert fatigue, which is another common problem amongst front-line providers 

working with novel digital technologies.
66

  

Another common concern amongst clinicians is the perceived loss of autonomy in the 

face of increasingly more sophisticated computational systems. This is despite the fact that 

clinicians will readily acknowledge that the complexity of medicine nowadays far exceeds the 

capacity of the unaided human mind and that perhaps these novel computational systems can 

help manage some of this complexity.
10

 To put it in perspective, humans typically make 

decisions using less than six data points, since anything more than that becomes cognitively too 

expensive.
67

 Yet, an ICU patient can generate thousands of data points in a single day, and 

when you add fatigue, interruptions, and the clinicians’ own cognitive biases, it is not surprising 

that many clinical decisions end up being suboptimal.
68

 On the other hand, computers can sift 

seamlessly through tens of thousands of data points, they can easily analyze complex non-linear 

interactions between variables, they never sleep, and can multitask effortlessly. However, 

clinical thinking and medical decision-making are not reproducible by current technologies.
10

 

The qualitative aspect of clinical decision-making –the so-called “art of medicine”– is impossible 

to model quantitatively. Furthermore, many factors influencing clinical decision-making, 

including clinical, societal, and personal factors, are not necessarily reflected in the digital 

records, so any output from a data-driven system will need to be first evaluated, interpreted, 

and enriched by clinicians before any action is taken. However, in order to achieve a successful 

partnership between clinicians and computers, we must first improve the skills of bedside 

clinicians at interpreting and using the output from these data-driven systems.
59

 

Finally, another challenge faced by data science teams in critical care is balancing the 

need for data openness and reproducibility with the demand for data privacy and security. The 

open data science movement calls for transparent and reproducible research with seamless 

data sharing across institutions. Indeed, a recent study showed an alarming lack of 

reproducibility in data science studies using the same ICU data, which suggests that algorithms, 

study procedures, computer code and even datasets should be openly available in order to 

ensure reproducibility.
69

 However, this data openness must not result in poor data governance, 

lack of data security, or loss of confidentiality, all of which are necessary in order to perform 

ethical research and maintain public trust.
70

 

 

THE FUTURE OF BIG DATA AND DATA SCIENCE IN CRITICAL CARE   

We imagine a future in critical care where data-driven systems and clinicians work hand-

in-hand. Large quantities of clinical, physiologic and “omics” data are analyzed by 

computational systems and served to the bedside clinicians in the form of manageable, 

interpretable, and actionable knowledge that augment the clinician’s decision-making capacity. 

Predictive models perform diagnostic and therapeutic recommendations, while clinicians 

contextualize these recommendations and coordinate their implementation. False alerts are 

kept to a minimum and systems are continuously improved through a collaborative and 

scientifically rigorous approach.  

Data science can be transformative. There is a real opportunity that this scenario will 

become a reality in the near future, but there is still a lot of work ahead of us. Our patients 

entrust us with their precious data and we –clinicians, researchers, data scientists, and leaders 

in critical care– have an obligation to use it in the best possible way. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 10 

 

 

TABLES 
Term Definition 
Big Data Digital data that is generated in high volume and high variety and that 

accumulates at high velocity, resulting in datasets too large for traditional 
data-processing systems. 

Data science The set of fundamental principles that support and guide the principled 
extraction of information and knowledge from data. 

Data mining The extraction of knowledge from data via machine learning algorithms that 
incorporate data science principles. 

Domain expertise The understanding of real-world problems in a given domain (e.g., critical 
care medicine) that helps frame and contextualize the application of data 
science to solve these problems. 

Machine learning The field of study that focuses on how computers learn from data and the 
development of algorithms that make this learning possible. 

Features The data elements, also known as independent variables, used to train a 
model. Features can be simple transformations of the raw data (e.g., 
average heart rate in the last 24 hours) or complex transformation like the 
ones performed by neural networks (see Table 2). 

Outcomes The data elements, also known as dependent variables, that represent the 
target for training in a supervised learning model. Outcomes can be 
categorical (e.g., yes/no) or continuous (e.g., length of hospital stay). 
Categorical binary outcomes are the most common in medicine (e.g., died or 
alive by 28 days). Binary outcomes are typically represented as a Boolean 
logic (i.e., true/false or 1/0) but can also be represented using fuzzy logic 
(i.e., a range of probabilities -or degrees of truth- between 0 and 1). 

Supervised learning Algorithms that are used to uncover the relationship between a set of 
features and one or more known outcomes. 

Unsupervised 
learning  

Algorithms that are used to uncover naturally occurring patterns or groupings 
in the data, without targeting a specific outcome. 

Model training The process through which machine learning algorithms develop a model of 
the data by learning the relationships between features and, in supervised 
learning, between features and outcomes. This is also referred to as model 
derivation or data fitting. 

Model validation The process of measuring how well a model fits new, independent data. For 
example, evaluating the performance of a supervised model at predicting an 
outcome in new data. This is also referred to as model testing.  

  
  
Predictive model A model generally trained to predict the likelihood of a condition, event, or 

response. The Food and Drug Administration specifically considers 
predictive strategies as those geared towards identifying groups of patients 
more likely to respond to an intervention. 

Prognostic model A model specifically trained to predict the likelihood of a condition-related 
endpoint or outcome, such as mortality. In general, the goal is to estimate a 
prognosis given a set of baseline features, regardless of what ultimately 
leads to the outcome. 

Overfitting  The phenomenon that occurs when an algorithm learns from idiosyncrasies 
in the training data, usually referred to as noise. Noisy data is data that is 
randomly present in the training dataset but does not represent the 
generalizable truth (usually referred to as signal) that explains the 
relationships between the features and the outcomes. Overfitting will 
generally lead to poor performance of the model in an independent 
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validation dataset. 
Digitization The conversion of something analog or physical (e.g., paper documents, 

printed images, etc.) into a digital format (i.e., bits or 1s and 0s) 
Digitalization The wide adoption of digital technologies by an organization in order to 

leverage their digitized data with the goal of improving operations and 
performance. The adoption of electronic health records and other digital 
technologies (e.g., picture archiving and communication systems for medical 
images, pharmacy management systems, billing systems, etc.) are 
examples of digitalization in healthcare. 

Data curation The process of integrating data from different sources, structuring it, 
authenticating it, and annotating it in order to ensure its quality, add value, 
and facilitate its use and reuse.  

Structured data Data –usually discrete or numeric– that is easy to search, summarize, sort, 
and quantify. Examples include vital signs (e.g., heart rate) or laboratory test 
results (e.g., complete blood count). 

Unstructured data Data that does not conform to a pre-specified structure, like a written 
narrative, images, video, or audio. Unstructured data is generally harder to 
search, sort, and quantify. Examples include clinician notes, pathology 
slides, and radiology images. 

Table 1. Definitions of common terms in data science  
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Algorithm class Examples Description 

Classic regression Linear 
regression, 
logistic 
regression 

Linear regression is a supervised learning algorithm that models 
the relationship between one or more features and a continuous 
outcome by fitting a regression line that minimizes the sum of all 
the residuals, which are the distances between each feature in the 
training data and the line being fitted to model them. Logistic 
regression is a generalization of the linear model that uses the 
logistic function to estimate the probability of a binary outcome. To 
do this, the fitted sigmoid-shaped curve of the logistic function 
maps the feature values into a probability between 0 and 1.  

Regularized 
regression 

Lasso, ridge 
regression, 
elastic net 

An extension of the classic regression algorithms in which a 
penalty is imposed to the fitted model to reduce its complexity and 
decrease the risk of overfitting (see Table 1). 

Tree-based Classification 
and regression 
trees, random 
forest, gradient 
boosted trees 

A class of supervised learning algorithm based on decision trees. 
Decision trees are a sequence of “if-then-else” splits that are 
derived by iteratively separating the data into groups based on the 
relationship of the features with the outcome. Random forest and 
gradient boosted trees are example of ensemble tree models. 
Ensemble models combine the output of many trained models to 
estimate an outcome.   

Support vector 
machines 

Linear, 
polynomial, 
radial basis 
kernel  

A class of supervised learning algorithms that represents the data 
in a multidimensional feature space and then fits a “hyperplane” 
that best separates the data based on the outcomes of interest. 

K-nearest neighbor K-nearest 
neighbor 

A type of supervised learning algorithm that represents data in 
multidimensional feature space and uses local information about 
observations closest to a new example to predict the outcome for 
that example. 

Bayesian Naïve Bayes, 
Bayesian 
network 

A class of supervised learning algorithms that use Bayes’ theorem 
of conditional probability, which is the probability that something 
will happen given that something else has already occurred. In 
general, Bayesian algorithms work by iteratively updating the 
probability of an outcome (or posterior belief) given new data. 

Neural network Artificial neural 
network, deep 
neural network 

A class of non-linear algorithms built using layers of nodes that 
extract features from the data and perform combinations that best 
represent the underlying structure, usually to predict an outcome. 
Neural networks can be shallow (like a perceptron with two layers) 
or deep (multiple layers), which form the basis for the field of deep 
learning.  

Dimensionality 
reduction algorithms 
 

Principal 
component 
analysis, linear 
discriminant 
analysis. 

A class of unsupervised learning algorithms that exploit the 
inherent structure in the data to describe data using less 
information. Principal components, for example, summarize a 
large set of correlated features into a smaller number of 
representative features. 

Latent class analysis Latent class 
analysis 

A type of unsupervised learning algorithm that identifies unseen 
subgroups, or latent classes, in the data. Class membership is 
unknown for each example so the probability of class membership 
is indirectly estimated by measuring the patterns in the data. 

Cluster analysis K-means, 
hierarchical 
cluster analysis 

A class of unsupervised learning algorithm that use the inherent 
structures in the data to best organize the data into subgroups of 
maximum commonality based on some distance measure 
between features. 
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Table 2. Examples of algorithms used in data science 

 

FIGURE LEGENDS 

 

Figure 1. Some of the major sources of Big Data in the intensive care unit (ICU). The term 

“Omics” refers to the data derived from modern molecular techniques, e.g. genomics, 

transcriptomics, proteomics, metabolomics, microbiomics, etc.   

 

Figure 2. Types of machine learning algorithms applicable to critical care. Supervised learning 

algorithms (A) can be used, for example, to uncover the relationship between patient clinical 

features (such as laboratory tests and vital signs) and mortality in order to predict the outcome 

in future cases. Unsupervised learning algorithms (B) can be used to uncover naturally occurring 

groupings or clusters of patients based on their clinical characteristics, without targeting a 

specific outcome. Deep learning algorithms (C) can be used, for example, to extract meaningful 

features from imaging data (such as a chest X-ray) in order to represent information in an 

increasingly higher order of hierarchical complexity and be able to make predictions, such as 

the presence of pathologic findings.  
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