
1932-4529/18©2018IEEE36    IEEE INDUSTRIAL ELECTRONICS MAGAZINE  ■  JUNE 2018

Digital Object Identifier 10.1109/MIE.2018.2824843

Date of publication: 25 June 2018

s the Internet of Things (IoT) 
continues its run as one of 
the most popular tech-

nolog y buzzwords of 
today, the discussion 

really turns from how 
the massive data sets 

are collected to how value can be de-

rived from them, i.e., how to extract 
knowledge out of such (big) data. IoT 
devices are used in an ever-growing 
number of application domains (see 
Figure 1), ranging from sports gad-
gets (e.g., Fitbits and Apple Watches) 
or more serious medical devices (e.g., 
pacemakers and biochips) to smart 
homes, cities, and self-driving cars, 
to predictive maintenance in mission-
critical systems (e.g., in nuclear power 

plants or airplanes). Such applica-
tions introduce endless possibilities 
for better understanding, learning, 
and informedly acting (i.e., situational 
awareness and actionable information 
in government lingo). Although rapid 
expansion of devices and sensors 
brings terrific opportunities for tak-
ing advantage of terabytes of machine 
data, the mind-boggling task of un-
derstanding growth of data remains 
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and heavily relies on artificial intel-
ligence and machine learning [1], [2].

Where traditional approaches do not 
scale well, artificial intelligence tech-
niques have evidenced great success in 
applications of machine and cognitive 
intelligence (such as image classifica-
tion, face recognition, or language trans-
lation). We recognize the widespread 
usage of various well-known machine-
learning algorithms in the IoT (such as 
fuzzy systems, support vector machines, 
Bayesian networks, reinforcement learn-
ing, and others), but we focus here on 
the most recent and highly advanta-
geous type of machine learning in the 
IoT: deep learning.

The success of deep learning and, 
in particular, deep neural networks 
greatly coincides with the advent of 
highly specialized, powerful parallel-
computing devices, i.e., graphics pro-
cessing units (GPUs) [4]. Although the 
overwhelming processing and memory 
requirements can be met with high-
performance computing hardware, the 
resulting sheer size, cost, and power 
consumption would make the goal of 
deep neural network-enabled IoT and 
embedded devices unattainable.

In this scenario, field-programmable 
system-on-chip (FPSoC) platforms, 
which combine in a single chip one or 
more powerful processors and recon-
figurable logic [in the form of field-pro-
grammable gate array (FPGA) fabric], 
are emerging as a very suit-
able implementation alterna-
tive for the next generation of 
IoT devices. The fine-grained 
structure of FPGAs has proven 
to provide powerful implemen-
tations of machine-learning 
algorithms with less power 
consumption than comparable 
platforms (in terms of cost or 
size) [5], making them ideal for 
machine and cognitive intelli-
gence in strict resource-limited 
applications, like many in the 
IoT (while GPUs remain as the 
dominant platforms for other 
IoT scenarios). 

Moreover, FPSoCs allow 
the processing load to be 
balanced between proces-
sors and reconfigurable log-

ic, the most suitable implementa-
tion (hardware or software) being used 
for each specific functional building 
block to be optimized, and functional-
ity to be easily reconfigured on site. 
In addition, reconfigurable platforms 
dramatically ease system scalabil -
ity and upgrading. Hence, they pro-
vide high levels of flexibility, as de-
manded by the IoT market.

In this regard, this article identi-
fies hardware implementation chal-
lenges and thoroughly analyzes the 
aforementioned suitability of FPSoCs 
for a broad range of IoT applications 
involving machine-learning and arti-
ficial intelligence algorithms, which 
is demonstrated in two case studies, 
one related to deep learning and the 
other to the more classical evolution-
ary computing techniques.

Deep Learning for the IoT
In the era of the IoT, the number of sens-
ing devices that are deployed in every 
facet of our day-to-day life is enormous. 
In recent years, many IoT applications 
have arisen in various domains, such 
as health, transportation, smart homes, 
and smart cities [6]. It is predicted by 
the U.S. National Intelligence Council 
that, by 2025, Internet nodes will reside 
in everyday things, such as food pack-
ages, furniture, and documents [7]. This 
expansion of IoT devices, together with 
cloud computing, has led to creation 

of an unprecedented amount of data 
[8], [9]. With this rapid development of 
the IoT, cloud computing, and the ex-
plosion of big data, the most fundamen-
tal challenge is to store and explore 
these volumes of data and extract use-
ful information for future actions [9].

The main element of most IoT ap-
plications is an intelligent learning 
methodology that senses and under-
stands its environment [6]. Tradition-
ally, many machine-learning algorithms 
were proposed to provide intelligence 
to IoT devices [10]. However, in recent 
years, with the popularity of deep neu-
ral networks/deep learning, using deep 
neural networks in the domain of the 
IoT has received increased attention 
[6], [11]. Deep learning and the IoT 
were among the top three technology 
trends for 2017 announced at Gartner 
Symposium/ITxpo [12]. This increased 
interest in deep learning in the IoT do-
main is because traditional machine-
learning algorithms have failed to 
address the analytic needs of IoT sys-
tems [6], which produce data at such 
a rapid rate and volume that they de-
mand artificial intelligence algorithms 
with modern data analysis approaches. 
Depending on the predominant factor, 
volume or rate, data analytics for IoT 
applications can be viewed in two main 
categories: 1) big data analysis and 2) 
data stream analysis.

When focusing on data volume, the IoT 
is one of the major sources of 
big data. Analytics of the gener-
ated massive data sets directly 
benefit the performance and 
enhance capabilities of IoT sys-
tems. Extracting knowledge from 
such big data is not a straight-
forward task. It requires capa-
bilities that go beyond the tra-
ditional inference and learning 
techniques [13], generally ex-
pressed with the six Vs [14], [15]:

 ■ volume, which refers to 
the ability to ingest, pro-
cess, and store large data 
sets (petabytes or even exa-
bytes)

 ■ velocity, which refers to 
the speed of data genera-
tion and frequency of de-
livery (sampling)FIGURE 1 – IoT devices (adapted from [3]). 
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 ■ variety, which refers to the data 
from different sources and types 
(structured or unstructured); even 
the types of data have been grow-
ing fast

 ■ variability, which refers to the need 
for getting meaningful data consid-
ering scenarios of extreme unpre-
dictability

 ■ veracity, which refers to bias, noise, 
and abnormality in data (only the 
relevant, usable data within ana-
lytic models is to be stored)

 ■ value, which refers to the purpose 
the solution has to address.
Figure 2 shows the six Vs of big data 

and how the advantages of deep-learn-
ing techniques can be used to meet 
these challenges in big data. More spe-
cific applications of deep-learning tech-
niques in big data in the IoT are pre-
sented in the next section. The latest 
considerations add three additional Vs 
to the mix: vulnerability (of data), vola-
tility (relevance of data before becom-
ing obsolete), and visualization (ways of 
meaningful visualization).

As mentioned, in addition to per-
forming data mining on massive collec-
tions of data produced by IoT systems, 
another important aspect is dealing 
with real-time data streams that re-
quire fast-learning algorithms. IoT ap-
plications, such as traffic management 
systems and supply chain logistics of 
supermarkets, involve large data sets 
that have to be analyzed in near real 
time [16]. Mining fast-generated data 
streams requires the algorithms to be 
adaptable to the change of data distri-

butions as the environment changes 
around the devices [17]. This context/
concept drift occurs due to the chang-
es in factors, such as location, time, 
and activity. In addition to the require-
ment of speed adaptability, the lack of 
labeled data in IoT data streams adds 
to the difficulty because it makes su-
pervised learning methods inadequate 
for analysis [17], [18]. Therefore, highly 
adaptable unsupervised and semisu-
pervised deep-learning techniques are 
required for mining the fast-changing 
data streams in IoT devices.

Applications of Deep  
Learning in the IoT
Deep neural networks have revolu-
tionized a multitude of fields because 
of their ability for learning through 
multiple layers of abstraction [19], 
[20]. This enables learning of complex 
patterns that are hidden in complex 
data sets, a capability ideal for min-
ing massive heterogeneous data sets. 
Different deep neural network algo-
rithms have been used to good effect 
in a range of areas that were very dif-
ficult to tackle in the past. Long short-
term memory algorithms, e.g., have 
been shown to be extremely useful in 
speech recognition and natural lan-
guage processing [21]–[23], and con-
volutional neural networks have been 
used to produce state-of-the-art per-
formance in many vision applications, 
such as image classification [24], [25]. 
Therefore, deep learning is applied ex-
tensively in a range of IoT devices for 
human interaction.

One of the most important deriva-
tives of the IoT is the concept of smart 
cities. Improving cities is becoming a 
global need with the rising and urban-
ization of the population [26]. The con-
cept of smart cities has been around 
since the early 2000s. Smart cities 
claim to contain thousands of sens-
ing devices, which generate massive 
amounts of data that can be harnessed 
to optimize and improve the operations 
of these cities [27]. Smart cities try to 
accomplish goals, e.g., reducing pollu-
tion and energy consumption or opti-
mizing transportation [28]. IoT devices 
can help collect data about how people 
use cities, and machine-learning algo-
rithms can be used to understand that 
data [26]. Adding further intelligence to 
the embedded sensing nodes allows lo-
cal storage needs and network conges-
tion to be reduced.

One of the most important aspects 
of smart cities powered by the IoT is 
smarter energy management. With the 
advent of smart meters, there are mas-
sive amounts of data being collected 
on energy consumption. This enables 
research on energy consumption pre-
diction, which can lead to optimizing 
energy usage and the way energy is 
generated in smart cities and smart 
grids. Machine-learning algorithms 
are indispensable in this area, and 
deep-learning algorithms, such as 
long short-term memory algorithms, 
restricted Boltzmann machines, and 
convolutional neural networks, have 
been proposed to perform data-driv-
en predictions of energy usage at both 
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FIGURE 2 – The big data six Vs and their connection with deep learning.
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the individual consumer and aggres-
gate levels [29]–[32].

Another important aspect of smart 
cities is using machine learning and the 
IoT for traffic management. Optimized 
traffic management targets reducing 
congestion, long queues, delays, and 
even the carbon footprint of cities [33]. 
To that end, driverless or self-driving 
cars have become a much-discussed 
topic recently, with major car compa-
nies, such as Tesla, BMW, and Ford, and 
tech giants, such as Google and Apple, 
stepping up to the plate to develop truly 
intelligent autonomous cars. 

Self-driving cars have a plethora 
of devices continuously sensing their 
environment and a suit of machine-
learning algorithms for understanding 
and fusing the various data sources, 
such as LIDAR depth maps and im-
ages. Deep neural networks have been 
extensively explored in this domain, 
as they have the capability of auto-
matically learning features to pick out 
obvious ones, such as lane marking 
and road edges, as well as other subtle 
ones that exist on the roads [34].

Computer vision is a highly sought-
after application in many use cases in 
the IoT domain. Smart cameras, espe-
cially in smart security systems, play 
an important role in smart homes [35], 
and vision applications, such as face 
recognition, are very crucial [36]. Ma-
chine-learning algorithms have been 
used extensively in image-processing 
applications and, in that, convolution-
al neural networks have been deemed 
the gold standard since the advent of 
LeNet [37]. Ko et al. presented a frame-
work for energy-efficient neural net-
works to be used in IoT edge devices 
[38]. The authors claim that in deploy-
ing deep neural networks-based im-
age processing, energy efficiency can 
be the performance bottleneck, and 
hence, they present the recent tech-
nological advantages for making deep 
neural networks, such as convolu-
tional and recurrent neural networks, 
more energy efficient. 

Another area in which machine-
learning-driven vision applications is 
used in the IoT is human activity rec-
ognition in smart homes. Fang and Hu 
proposed a deep-learning-based frame-

work for human activity recognition in 
smart homes used especially for help-
ing people with diseases [39]. Context 
awareness is another important aspect 
of the IoT, closely tied with mining data 
streams. Machine learning has a very 
crucial role to play in understanding 
the environment and the context of the 
device from the data. 

In recent years, we have seen com-
mercial IoT devices or edge devices 
emerging in the market, such as Nest 
Thermostat [40] and Amazon devices 
powered by Alexa [41], that have the 
ability of sensing their environment 
and using machine learning to under-
stand data. Context-aware devices 
or things have the ability of under-
standing the environment and adapt-
ing their reasoning capabilities [10]. 
Further, machine-learning algorithms 
are extremely crucial for some areas, 
such as intelligent health trackers for 
medicine, e.g., intelligent pacemakers 
or photoplethysmography systems 
[42], [43] that can monitor the heart-
beat of a patient. 

Adding intelligence to these de-
vices is very important, as it permits 
improved and faster preventive detec-
tion of pathologies. Compared with 
the option to send data via the Inter-
net to remote sensors for analysis or 
saving data for postprocessing, this 
option enables a dramatic reduction 
of data transmission and storage (with 
the respective reduction of energy 
consumption) and the possibility to 
work offline (very useful for remote or 
rural areas).

Safety and Security in the IoT
In addition to enabling and facilitat-
ing IoT applications, deep learning 
plays a crucial role in keeping the 
highly connected devices safe. Due 
to its ubiquity in the modern techno-
logical ecosystem, the IoT is a very 
attractive target for cyberattackers. 
Therefore, cybersecurity is one of the 
most important research areas in the 
field of the IoT [44], [45]. It is known 
that a large number of zero-day at-
tacks are emerging continuously due 
to the various protocols added to the 
IoT [46]. The multiple-level feature-
learning capabilities of deep learning 

have been exploited in this domain to 
good effect. 

Diro and Chilamkurti presented a 
deep neural networks-based distrib-
uted methodology for cyberattack de-
tection in the IoT [46]. They compared 
their distributed deep model with a 
shallow neural network and a central-
ized deep model, and they concluded 
that the distributed deep model out-
performs the others significantly. 

Another area of cybersecurity is mal-
ware detection. Pajouh et al. presented 
a deep recurrent neural network-based 
malware detection methodology for 
the IoT [47]. The authors implemented 
three different long short-term memory 
configurations and showed that their 
algorithm can achieve 98.18% accura-
cy in malware detection for the tested 
data set. In all aspects of cybersecurity, 
when taking a data-driven approach, 
anomaly detection algorithms are very 
useful tools. Canedo and Skjellum pre-
sented an artificial neural network-
based anomaly detection methodology 
tailored for IoT cybersecurity [48]. They 
recognized that the main challenges for 
anomaly detection in IoT data are quan-
tity and heterogeneity. They showed 
that the artificial neural network-based 
methodology was able to overcome 
those challenges in detecting anomalies 
in the data sent from edge devices.

Hardware Implementation 
Challenges
The implementation of machine-learn-
ing algorithms has been a hot topic in 
research for several years but recently 
boomed, mainly thanks to the oppor-
tunities created by the advancements 
in chip fabrication technologies, which 
enabled solving design problems at a 
cost and with a time-to-market that 
were unthinkable just a few years ago. 
The resolution of Google Challenge 
by AlexNet using an eight-layer deep 
neural network [24] is usually cited 
as an inflexion point that boosted the 
research on new chips and applica-
tions of machine-learning algorithms, 
especially in the field of neural net-
works. This explosion coincides with 
the deceleration of Moore’s law (even 
Gordon Moore himself predicted the 
end of his Moore’s law [92]), which 
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now makes it economically 
reasonable to work on op-
timized software and hard-
ware structures, as opposed 
to the trend of the last 30 
years, where waiting for the 
next generation of devices 
was more profitable than in-
vesting in optimization. All of 
these facts combined make 
it more difficult than ever 
for designers to decide the 
best possible architecture for 
their applications.

The digital processing 
platforms currently available in the 
market are summarized in Figure 3, 
where they can be compared in terms 
of performance and flexibility. Flex-
ibility refers here to ease of develop-
ment, portability, and possibility for 
adapting to changes in specifications. 
For high-end deep neural network ap-
plications, where performance is the 
most important parameter, general-
purpose GPUs (GPGPUs) are the domi-
nant solution. Their parallel structure, 
the latest efforts by manufacturers to 
compete for machine-learning appli-
cations (e.g., adding specific instruc-
tions for fast neuron inference), and 
their reduced cost due to the mass 
production for personal computers 
made them ideal for training and infer-
ence of deep neural networks. 

The latest NVIDIA Volta GV100 GPU 
platform, including 21.1 billion transis-
tors within a die size of 815 mm2, is 
capable of doing inference 100 times 
faster than the fastest current central 
processing unit (CPU) on the market 
[49]. This unparalleled brute power 
force comes at a price: high power 
consumption, the need for custom 
data types (not necessarily float), ir-
regular parallelism (alternating se-
quential and parallel processing), and 
divergence (not all cores executing the 
same code simultaneously). That is 
why some companies are investing in 
neural network application-specific in-
tegrated circuits (ASICs) for improved 
performance at the expense of losing 
flexibility. Examples are the first and 
second generation (optimized for in-
ference and both inference and train-
ing, respectively) of the Google tensor 

processing unit (TPU), slowly stealing 
high-performance computing applica-
tions from GPUs.

While this is the pace for high-
performance computing, the lack of 
flexibility in ASICs and the high power 
consumed by GPUs do not fit in wide 
areas of the IoT world that demand 
power-efficient, flexible embedded 
systems. This explains why many IoT 
devices are currently based on micro-
controllers, digital signal processors 
(DSPs), and multicore CPUs. How-
ever, as the IoT market grows, both 
manufacturers and designers face a 
problem due to the diversification of 
applications and increasing demand 
for computing power (particularly for 
machine-learning algorithms), leading 
a transformation from sense making 
to decision making [50]. 

Offering a wider portfolio of devic-
es to cover the different applications 
means less market share per device, 
increasing manufacturing costs. How-
ever, offering complex heterogeneous 
devices that can be used in several 
applications implies higher integra-
tion of functionality and a waste of sili-
con, also increasing the overall cost 
[51]. In this scenario, FPGAs, located 
in the middle of Figure 3, appear as 
a balanced solution to add flexibility 
and efficient computing power for ma-
chine-learning algorithms to the next 
generation of IoT devices. Combin-
ing processors and FPGAs in a single 
package results in the FPSoC concept. 
In the following sections, FPSoC ar-
chitecture is presented along with 
an analysis of the usefulness of its 
hardware resources for implementing 

machine-learning algorithms 
in IoT devices.

FPSoC Architecture
FPSoCs feature a hard process-
ing system (HPS) and FPGA 
fabric on the same chip. Both 
parts are connected by means 
of high-throughput bridges, 
which provide faster commu-
nications and power savings 
compared to multichip solu-
tions [53]. The HPS in first-gen-
eration FPSoCs featured single- 
or dual-core ARM application 

processors and some widely used pe-
ripherals, such as timers and control-
lers for different types of communica-
tion protocols, i.e., Ethernet, universal 
serial bus (USB), interintegrated circuit 
(I2C), universal asynchronous receiver-
transmitter (UART), and controller area 
network (CAN).  

Pushed by increasing application 
requirements, some devices in the 
newest FPSoC families include quad-
core ARM processors, GPUs, and 
real-time processors in the HPS, with 
FPSoCs becoming complex heteroge-
neous computing platforms. Resourc-
es in the FPGA fabric also evolved 
from the basic structure consisting of 
standard logic resources and relative-
ly simple specialized hardware blocks 
(e.g., fixed-point DSP multipliers, mem-
ory blocks, and transceivers). Current 
devices include much more complex 
blocks, e.g., DSP blocks with floating-
point capabilities, video codecs for 
video compression, soft-decision for-
ward error recovery (SD-FEC) units to 
speed up encoding/decoding in wire-
less applications, or analog-to-digital 
converters (ADCs). Figure 4 shows the 
generic block diagram of a modern 
FPSoC device, where the location and 
connection of the aforementioned ele-
ments is depicted. 

All computing elements (proces-
sors and GPU) have their own cache 
memory and share common synchro-
nous dynamic random access memo-
ry (SDRAM) external memory, usually 
controlled by a single multiport con-
troller. A main switch interconnects 
masters and slaves in the HPS. The 
FPGA fabric can be accessed as any 
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FIGURE 3 – The performance versus flexibility of digital processing 
platforms (adapted from [52]).
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other memory-mapped peripheral from 
the HPS through the HPS-to-FPGA bridg-
es. There are also several options to ac-
cess the HPS from the FPGA fabric: FPGA-
to-HPS bridges to access HPS peripherals, 
the accelerator coherency port (ACP) to 
coherently access processor cache, and 
FPGA-to-SDRAM bridges to access main 
memory in a noncoherent way.

Not all FPSoCs include all blocks 
in Figure 4. Table 1 shows a summary 
of characteristics of the most relevant 
currently available FPSoC families. 
Intel FPGA and Xilinx offer powerful 
devices with application processors 
and large FPGA fabrics, focused on 
higher-end applications, such as fifth-
generation communications, artificial 
intelligence, data centers, or video pro -
cessing. Microsemi and Quicklogic 
offer simpler devices with real-time 
processors, focusing on data acquisi-
tion, wearables, and smartphones.

Despite the additional components 
that manufacturers provide in some 
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FIGURE 4 – The block diagram of a modern FPSoC. DAC: digital-to-analog converter. 

TABLE 1 – THE CHARACTERISTICS OF MODERN FPSoC FAMILIES.

COMPANY FAMILY
TRANSISTOR 
SIZE

APPLICATION PROCESSOR REAL-TIME PROCESSOR FPGA

TYPE
MAXIMUM 
F (GHz) TYPE

MAXIMUM 
F (MHz)

MAXIMUM 
SIZE

MAXIMUM 
F (MHz) OTHER

Intel FPGA Cyclone V SoC 28 nm Single/dual 
32-bit ARM 
Cortex-A9

0.925 — — 301 K LEs 200

Arria V SoC 28 nm Single/dual 
32-bit ARM 
Cortex-A9

1.05 — — 462 K LEs 300

Arria 10 SoC 20 nm Dual 32-bit ARM 
Cortex-A9

1.5 — — 1.15 M LEs 500 Floating-point 
DSP blocks in 
FPGA

Stratix 10 SoC 14 nm tri-gate Quad 64-bit 
ARM Cortex-A53

1.5 — — 5.5 M LEs 1000 Floating-point 
DSP blocks in 
FPGA

Xilinx Zynq-7000 Artix 28 nm Single/dual 
32-bit ARM 
Cortex-A9

0.866 — — 85 K LCs — ADC

Zynq-7000 Kintex 28 nm Dual 32-bit ARM 
Cortex-A9

1 — — 444 K LCs — ADC

Ultrascale+ Kintex 20 nm Dual/quad 
64-bit ARM 
Cortex-A53

1.5 Dual-
cortex-R5

600 1143 K LCs — Option to GPU, 
video codec, 
ADC, DAC, 
SD-FEC

Microsemi SmartFusion 130 nm — — Single-
cortex-M3

100 6 K LEs 350 ADC, nonvolatile 
FPGA

SmartFusion 2 130 nm — — Single-
cortex-M3

166 150 K LEs 350 ADC, nonvolatile 
FPGA

QuickLogic S3 — — — Single-
cortex-
M4-F

80 — — DSP, power 
management unit
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devices targeting specific applica-
tions, the most important in an FPSoC 
are still the HPS processors and the 
FPGA fabric. To successfully deploy 
an application taking the greatest pos-
sible advantage of these devices, pro-
cessors and FPGA should smoothly 
cooperate with each other, executing 
the parts of the functionality that best 
fit their respective architectures, shar-
ing data between them when needed. 

A designer typically starts with a 
software implementation in HPS and 
moves to the FPGA those parts of the 
code that need acceleration. Commu-
nication between HPS and FPGA is not 
a trivial task and depends on several 
factors, such as data size, operating 
system (OS), or FPGA operating fre-
quency. It is very important to choose 
the best possible mechanism for HPS–
FPGA data exchange, otherwise it can 
impair the acceleration achieved by 
moving portions of the algorithms to 
hardware. In [54]–[56], different anal-
yses of the influence of these factors 
in the transfer rate are carried out. 
In [56], the results of the analysis are 
elaborated into design guidelines to 
maximize the performance of FPSoC 
implementations.

FPGA design is typically based 
on hardware description languages 
(HDLs), which require from designers 
good knowledge of digital hardware. 
Fortunately, nowadays it is also pos-
sible to automatically compile code 
for both the FPGA and the HPS from 
high-level languages, namely C/C++ 
(using high-level synthesis tools, ei-
ther commercial or open-source, like 
LegUp [57]), OpenCL, MATLAB, and 
LabVIEW. This gives designers with 
limited or no experience in digital de-
sign access to the excellent character-
istics of FPSoCs. Code generated by 
these tools is not as optimized as that 
resulting from HDL workflows, but 
they allow design time to be dramati-
cally reduced [58].

FPSoCs and the IoT
FPSoC characteristics make them very 
suitable for many IoT applications. The 
availability of HPS peripherals for the 
most popular communication proto-
cols enables interoperability among a 

broad range of devices [59]. The HPS, 
e.g., can simultaneously connect with 
sensors using I2C and with other de-
vices via Ethernet or Wi-Fi. The FPGA 
fabric adds great flexibility, enabling 
the implementation of communication 
protocols not included in HPS as well 
as specific functionalities that achieve 
higher performance in hardware than 
in software, such as pulsewidth modu-
lation, capture and compare, or fre-
quency measurement units.

Connectivity of IoT devices raises 
serious security and privacy concerns. 
At the hardware level, one possible 
way to address them is with ARM’s 
TrustZone Technology [60], which de-
fines some peripheral slaves as secure, 
so only trusted masters can access 
them. A secure interrupt controller, 
e.g., may be used to create a noninter-
ruptible task that monitors the system, 
and a secure keyboard may ensure se-
cure password entries. This concept 
has also been extended to software, as 
shown in Figure 5. A trusted firmware 
layer controls context switching of the 
processor from trusted OS and apps 
to regular OS and apps, which may 
run malicious software completely 
isolated from trusted software and se-
cure hardware.

To protect intellectual property, 
current FPSoCs also allow the FPGA 
configuration bitstream as well as the 
boot image for the HPS to be encrypt-
ed [61]. In addition to the solutions 
provided by manufacturers, extra 
functionalities can be implemented to 
prevent hacker attacks. These include 
physically unclonable functions, use-

ful for unique network identification, 
traceability, and access control [62].

FPSoCs enable the design of em-
bedded systems with very small size, 
low power consumption, and perfor-
mance sometimes even equal or high-
er than that of desktop platforms [64]. 
Regarding energy, FPSoCs largely out-
perform computer systems in terms of 
operations per second and watt [65]. 
FPSoCs are also more power efficient 
than GPU-based SoC designs [66], 
particularly for neural network imple-
mentations [67], [68]. However, poor 
usage of the available FPGA resources 
may result in some cases in CPUs and 
GPUs outperforming them [69]. With 
this concern in mind, FPSoCs are the 
best option for implementing machine 
learning in battery-powered systems 
with strict size limitations, like drones 
[70] or wireless sensor networks [71].

Regarding economic and market-
ing issues, FPSoCs are inexpensive 
because they are mass-produced com-
ponents. Time to market is short and, 
thanks to the new high-level synthesis 
tools (like OpenCL and C/C++ compil-
ers), similar to that of pure software so-
lutions. Because of its reconfigurable 
nature, functionality can be upgraded 
without the need for changing the 
hardware platform, improving postsale 
support compared to nonconfigurable 
devices like ASICs.

FPSoCs and Machine Learning
FPGAs exhibit some unique features 
for efficiently implementing por-
tions of machine-learning algorithms 
in hardware.

 ■ Parallelism: Most machine-learning 
algorithms include parallelizable 
portions of the code that can take 
advantage of this property of the 
hardware. Each neuron in a neural 
network layer can be computed in 
parallel, e.g. In evolutionary com-
puting, fit functions can also be con-
currently executed for the whole 
population of genes/particles.

 ■ Pipelining: Although this technique 
is also used in processors and 
GPUs to fetch and execute instruc-
tions, greater advantage of it can be 
taken in FPGAs, where the output 
of an operation can directly feed 
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FIGURE 5 – The ARM TrustZone security 
(adapted from [63]).
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the input of the next one, avoiding 
the extra clock cycles required to 
compute the same operations in 
the arithmetic/floating-point units 
of processors and GPUs.

 ■ Scalability and upgrading: It is com-
mon for machine-learning algo-
rithms to change structure or size 
(e.g., adding layers or inputs to a 
neural network) to improve per-
formance from knowledge gained 
during test or normal operation. 
In a hardware/software coprocess-
ing implementation, this may mean 
to port more (or new) parts of the 
algorithm to hardware. The same 
may happen in the context of the 
IoT when new functionality, wheth-
er related to the target machine-
learning algorithm or not (such as 
a web server or an encryption al-
gorithm), needs to be added to the 
system. The abundance of standard 
logic resources and specialized 
hardware blocks in FPGAs, together 
with their reconfiguration capabili-
ties, facilitates system scalability 
and upgrading.
Current FPGAs include tens to hun-

dreds of DSP blocks usually equipped 
with fixed-point multipliers and ad-
ders. Other operations, e.g., floating 
point, are implemented by a combi-
nation of these blocks and standard 

FPGA logic elements (LEs). FPGAs 
are very powerful for fixed-point op-
erations [72] but achieve lesser per-
formance in number of floating-point 
operations per second than GPUs for 
most machine-learning implementa-
tions [73]. However, in some cases the 
configurable FPGA architecture com-
pensates this drawback and achieves 
faster execution times [74]. 

In an effort to make FPSoCs more 
competitive, newer devices from Intel 
FPGA (Arria 10 and Stratix 10 fami-
lies) include DSP blocks with single 
floating-point capabilities in the FPGA 
fabric. Table 2 summarizes the size 
(LE and DSP block usage) and per-
formance (latency and maximum op-
erating frequency, f

MAX) of floating-
point operators in Arria V and Arria 10 
FPGAs for some usual floating-point 
operations in machine-learning algo-
rithms. Double-precision operations 
require more than twice the resources 
and have almost twice the latency of 
single-precision ones. Addition, sub-
traction, and multiplication make low 
usage of resources, whereas other op-
erators are less efficiently implement-
ed. Using floating-point DSP blocks 
results in improvements in terms of 
either significant reduction of logic re-
source usage or increase of maximum 
operating frequency. The exception is 

the exponential operation, because 
it does not suit the fixed structure of 
floating-point DSP blocks well.

In low-level design with HDLs, it is 
easy to estimate the performance of a 
given algorithm implementation in a giv-
en device from the information regard-
ing available hardware resources and 
latency of the different operations. 
This is not the case when using high-lev-
el synthesis tools, where the compiler 
can make inefficient use of hardware 
resources. To achieve acceptable per-
formance when using these tools, it 
is a must to consider all of the available 
options to help the tool efficiently fit the 
design in the FPGA fabric [76].

The aforementioned hardware fea-
tures are complemented in FPSoCs 
with those provided by the applica-
tion processors in HPS. Those range 
from real-time processors with fixed-
point arithmetic capabilities available 
in simpler devices to DSP-like proces-
sors for speeding up signal processing 
tasks, or to dedicated floating-point 
units or single-instruction multiple 
data coprocessors for vector arithme-
tic in more advanced devices.

Case Study 1: Implementation of 
Deep Neural Networks in FPSoC
Neural network algorithms and, in 
particular, deep neural networks are  

TABLE 2 – THE RESOURCE USAGE AND LATENCY FOR USUAL FLOATING-POINT OPERATIONS IN ARRIA FPSoCS [75].

OPERATION
FLOATING-POINT 
PRECISION

ARRIA V (FIXED-POINT DSP BLOCKS) ARRIA 10 (FLOATING-POINT DSP BLOCKS)

LATENCY 
(CLOCK 
CYCLES) LEs

DSP 
BLOCKS fMAX (MHz)

LATENCY 
(CLOCK 
CYCLES) LEs

DSP 
BLOCKS fMAX (MHz)

Addition/subtraction Single Nine 1,193 Zero 250 Five 1,208 Zero 319

Double 12 2,903 Zero 252 Seven 2,765 Zero 290

Multiplication Single Five 390 One 281 Three 123 One 289

Double Seven 848 Four 186 Five 780 Four 289

Division Single 18 1,140 Four 249 16 985 Four 347

Double 35 3,523 15 185 30 3,020 15 258

Exponential base e Single 14 1,795 Two 217 26 745 Six 365

Double 28 5,335 Ten 185 28 5,390 Ten 260

Sine Single 12 1,463 Three 240 11 1,463 Three 280

Double 29 4,370 14 185 29 4,795 14 260
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executed in two phases: training 
(where network weights are adapted 
to achieve the desired functionality) 
and inference (deployment operation 
of the network). Training is highly 
computationally demanding, so it is 
typically implemented by processing 
batches of data (several patterns at 
the same time) offline, for which GPUs 
are very suitable. The inference phase 
is suitable for FPGA implementation, 
because it typically has to be imple-
mented over single patterns in real 
time and, as shown in Figure 6, the 
neurons in one layer can be executed 
in parallel. Moreover, the operations 
to be performed by each neuron can 
be very efficiently implemented using 
DSP blocks. These operations are

 ( ) ( ) * ,a y a y w1x i
i

n

ix
0

1

v= -
=

-

e o/  (1)

where ( )a yx  is the output of neuron 
x in layer y, wix is the weight between 
neuron i in layer y−1 and neuron x 
in layer y, and v  is the so-called acti-
vation function of the neuron. The 
classical neuron activation functions 
a r e  ( ) /(x e1 1Sigmoid x= + - )  a n d 

( ) / .x e e e eTanh x x x x= - +- -^ ^h h

These operations involve divisions 
and exponentials so, according to 
Table 2, their FPGA implementation 
is not particularly efficient. Because 
of that, some works addressed their 
efficient hardware implementation us-
ing linear approximations. The use of 
Taylor approximations and reuse of 
the multipliers and adders for the lin-
ear part of the neuron is proposed in 
[77], reducing the additional hardware 

needed for the activation function to 
almost none. The solution in [78] in-
curs just 0.03% error with regard to 
an implementation using true expo-
nential and division cores. However, 
the activation function ReLu(x) = max 
(0, x) has recently been shown to pro-
vide better classification results and 
shorter training times than the former 
ones for deep neural networks [79], 
simplifying their implementation in 
all platforms.

Although most implementations 
use floating-point operations, recent 
works have shown that fixed-point 
approximations provide equal perfor-
mance in some cases [80]. Moreover, 
for some applications it is possible 
to aggressively scale down (what is 
called quantization) the number of bits 
in fixed-point representations. In [81], 
e.g., it is reported that with only five-
bit integer resolution for the weighting 
coefficients, performance degradation 
is negligible compared with the origi-
nal 32-bit floating-point resolution. 

Other operations that can be used 
to reduce FPGA logic resource usage 
are network pruning (removing non-
important connections) [81], network 
clustering (fusing neurons) [82], and 
retraining (adding a penalty term in 
the training cost function to maximize 
not only the network fitting to inputs 
and outputs but also the bit depth 
needed for the network weights) [83]. 
These techniques, together with the 
use of simpler activation functions like 
ReLu, will surely boost the number of 
implementations in FPGA-based de-
vices in the near future.

FPSoC platforms have already 
been used to improve pure FPGA im-
plementation. In [84], a Zynq-7000 is 
used to implement an image classifier 
based on a deep convolutional neural 
network. The network layers (convolu-
tional, pooling, and fully connected) 
are executed in the FPGA, whereas 
the HPS is responsible for synchro-
nization [controlling direct memory 
access (DMA) in the FPGA] and the 
final steps of the classification pro-
cess. A set of configurable processing 
elements (PEs) performs all network 
operations (see Figure 7). This imple-
mentation is compared against others 
using an Intel Xeon CPU at 2.9 GHz, 
an NVIDIA TK1 mobile GPU with 192 
CUDA cores, and an NVIDIA K40 GPU 
with 2,880 CUDA cores. Results show 
that the FPSoC is 1.4 times faster than 
the CPU, with 14 times less power 
consumption; two times faster than 
the mobile GPU, with the same power 
consumption; and 13 times slower 
than the GPU, but consuming 26 times 
less power. This shows that FPSoCs 
achieve excellent performance–power 
consumption tradeoffs.

In [85], a Zynq-7000 is used to im-
plement a Deep-Q network (Figure 8) 
that learns how to play a board game 
called Trax. Starting from a pure C/C++ 
software implementation and us-
ing high-level synthesis, the most 
time-consuming parts of the algo-
rithm, in this case matrix multiplica-
tion of the convolutional layers, were 
moved to hardware. Each layer has 
its own matrix multiplication core 
that uses a double-precision floating-
point multiply accumulate module to 
perform operations and two FPGA-
SDRAM ports to share data with the 
processor in the HPS. 

One port is used to read operands 
from the processor and the other to 
write results back. The processor ex-
ecutes the rest of the algorithm. Results 
show a 26 times acceleration with re-
spect to the pure software implemen-
tation. Design time was very short, be-
cause hardware was directly compiled 
from C/C++ code using high-level synthe-
sis, and only the most time-consuming 
parts of the algorithm were migrated 
to hardware. This example shows that 
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FIGURE 6 – A graphical representation of a single neuron and an artificial neural network.
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high-level synthesis tools may allow 
impressive performance improvements 
to be achieved by migrating software 
implementations to hardware ones with 
little programming effort.

Artificial neural network imple-
mentation in FPGA-based devices is 
becoming so popular that a neural net-
work compiler, which generates HDL 
code from high-level specifications, 
has recently been created [86]. Design-
ers only have to select the structure, 
activation function, and other param-
eters of the artificial neural network, 
and the compiler automatically gener-
ates the HDL code, applying the most 
suitable optimization options in each 
case. This reduces the design time 
compared to using high-level syn-
thesis, where a deep analysis of the 
 network and the FPGA is needed to op-
timize the implementation.

Case Study 2: Implementation of 
Evolutionary Computing in FPSoC
FPSoCs are suitable implementation 
platforms not only for deep-learning 
algorithms, such as deep neural net-
works, but also for other machine-
learning algorithms (such as evolution-
ary computing ones) used in a wide 
range of IoT applications. Evolution-
ary computing algorithms are used 
for complex optimization problems. In 
them, a population of individuals (e.g., 
particles or genes) is spread through 
the solution space, and a fit function 
is evaluated for them, the goal being 
to minimize or maximize it. Depending 
on the values of the fit function for the 
different individuals in the current and 
past iterations, these move toward a 
possible solution. 

After some iterations, the algorithm 
should converge to the global solution. 
Several families of such algorithms exist. 
They are characterized by the search 
policy of the individuals: ant colony op-
timization (which emulates ant colony 
food search), particle swarm optimiza-
tion (which emulates the movement 
of a flock of birds where the distance 
between individuals is important), or 
genetic algorithms (where particles ex-
perience gene evolution through, e.g., 
mutation and crossover), to name just 
the most popular ones.

Although the fit function can be 
evaluated in parallel for each indi-
vidual, evolutionary computing algo-
rithms are not always as suitable for 
FPGA implementation as artificial neu-
ral networks because their arithmetic 
operations are completely dependent 

on the application and the algorithm 
used. The application defines the fit 
function and, depending on the op-
erations involved, it will be more or 
less appropriate for FPGA implemen-
tation. Generally speaking, the more 
pipelineable and parallelizable the fit 
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function, the better. Also, according to 
Table 2, fit functions involving multi-
plications and additions are more suit-
able for FPGA implementation than 
those using exponentials and divi-
sions. The operations involved in par-
ticle movement in the aforementioned 
evolutionary computing algorithms are

 ■ ant colony: addition, multiplication, 
division, exponential, square root, 
and random number generation 
[87], hence, these algorithms are 
not particularly suitable for FPGA 
implementation

 ■ particle swarm optimization: multipli-
cation, addition, and random num-
ber generation [88], which can be ef-
ficiently implemented in FPGA

 ■ genetic algorithms: random number 
generation and movement or modi-
fications of chromosomes [89]; pro-
cessing of chromosomes perfectly 
fits in FPGA hardware, to the ex-
tent that it can be concurrently ex-
ecuted for all individuals in a single 
clock cycle.
Until recently, when considering 

the use of configurable platforms for 
implementing evolutionary computing 

algorithms, both the algorithm itself 
(particle movement) and the evalua-
tion of the fit function were typically 
executed in hardware [88], [90]. In 
some cases where simple fit functions 
can be used, a soft processor (i.e., a 
processor implemented using stan-
dard FPGA logic resources) may be in 
charge of evaluating the fit function 
in software, as reported, e.g., in [91]. 
However, in real-life problems it is 
very usual that fit function evaluation 
takes most of the execution time, and 
soft processors are not fast enough 
to justify a software implementation, 
therefore most designers opted for 
pure hardware implementations.

Today, the situation is different 
with the availability of powerful FP-
SoC devices, whose embedded hard 
processors work much faster than soft 
ones and have in many cases floating-
point capabilities. In this scenario, the 
most efficient solution is to implement 
the evaluation of the fit function in 
hardware and execute the algorithm 
in software.

In [64], a particle swarm optimiza-
tion algorithm is proposed for evaluat-

ing the state of health of solar panels 
located in remote areas, where human 
intervention is difficult. In a pure soft-
ware implementation, the evaluation 
of the fit function takes 83% of the ex-
ecution time. Using a Cyclone V SoC 
device, the evaluation of the fit func-
tion is moved to hardware. In a first 
approach, the processor waits in idle 
state for the FPGA to finish this evalu-
ation. Even though, in this particular 
case, the fit function is neither inter-
nally parallelizable nor pipelineable, 
it can be concurrently computed for 
12 particles, resulting in 3.4 times ac-
celeration with regard to the pure soft-
ware implementation. 

An improved solution takes advan-
tage of idle processor time for it to 
generate the random numbers to be 
used in subsequent iterations of the 
algorithm, resulting in 4.8 times ac-
celeration. The achieved performance 
is comparable to that obtained with a 
desktop computer but with much low-
er size, cost, and power consumption, 
as shown in Figure 9(a). The whole 
monitoring system fits in a small elec-
tric box [Figure 9(b)] and can be lo-
cated under each panel.

Closing Discussion
The ubiquitous deployment of machine 
learning and artificial intelligence across 
IoT devices has introduced various intel-
ligence and cognitive capabilities. One 
may conclude that these capabilities 
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FPSoCs are suitable implementation platforms not 
only for deep-learning algorithms but also for other 
machine-learning algorithms.
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have led to the success of a wide and 
ever-growing number of applications, 
such as object/face/speech recognition, 
wearable devices and biochips, diagno-
sis software, or intelligent security and 
preventive maintenance.

Developments in other areas, such 
as humanoid robots, self-driving cars, 
or smart buildings and cities, will likely 
revolutionize the way we live in the very 
near future. This new reality comes with 
significant advantages but also with 
many challenges related to the acqui-
sition, processing, storage, exchange, 
sharing, and interpretation of the contin-
uously growing, overwhelming amount 
of data generated by the IoT.

Up to now, complex applications 
involving deep neural networks have 
mainly used the brute force of GPUs for 
both training and inference. In the last 
two years, some companies have pro-
duced ASICs with better performance 
and lower power consumption than 
GPUs. These solutions are suitable for 
high-performance computing applica-
tions, but neither the low flexibility of 
ASICs nor the high-power consumption 
of GPUs is suitable for many IoT appli-
cations, which demand energy-efficient, 
flexible embedded systems capable of 
coping with the increasing diversifica-
tion of the IoT.

In contrast, FPSoC architectures, 
which include processors and FPGA 
fabric in the same chip, are a balanced 
solution to implement machine-learn-
ing applications for IoT devices. The 
latest advancements in FPGA hardware 
allow a wide range of machine-learning 
algorithms to be efficiently implement-
ed. FPGAs are very well suited to per-
form deep neural network inference 
because of the parallel arrangement of 
neurons in layers and the type of math-
ematical functions they have to com-
pute. This will be even more so in the 
future because of the trend to use sim-
pler neuron activation functions (like 
ReLu) that, in addition to improving 
training, fit better in FPGA resources. 
Moreover, the use of quantization tech-
niques and custom data types (which 
is difficult to achieve, if possible at all, 
in devices with fixed architectures like 
ASICs and GPUs) can significantly re-
duce complexity and improve perfor-

mance. In our opinion, the trends for 
neural network implementation in IoT 
devices in the following years can be 
summarized as follows.

 ■ Training will rely on heavy-duty 
cloud-based GPUs. ASICs like the 
new Google TPU (optimized for both 
inference and training, with impres-
sive performance) will have a piece 
of the pie here, but with the limita-
tion posed by their lack of flexibility.

 ■ The simplest IoT devices will use 
CPUs and ASICs for inference to re-
duce cost and power consumption, 
respectively. Larger devices will 
use FPGAs/FPSoCs for inference 
because of their balanced flexibil-
ity and computer power. For heavy-
duty inference, the same consider-
ations as for training apply.
FPSoCs are an excellent alternative 

for evolutionary computing, because 
they allow the algorithm itself to be 
executed in software while the objec-
tive function can be computed in par-
allel in hardware for all individuals. 
However, their efficiency in this con-
text greatly depends on whether or 
not the specific operations involved in 
the computation of the objective func-
tion fit available hardware resources. 
It can be concluded that, thanks to the 
availability of hard processors with 
floating-point units, FPSoCs are very 
suitable for implementing evolution-
ary computing algorithms. In the case 
of particle swarm, it has been dis-
cussed how the same performance as 
a desktop computer can be achieved 
with FPSoCs with a fraction of the size, 
cost, and power consumption.

In our opinion, the implementation 
in FPSoCs of IoT devices with machine-
learning capabilities will be boosted 
by the availability of increasingly effi-
cient high-level synthesis tools based 
on widely known and used languages, 

such as OpenCL, C/C++, or MATLAB, 
enabling software designers to take ad-
vantage of the excellent characteristics 
of FPSoC devices.
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