
1932-4529/18©2018IEEE36 IEEE INDUSTRIAL ELECTRONICS MAGAZINE ■ JUNE 2018

Digital Object Identifier 10.1109/MIE.2018.2824843

Date of publication: 25 June 2018

s the Internet of Things (IoT)
continues its run as one of
the most popular tech-

nolog y buzzwords of
today, the discussion

really turns from how
the massive data sets

are collected to how value can be de-

rived from them, i.e., how to extract
knowledge out of such (big) data. IoT
devices are used in an ever-growing
number of application domains (see
Figure 1), ranging from sports gad-
gets (e.g., Fitbits and Apple Watches)
or more serious medical devices (e.g.,
pacemakers and biochips) to smart
homes, cities, and self-driving cars,
to predictive maintenance in mission-
critical systems (e.g., in nuclear power

plants or airplanes). Such applica-
tions introduce endless possibilities
for better understanding, learning,
and informedly acting (i.e., situational
awareness and actionable information
in government lingo). Although rapid
expansion of devices and sensors
brings terrific opportunities for tak-
ing advantage of terabytes of machine
data, the mind-boggling task of un-
derstanding growth of data remains

Deep Learning
and Reconfigurable
Platforms in the
Internet of Things
Challenges and Opportunities in Algorithms and Hardware

ROBERTO FERNANDEZ MOLANES,
KASUN AMARASINGHE,
JUAN J. RODRIGUEZ-ANDINA,
and MILOS MANIC

Im
a

g
e

 l
Ic

e
n

s
e

d
 b

y
 In

g
r

a
m

 P
u

b
lI

s
h

In
g

A

JUNE 2018 ■ IEEE INDUSTRIAL ELECTRONICS MAGAZINE 37

and heavily relies on artificial intel-
ligence and machine learning [1], [2].

Where traditional approaches do not
scale well, artificial intelligence tech-
niques have evidenced great success in
applications of machine and cognitive
intelligence (such as image classifica-
tion, face recognition, or language trans-
lation). We recognize the widespread
usage of various well-known machine-
learning algorithms in the IoT (such as
fuzzy systems, support vector machines,
Bayesian networks, reinforcement learn-
ing, and others), but we focus here on
the most recent and highly advanta-
geous type of machine learning in the
IoT: deep learning.

The success of deep learning and,
in particular, deep neural networks
greatly coincides with the advent of
highly specialized, powerful parallel-
computing devices, i.e., graphics pro-
cessing units (GPUs) [4]. Although the
overwhelming processing and memory
requirements can be met with high-
performance computing hardware, the
resulting sheer size, cost, and power
consumption would make the goal of
deep neural network-enabled IoT and
embedded devices unattainable.

In this scenario, field-programmable
system-on-chip (FPSoC) platforms,
which combine in a single chip one or
more powerful processors and recon-
figurable logic [in the form of field-pro-
grammable gate array (FPGA) fabric],
are emerging as a very suit-
able implementation alterna-
tive for the next generation of
IoT devices. The fine-grained
structure of FPGAs has proven
to provide powerful implemen-
tations of machine-learning
algorithms with less power
consumption than comparable
platforms (in terms of cost or
size) [5], making them ideal for
machine and cognitive intelli-
gence in strict resource-limited
applications, like many in the
IoT (while GPUs remain as the
dominant platforms for other
IoT scenarios).

Moreover, FPSoCs allow
the processing load to be
balanced between proces-
sors and reconfigurable log-

ic, the most suitable implementa-
tion (hardware or software) being used
for each specific functional building
block to be optimized, and functional-
ity to be easily reconfigured on site.
In addition, reconfigurable platforms
dramatically ease system scalabil -
ity and upgrading. Hence, they pro-
vide high levels of flexibility, as de-
manded by the IoT market.

In this regard, this article identi-
fies hardware implementation chal-
lenges and thoroughly analyzes the
aforementioned suitability of FPSoCs
for a broad range of IoT applications
involving machine-learning and arti-
ficial intelligence algorithms, which
is demonstrated in two case studies,
one related to deep learning and the
other to the more classical evolution-
ary computing techniques.

Deep Learning for the IoT
In the era of the IoT, the number of sens-
ing devices that are deployed in every
facet of our day-to-day life is enormous.
In recent years, many IoT applications
have arisen in various domains, such
as health, transportation, smart homes,
and smart cities [6]. It is predicted by
the U.S. National Intelligence Council
that, by 2025, Internet nodes will reside
in everyday things, such as food pack-
ages, furniture, and documents [7]. This
expansion of IoT devices, together with
cloud computing, has led to creation

of an unprecedented amount of data
[8], [9]. With this rapid development of
the IoT, cloud computing, and the ex-
plosion of big data, the most fundamen-
tal challenge is to store and explore
these volumes of data and extract use-
ful information for future actions [9].

The main element of most IoT ap-
plications is an intelligent learning
methodology that senses and under-
stands its environment [6]. Tradition-
ally, many machine-learning algorithms
were proposed to provide intelligence
to IoT devices [10]. However, in recent
years, with the popularity of deep neu-
ral networks/deep learning, using deep
neural networks in the domain of the
IoT has received increased attention
[6], [11]. Deep learning and the IoT
were among the top three technology
trends for 2017 announced at Gartner
Symposium/ITxpo [12]. This increased
interest in deep learning in the IoT do-
main is because traditional machine-
learning algorithms have failed to
address the analytic needs of IoT sys-
tems [6], which produce data at such
a rapid rate and volume that they de-
mand artificial intelligence algorithms
with modern data analysis approaches.
Depending on the predominant factor,
volume or rate, data analytics for IoT
applications can be viewed in two main
categories: 1) big data analysis and 2)
data stream analysis.

When focusing on data volume, the IoT
is one of the major sources of
big data. Analytics of the gener-
ated massive data sets directly
benefit the performance and
enhance capabilities of IoT sys-
tems. Extracting knowledge from
such big data is not a straight-
forward task. It requires capa-
bilities that go beyond the tra-
ditional inference and learning
techniques [13], generally ex-
pressed with the six Vs [14], [15]:

 ■ volume, which refers to
the ability to ingest, pro-
cess, and store large data
sets (petabytes or even exa-
bytes)

 ■ velocity, which refers to
the speed of data genera-
tion and frequency of de-
livery (sampling)FIGURE 1 – IoT devices (adapted from [3]).

38 IEEE INDUSTRIAL ELECTRONICS MAGAZINE ■ JUNE 2018

 ■ variety, which refers to the data
from different sources and types
(structured or unstructured); even
the types of data have been grow-
ing fast

 ■ variability, which refers to the need
for getting meaningful data consid-
ering scenarios of extreme unpre-
dictability

 ■ veracity, which refers to bias, noise,
and abnormality in data (only the
relevant, usable data within ana-
lytic models is to be stored)

 ■ value, which refers to the purpose
the solution has to address.
Figure 2 shows the six Vs of big data

and how the advantages of deep-learn-
ing techniques can be used to meet
these challenges in big data. More spe-
cific applications of deep-learning tech-
niques in big data in the IoT are pre-
sented in the next section. The latest
considerations add three additional Vs
to the mix: vulnerability (of data), vola-
tility (relevance of data before becom-
ing obsolete), and visualization (ways of
meaningful visualization).

As mentioned, in addition to per-
forming data mining on massive collec-
tions of data produced by IoT systems,
another important aspect is dealing
with real-time data streams that re-
quire fast-learning algorithms. IoT ap-
plications, such as traffic management
systems and supply chain logistics of
supermarkets, involve large data sets
that have to be analyzed in near real
time [16]. Mining fast-generated data
streams requires the algorithms to be
adaptable to the change of data distri-

butions as the environment changes
around the devices [17]. This context/
concept drift occurs due to the chang-
es in factors, such as location, time,
and activity. In addition to the require-
ment of speed adaptability, the lack of
labeled data in IoT data streams adds
to the difficulty because it makes su-
pervised learning methods inadequate
for analysis [17], [18]. Therefore, highly
adaptable unsupervised and semisu-
pervised deep-learning techniques are
required for mining the fast-changing
data streams in IoT devices.

Applications of Deep
Learning in the IoT
Deep neural networks have revolu-
tionized a multitude of fields because
of their ability for learning through
multiple layers of abstraction [19],
[20]. This enables learning of complex
patterns that are hidden in complex
data sets, a capability ideal for min-
ing massive heterogeneous data sets.
Different deep neural network algo-
rithms have been used to good effect
in a range of areas that were very dif-
ficult to tackle in the past. Long short-
term memory algorithms, e.g., have
been shown to be extremely useful in
speech recognition and natural lan-
guage processing [21]–[23], and con-
volutional neural networks have been
used to produce state-of-the-art per-
formance in many vision applications,
such as image classification [24], [25].
Therefore, deep learning is applied ex-
tensively in a range of IoT devices for
human interaction.

One of the most important deriva-
tives of the IoT is the concept of smart
cities. Improving cities is becoming a
global need with the rising and urban-
ization of the population [26]. The con-
cept of smart cities has been around
since the early 2000s. Smart cities
claim to contain thousands of sens-
ing devices, which generate massive
amounts of data that can be harnessed
to optimize and improve the operations
of these cities [27]. Smart cities try to
accomplish goals, e.g., reducing pollu-
tion and energy consumption or opti-
mizing transportation [28]. IoT devices
can help collect data about how people
use cities, and machine-learning algo-
rithms can be used to understand that
data [26]. Adding further intelligence to
the embedded sensing nodes allows lo-
cal storage needs and network conges-
tion to be reduced.

One of the most important aspects
of smart cities powered by the IoT is
smarter energy management. With the
advent of smart meters, there are mas-
sive amounts of data being collected
on energy consumption. This enables
research on energy consumption pre-
diction, which can lead to optimizing
energy usage and the way energy is
generated in smart cities and smart
grids. Machine-learning algorithms
are indispensable in this area, and
deep-learning algorithms, such as
long short-term memory algorithms,
restricted Boltzmann machines, and
convolutional neural networks, have
been proposed to perform data-driv-
en predictions of energy usage at both

Volume Velocity

Variability

Value Big Data

Veracity

Variety
Handling

Heterogeneous
Data

Complex Pattern
Extraction

Automatic
Feature

Extraction

Training Benefit
from Larger
Data Sets

Multiple Layers of
Abstraction

Deep Learning

FIGURE 2 – The big data six Vs and their connection with deep learning.

JUNE 2018 ■ IEEE INDUSTRIAL ELECTRONICS MAGAZINE 39

the individual consumer and aggres-
gate levels [29]–[32].

Another important aspect of smart
cities is using machine learning and the
IoT for traffic management. Optimized
traffic management targets reducing
congestion, long queues, delays, and
even the carbon footprint of cities [33].
To that end, driverless or self-driving
cars have become a much-discussed
topic recently, with major car compa-
nies, such as Tesla, BMW, and Ford, and
tech giants, such as Google and Apple,
stepping up to the plate to develop truly
intelligent autonomous cars.

Self-driving cars have a plethora
of devices continuously sensing their
environment and a suit of machine-
learning algorithms for understanding
and fusing the various data sources,
such as LIDAR depth maps and im-
ages. Deep neural networks have been
extensively explored in this domain,
as they have the capability of auto-
matically learning features to pick out
obvious ones, such as lane marking
and road edges, as well as other subtle
ones that exist on the roads [34].

Computer vision is a highly sought-
after application in many use cases in
the IoT domain. Smart cameras, espe-
cially in smart security systems, play
an important role in smart homes [35],
and vision applications, such as face
recognition, are very crucial [36]. Ma-
chine-learning algorithms have been
used extensively in image-processing
applications and, in that, convolution-
al neural networks have been deemed
the gold standard since the advent of
LeNet [37]. Ko et al. presented a frame-
work for energy-efficient neural net-
works to be used in IoT edge devices
[38]. The authors claim that in deploy-
ing deep neural networks-based im-
age processing, energy efficiency can
be the performance bottleneck, and
hence, they present the recent tech-
nological advantages for making deep
neural networks, such as convolu-
tional and recurrent neural networks,
more energy efficient.

Another area in which machine-
learning-driven vision applications is
used in the IoT is human activity rec-
ognition in smart homes. Fang and Hu
proposed a deep-learning-based frame-

work for human activity recognition in
smart homes used especially for help-
ing people with diseases [39]. Context
awareness is another important aspect
of the IoT, closely tied with mining data
streams. Machine learning has a very
crucial role to play in understanding
the environment and the context of the
device from the data.

In recent years, we have seen com-
mercial IoT devices or edge devices
emerging in the market, such as Nest
Thermostat [40] and Amazon devices
powered by Alexa [41], that have the
ability of sensing their environment
and using machine learning to under-
stand data. Context-aware devices
or things have the ability of under-
standing the environment and adapt-
ing their reasoning capabilities [10].
Further, machine-learning algorithms
are extremely crucial for some areas,
such as intelligent health trackers for
medicine, e.g., intelligent pacemakers
or photoplethysmography systems
[42], [43] that can monitor the heart-
beat of a patient.

Adding intelligence to these de-
vices is very important, as it permits
improved and faster preventive detec-
tion of pathologies. Compared with
the option to send data via the Inter-
net to remote sensors for analysis or
saving data for postprocessing, this
option enables a dramatic reduction
of data transmission and storage (with
the respective reduction of energy
consumption) and the possibility to
work offline (very useful for remote or
rural areas).

Safety and Security in the IoT
In addition to enabling and facilitat-
ing IoT applications, deep learning
plays a crucial role in keeping the
highly connected devices safe. Due
to its ubiquity in the modern techno-
logical ecosystem, the IoT is a very
attractive target for cyberattackers.
Therefore, cybersecurity is one of the
most important research areas in the
field of the IoT [44], [45]. It is known
that a large number of zero-day at-
tacks are emerging continuously due
to the various protocols added to the
IoT [46]. The multiple-level feature-
learning capabilities of deep learning

have been exploited in this domain to
good effect.

Diro and Chilamkurti presented a
deep neural networks-based distrib-
uted methodology for cyberattack de-
tection in the IoT [46]. They compared
their distributed deep model with a
shallow neural network and a central-
ized deep model, and they concluded
that the distributed deep model out-
performs the others significantly.

Another area of cybersecurity is mal-
ware detection. Pajouh et al. presented
a deep recurrent neural network-based
malware detection methodology for
the IoT [47]. The authors implemented
three different long short-term memory
configurations and showed that their
algorithm can achieve 98.18% accura-
cy in malware detection for the tested
data set. In all aspects of cybersecurity,
when taking a data-driven approach,
anomaly detection algorithms are very
useful tools. Canedo and Skjellum pre-
sented an artificial neural network-
based anomaly detection methodology
tailored for IoT cybersecurity [48]. They
recognized that the main challenges for
anomaly detection in IoT data are quan-
tity and heterogeneity. They showed
that the artificial neural network-based
methodology was able to overcome
those challenges in detecting anomalies
in the data sent from edge devices.

Hardware Implementation
Challenges
The implementation of machine-learn-
ing algorithms has been a hot topic in
research for several years but recently
boomed, mainly thanks to the oppor-
tunities created by the advancements
in chip fabrication technologies, which
enabled solving design problems at a
cost and with a time-to-market that
were unthinkable just a few years ago.
The resolution of Google Challenge
by AlexNet using an eight-layer deep
neural network [24] is usually cited
as an inflexion point that boosted the
research on new chips and applica-
tions of machine-learning algorithms,
especially in the field of neural net-
works. This explosion coincides with
the deceleration of Moore’s law (even
Gordon Moore himself predicted the
end of his Moore’s law [92]), which

40 IEEE INDUSTRIAL ELECTRONICS MAGAZINE ■ JUNE 2018

now makes it economically
reasonable to work on op-
timized software and hard-
ware structures, as opposed
to the trend of the last 30
years, where waiting for the
next generation of devices
was more profitable than in-
vesting in optimization. All of
these facts combined make
it more difficult than ever
for designers to decide the
best possible architecture for
their applications.

The digital processing
platforms currently available in the
market are summarized in Figure 3,
where they can be compared in terms
of performance and flexibility. Flex-
ibility refers here to ease of develop-
ment, portability, and possibility for
adapting to changes in specifications.
For high-end deep neural network ap-
plications, where performance is the
most important parameter, general-
purpose GPUs (GPGPUs) are the domi-
nant solution. Their parallel structure,
the latest efforts by manufacturers to
compete for machine-learning appli-
cations (e.g., adding specific instruc-
tions for fast neuron inference), and
their reduced cost due to the mass
production for personal computers
made them ideal for training and infer-
ence of deep neural networks.

The latest NVIDIA Volta GV100 GPU
platform, including 21.1 billion transis-
tors within a die size of 815 mm2, is
capable of doing inference 100 times
faster than the fastest current central
processing unit (CPU) on the market
[49]. This unparalleled brute power
force comes at a price: high power
consumption, the need for custom
data types (not necessarily float), ir-
regular parallelism (alternating se-
quential and parallel processing), and
divergence (not all cores executing the
same code simultaneously). That is
why some companies are investing in
neural network application-specific in-
tegrated circuits (ASICs) for improved
performance at the expense of losing
flexibility. Examples are the first and
second generation (optimized for in-
ference and both inference and train-
ing, respectively) of the Google tensor

processing unit (TPU), slowly stealing
high-performance computing applica-
tions from GPUs.

While this is the pace for high-
performance computing, the lack of
flexibility in ASICs and the high power
consumed by GPUs do not fit in wide
areas of the IoT world that demand
power-efficient, flexible embedded
systems. This explains why many IoT
devices are currently based on micro-
controllers, digital signal processors
(DSPs), and multicore CPUs. How-
ever, as the IoT market grows, both
manufacturers and designers face a
problem due to the diversification of
applications and increasing demand
for computing power (particularly for
machine-learning algorithms), leading
a transformation from sense making
to decision making [50].

Offering a wider portfolio of devic-
es to cover the different applications
means less market share per device,
increasing manufacturing costs. How-
ever, offering complex heterogeneous
devices that can be used in several
applications implies higher integra-
tion of functionality and a waste of sili-
con, also increasing the overall cost
[51]. In this scenario, FPGAs, located
in the middle of Figure 3, appear as
a balanced solution to add flexibility
and efficient computing power for ma-
chine-learning algorithms to the next
generation of IoT devices. Combin-
ing processors and FPGAs in a single
package results in the FPSoC concept.
In the following sections, FPSoC ar-
chitecture is presented along with
an analysis of the usefulness of its
hardware resources for implementing

machine-learning algorithms
in IoT devices.

FPSoC Architecture
FPSoCs feature a hard process-
ing system (HPS) and FPGA
fabric on the same chip. Both
parts are connected by means
of high-throughput bridges,
which provide faster commu-
nications and power savings
compared to multichip solu-
tions [53]. The HPS in first-gen-
eration FPSoCs featured single-
or dual-core ARM application

processors and some widely used pe-
ripherals, such as timers and control-
lers for different types of communica-
tion protocols, i.e., Ethernet, universal
serial bus (USB), interintegrated circuit
(I2C), universal asynchronous receiver-
transmitter (UART), and controller area
network (CAN).

Pushed by increasing application
requirements, some devices in the
newest FPSoC families include quad-
core ARM processors, GPUs, and
real-time processors in the HPS, with
FPSoCs becoming complex heteroge-
neous computing platforms. Resourc-
es in the FPGA fabric also evolved
from the basic structure consisting of
standard logic resources and relative-
ly simple specialized hardware blocks
(e.g., fixed-point DSP multipliers, mem-
ory blocks, and transceivers). Current
devices include much more complex
blocks, e.g., DSP blocks with floating-
point capabilities, video codecs for
video compression, soft-decision for-
ward error recovery (SD-FEC) units to
speed up encoding/decoding in wire-
less applications, or analog-to-digital
converters (ADCs). Figure 4 shows the
generic block diagram of a modern
FPSoC device, where the location and
connection of the aforementioned ele-
ments is depicted.

All computing elements (proces-
sors and GPU) have their own cache
memory and share common synchro-
nous dynamic random access memo-
ry (SDRAM) external memory, usually
controlled by a single multiport con-
troller. A main switch interconnects
masters and slaves in the HPS. The
FPGA fabric can be accessed as any

Microcontrollers

DSPs

ASICs

FPGAs MulticoreP
er
fo
rm
an
ce

Flexibility

GPGPUs

FIGURE 3 – The performance versus flexibility of digital processing
platforms (adapted from [52]).

JUNE 2018 ■ IEEE INDUSTRIAL ELECTRONICS MAGAZINE 41

other memory-mapped peripheral from
the HPS through the HPS-to-FPGA bridg-
es. There are also several options to ac-
cess the HPS from the FPGA fabric: FPGA-
to-HPS bridges to access HPS peripherals,
the accelerator coherency port (ACP) to
coherently access processor cache, and
FPGA-to-SDRAM bridges to access main
memory in a noncoherent way.

Not all FPSoCs include all blocks
in Figure 4. Table 1 shows a summary
of characteristics of the most relevant
currently available FPSoC families.
Intel FPGA and Xilinx offer powerful
devices with application processors
and large FPGA fabrics, focused on
higher-end applications, such as fifth-
generation communications, artificial
intelligence, data centers, or video pro -
cessing. Microsemi and Quicklogic
offer simpler devices with real-time
processors, focusing on data acquisi-
tion, wearables, and smartphones.

Despite the additional components
that manufacturers provide in some

ADC

DAC

Memory
Blocks

DSP
Blocks

SD-FEC
Transceivers

Memory
Controllers

FPGA

Reconfigurable Logic:
LEs and Interconnect

FPGA-to-HPS
Bridges

FPGA-to-SDRAM
Bridges

ACP
(Cache

Access)

HPS-to-FPGA
Bridges

Main Switch

Application
Processor

Real-Time
Processor

SDRAM Controller

HPS

GPU DMA
Controller

External SDRAM

H
P

S
 P

er
ip

he
ra

ls
 (

U
S

B
,

E
th

er
ne

t,
T

im
er

s,
 U

A
R

T
,

C
A

N
, I

2C
...

)

FIGURE 4 – The block diagram of a modern FPSoC. DAC: digital-to-analog converter.

TABLE 1 – THE CHARACTERISTICS OF MODERN FPSoC FAMILIES.

COMPANY FAMILY
TRANSISTOR
SIZE

APPLICATION PROCESSOR REAL-TIME PROCESSOR FPGA

TYPE
MAXIMUM
F (GHz) TYPE

MAXIMUM
F (MHz)

MAXIMUM
SIZE

MAXIMUM
F (MHz) OTHER

Intel FPGA Cyclone V SoC 28 nm Single/dual
32-bit ARM
Cortex-A9

0.925 — — 301 K LEs 200

Arria V SoC 28 nm Single/dual
32-bit ARM
Cortex-A9

1.05 — — 462 K LEs 300

Arria 10 SoC 20 nm Dual 32-bit ARM
Cortex-A9

1.5 — — 1.15 M LEs 500 Floating-point
DSP blocks in
FPGA

Stratix 10 SoC 14 nm tri-gate Quad 64-bit
ARM Cortex-A53

1.5 — — 5.5 M LEs 1000 Floating-point
DSP blocks in
FPGA

Xilinx Zynq-7000 Artix 28 nm Single/dual
32-bit ARM
Cortex-A9

0.866 — — 85 K LCs — ADC

Zynq-7000 Kintex 28 nm Dual 32-bit ARM
Cortex-A9

1 — — 444 K LCs — ADC

Ultrascale+ Kintex 20 nm Dual/quad
64-bit ARM
Cortex-A53

1.5 Dual-
cortex-R5

600 1143 K LCs — Option to GPU,
video codec,
ADC, DAC,
SD-FEC

Microsemi SmartFusion 130 nm — — Single-
cortex-M3

100 6 K LEs 350 ADC, nonvolatile
FPGA

SmartFusion 2 130 nm — — Single-
cortex-M3

166 150 K LEs 350 ADC, nonvolatile
FPGA

QuickLogic S3 — — — Single-
cortex-
M4-F

80 — — DSP, power
management unit

42 IEEE INDUSTRIAL ELECTRONICS MAGAZINE ■ JUNE 2018

devices targeting specific applica-
tions, the most important in an FPSoC
are still the HPS processors and the
FPGA fabric. To successfully deploy
an application taking the greatest pos-
sible advantage of these devices, pro-
cessors and FPGA should smoothly
cooperate with each other, executing
the parts of the functionality that best
fit their respective architectures, shar-
ing data between them when needed.

A designer typically starts with a
software implementation in HPS and
moves to the FPGA those parts of the
code that need acceleration. Commu-
nication between HPS and FPGA is not
a trivial task and depends on several
factors, such as data size, operating
system (OS), or FPGA operating fre-
quency. It is very important to choose
the best possible mechanism for HPS–
FPGA data exchange, otherwise it can
impair the acceleration achieved by
moving portions of the algorithms to
hardware. In [54]–[56], different anal-
yses of the influence of these factors
in the transfer rate are carried out.
In [56], the results of the analysis are
elaborated into design guidelines to
maximize the performance of FPSoC
implementations.

FPGA design is typically based
on hardware description languages
(HDLs), which require from designers
good knowledge of digital hardware.
Fortunately, nowadays it is also pos-
sible to automatically compile code
for both the FPGA and the HPS from
high-level languages, namely C/C++
(using high-level synthesis tools, ei-
ther commercial or open-source, like
LegUp [57]), OpenCL, MATLAB, and
LabVIEW. This gives designers with
limited or no experience in digital de-
sign access to the excellent character-
istics of FPSoCs. Code generated by
these tools is not as optimized as that
resulting from HDL workflows, but
they allow design time to be dramati-
cally reduced [58].

FPSoCs and the IoT
FPSoC characteristics make them very
suitable for many IoT applications. The
availability of HPS peripherals for the
most popular communication proto-
cols enables interoperability among a

broad range of devices [59]. The HPS,
e.g., can simultaneously connect with
sensors using I2C and with other de-
vices via Ethernet or Wi-Fi. The FPGA
fabric adds great flexibility, enabling
the implementation of communication
protocols not included in HPS as well
as specific functionalities that achieve
higher performance in hardware than
in software, such as pulsewidth modu-
lation, capture and compare, or fre-
quency measurement units.

Connectivity of IoT devices raises
serious security and privacy concerns.
At the hardware level, one possible
way to address them is with ARM’s
TrustZone Technology [60], which de-
fines some peripheral slaves as secure,
so only trusted masters can access
them. A secure interrupt controller,
e.g., may be used to create a noninter-
ruptible task that monitors the system,
and a secure keyboard may ensure se-
cure password entries. This concept
has also been extended to software, as
shown in Figure 5. A trusted firmware
layer controls context switching of the
processor from trusted OS and apps
to regular OS and apps, which may
run malicious software completely
isolated from trusted software and se-
cure hardware.

To protect intellectual property,
current FPSoCs also allow the FPGA
configuration bitstream as well as the
boot image for the HPS to be encrypt-
ed [61]. In addition to the solutions
provided by manufacturers, extra
functionalities can be implemented to
prevent hacker attacks. These include
physically unclonable functions, use-

ful for unique network identification,
traceability, and access control [62].

FPSoCs enable the design of em-
bedded systems with very small size,
low power consumption, and perfor-
mance sometimes even equal or high-
er than that of desktop platforms [64].
Regarding energy, FPSoCs largely out-
perform computer systems in terms of
operations per second and watt [65].
FPSoCs are also more power efficient
than GPU-based SoC designs [66],
particularly for neural network imple-
mentations [67], [68]. However, poor
usage of the available FPGA resources
may result in some cases in CPUs and
GPUs outperforming them [69]. With
this concern in mind, FPSoCs are the
best option for implementing machine
learning in battery-powered systems
with strict size limitations, like drones
[70] or wireless sensor networks [71].

Regarding economic and market-
ing issues, FPSoCs are inexpensive
because they are mass-produced com-
ponents. Time to market is short and,
thanks to the new high-level synthesis
tools (like OpenCL and C/C++ compil-
ers), similar to that of pure software so-
lutions. Because of its reconfigurable
nature, functionality can be upgraded
without the need for changing the
hardware platform, improving postsale
support compared to nonconfigurable
devices like ASICs.

FPSoCs and Machine Learning
FPGAs exhibit some unique features
for efficiently implementing por-
tions of machine-learning algorithms
in hardware.

 ■ Parallelism: Most machine-learning
algorithms include parallelizable
portions of the code that can take
advantage of this property of the
hardware. Each neuron in a neural
network layer can be computed in
parallel, e.g. In evolutionary com-
puting, fit functions can also be con-
currently executed for the whole
population of genes/particles.

 ■ Pipelining: Although this technique
is also used in processors and
GPUs to fetch and execute instruc-
tions, greater advantage of it can be
taken in FPGAs, where the output
of an operation can directly feed

Apps

OS

Hypervisor

Trusted OS

Trusted Apps

ARM Trusted Firmware

Nonsecure
Peripherals

Secure
Peripherals

FIGURE 5 – The ARM TrustZone security
(adapted from [63]).

JUNE 2018 ■ IEEE INDUSTRIAL ELECTRONICS MAGAZINE 43

the input of the next one, avoiding
the extra clock cycles required to
compute the same operations in
the arithmetic/floating-point units
of processors and GPUs.

 ■ Scalability and upgrading: It is com-
mon for machine-learning algo-
rithms to change structure or size
(e.g., adding layers or inputs to a
neural network) to improve per-
formance from knowledge gained
during test or normal operation.
In a hardware/software coprocess-
ing implementation, this may mean
to port more (or new) parts of the
algorithm to hardware. The same
may happen in the context of the
IoT when new functionality, wheth-
er related to the target machine-
learning algorithm or not (such as
a web server or an encryption al-
gorithm), needs to be added to the
system. The abundance of standard
logic resources and specialized
hardware blocks in FPGAs, together
with their reconfiguration capabili-
ties, facilitates system scalability
and upgrading.
Current FPGAs include tens to hun-

dreds of DSP blocks usually equipped
with fixed-point multipliers and ad-
ders. Other operations, e.g., floating
point, are implemented by a combi-
nation of these blocks and standard

FPGA logic elements (LEs). FPGAs
are very powerful for fixed-point op-
erations [72] but achieve lesser per-
formance in number of floating-point
operations per second than GPUs for
most machine-learning implementa-
tions [73]. However, in some cases the
configurable FPGA architecture com-
pensates this drawback and achieves
faster execution times [74].

In an effort to make FPSoCs more
competitive, newer devices from Intel
FPGA (Arria 10 and Stratix 10 fami-
lies) include DSP blocks with single
floating-point capabilities in the FPGA
fabric. Table 2 summarizes the size
(LE and DSP block usage) and per-
formance (latency and maximum op-
erating frequency, f

MAX) of floating-
point operators in Arria V and Arria 10
FPGAs for some usual floating-point
operations in machine-learning algo-
rithms. Double-precision operations
require more than twice the resources
and have almost twice the latency of
single-precision ones. Addition, sub-
traction, and multiplication make low
usage of resources, whereas other op-
erators are less efficiently implement-
ed. Using floating-point DSP blocks
results in improvements in terms of
either significant reduction of logic re-
source usage or increase of maximum
operating frequency. The exception is

the exponential operation, because
it does not suit the fixed structure of
floating-point DSP blocks well.

In low-level design with HDLs, it is
easy to estimate the performance of a
given algorithm implementation in a giv-
en device from the information regard-
ing available hardware resources and
latency of the different operations.
This is not the case when using high-lev-
el synthesis tools, where the compiler
can make inefficient use of hardware
resources. To achieve acceptable per-
formance when using these tools, it
is a must to consider all of the available
options to help the tool efficiently fit the
design in the FPGA fabric [76].

The aforementioned hardware fea-
tures are complemented in FPSoCs
with those provided by the applica-
tion processors in HPS. Those range
from real-time processors with fixed-
point arithmetic capabilities available
in simpler devices to DSP-like proces-
sors for speeding up signal processing
tasks, or to dedicated floating-point
units or single-instruction multiple
data coprocessors for vector arithme-
tic in more advanced devices.

Case Study 1: Implementation of
Deep Neural Networks in FPSoC
Neural network algorithms and, in
particular, deep neural networks are

TABLE 2 – THE RESOURCE USAGE AND LATENCY FOR USUAL FLOATING-POINT OPERATIONS IN ARRIA FPSoCS [75].

OPERATION
FLOATING-POINT
PRECISION

ARRIA V (FIXED-POINT DSP BLOCKS) ARRIA 10 (FLOATING-POINT DSP BLOCKS)

LATENCY
(CLOCK
CYCLES) LEs

DSP
BLOCKS fMAX (MHz)

LATENCY
(CLOCK
CYCLES) LEs

DSP
BLOCKS fMAX (MHz)

Addition/subtraction Single Nine 1,193 Zero 250 Five 1,208 Zero 319

Double 12 2,903 Zero 252 Seven 2,765 Zero 290

Multiplication Single Five 390 One 281 Three 123 One 289

Double Seven 848 Four 186 Five 780 Four 289

Division Single 18 1,140 Four 249 16 985 Four 347

Double 35 3,523 15 185 30 3,020 15 258

Exponential base e Single 14 1,795 Two 217 26 745 Six 365

Double 28 5,335 Ten 185 28 5,390 Ten 260

Sine Single 12 1,463 Three 240 11 1,463 Three 280

Double 29 4,370 14 185 29 4,795 14 260

44 IEEE INDUSTRIAL ELECTRONICS MAGAZINE ■ JUNE 2018

executed in two phases: training
(where network weights are adapted
to achieve the desired functionality)
and inference (deployment operation
of the network). Training is highly
computationally demanding, so it is
typically implemented by processing
batches of data (several patterns at
the same time) offline, for which GPUs
are very suitable. The inference phase
is suitable for FPGA implementation,
because it typically has to be imple-
mented over single patterns in real
time and, as shown in Figure 6, the
neurons in one layer can be executed
in parallel. Moreover, the operations
to be performed by each neuron can
be very efficiently implemented using
DSP blocks. These operations are

 () () * ,a y a y w1x i
i

n

ix
0

1

v= -
=

-

e o/ (1)

where ()a yx is the output of neuron
x in layer y, wix is the weight between
neuron i in layer y−1 and neuron x
in layer y, and v is the so-called acti-
vation function of the neuron. The
classical neuron activation functions
a r e () /(x e1 1Sigmoid x= + -) a n d

() / .x e e e eTanh x x x x= - +- -^ ^h h

These operations involve divisions
and exponentials so, according to
Table 2, their FPGA implementation
is not particularly efficient. Because
of that, some works addressed their
efficient hardware implementation us-
ing linear approximations. The use of
Taylor approximations and reuse of
the multipliers and adders for the lin-
ear part of the neuron is proposed in
[77], reducing the additional hardware

needed for the activation function to
almost none. The solution in [78] in-
curs just 0.03% error with regard to
an implementation using true expo-
nential and division cores. However,
the activation function ReLu(x) = max
(0, x) has recently been shown to pro-
vide better classification results and
shorter training times than the former
ones for deep neural networks [79],
simplifying their implementation in
all platforms.

Although most implementations
use floating-point operations, recent
works have shown that fixed-point
approximations provide equal perfor-
mance in some cases [80]. Moreover,
for some applications it is possible
to aggressively scale down (what is
called quantization) the number of bits
in fixed-point representations. In [81],
e.g., it is reported that with only five-
bit integer resolution for the weighting
coefficients, performance degradation
is negligible compared with the origi-
nal 32-bit floating-point resolution.

Other operations that can be used
to reduce FPGA logic resource usage
are network pruning (removing non-
important connections) [81], network
clustering (fusing neurons) [82], and
retraining (adding a penalty term in
the training cost function to maximize
not only the network fitting to inputs
and outputs but also the bit depth
needed for the network weights) [83].
These techniques, together with the
use of simpler activation functions like
ReLu, will surely boost the number of
implementations in FPGA-based de-
vices in the near future.

FPSoC platforms have already
been used to improve pure FPGA im-
plementation. In [84], a Zynq-7000 is
used to implement an image classifier
based on a deep convolutional neural
network. The network layers (convolu-
tional, pooling, and fully connected)
are executed in the FPGA, whereas
the HPS is responsible for synchro-
nization [controlling direct memory
access (DMA) in the FPGA] and the
final steps of the classification pro-
cess. A set of configurable processing
elements (PEs) performs all network
operations (see Figure 7). This imple-
mentation is compared against others
using an Intel Xeon CPU at 2.9 GHz,
an NVIDIA TK1 mobile GPU with 192
CUDA cores, and an NVIDIA K40 GPU
with 2,880 CUDA cores. Results show
that the FPSoC is 1.4 times faster than
the CPU, with 14 times less power
consumption; two times faster than
the mobile GPU, with the same power
consumption; and 13 times slower
than the GPU, but consuming 26 times
less power. This shows that FPSoCs
achieve excellent performance–power
consumption tradeoffs.

In [85], a Zynq-7000 is used to im-
plement a Deep-Q network (Figure 8)
that learns how to play a board game
called Trax. Starting from a pure C/C++
software implementation and us-
ing high-level synthesis, the most
time-consuming parts of the algo-
rithm, in this case matrix multiplica-
tion of the convolutional layers, were
moved to hardware. Each layer has
its own matrix multiplication core
that uses a double-precision floating-
point multiply accumulate module to
perform operations and two FPGA-
SDRAM ports to share data with the
processor in the HPS.

One port is used to read operands
from the processor and the other to
write results back. The processor ex-
ecutes the rest of the algorithm. Results
show a 26 times acceleration with re-
spect to the pure software implemen-
tation. Design time was very short, be-
cause hardware was directly compiled
from C/C++ code using high-level synthe-
sis, and only the most time-consuming
parts of the algorithm were migrated
to hardware. This example shows that

Artificial Neuron Artificial Neural Network

Input
Layer

Hidden
Layers

Output
Layer

FIGURE 6 – A graphical representation of a single neuron and an artificial neural network.

JUNE 2018 ■ IEEE INDUSTRIAL ELECTRONICS MAGAZINE 45

high-level synthesis tools may allow
impressive performance improvements
to be achieved by migrating software
implementations to hardware ones with
little programming effort.

Artificial neural network imple-
mentation in FPGA-based devices is
becoming so popular that a neural net-
work compiler, which generates HDL
code from high-level specifications,
has recently been created [86]. Design-
ers only have to select the structure,
activation function, and other param-
eters of the artificial neural network,
and the compiler automatically gener-
ates the HDL code, applying the most
suitable optimization options in each
case. This reduces the design time
compared to using high-level syn-
thesis, where a deep analysis of the
 network and the FPGA is needed to op-
timize the implementation.

Case Study 2: Implementation of
Evolutionary Computing in FPSoC
FPSoCs are suitable implementation
platforms not only for deep-learning
algorithms, such as deep neural net-
works, but also for other machine-
learning algorithms (such as evolution-
ary computing ones) used in a wide
range of IoT applications. Evolution-
ary computing algorithms are used
for complex optimization problems. In
them, a population of individuals (e.g.,
particles or genes) is spread through
the solution space, and a fit function
is evaluated for them, the goal being
to minimize or maximize it. Depending
on the values of the fit function for the
different individuals in the current and
past iterations, these move toward a
possible solution.

After some iterations, the algorithm
should converge to the global solution.
Several families of such algorithms exist.
They are characterized by the search
policy of the individuals: ant colony op-
timization (which emulates ant colony
food search), particle swarm optimiza-
tion (which emulates the movement
of a flock of birds where the distance
between individuals is important), or
genetic algorithms (where particles ex-
perience gene evolution through, e.g.,
mutation and crossover), to name just
the most popular ones.

Although the fit function can be
evaluated in parallel for each indi-
vidual, evolutionary computing algo-
rithms are not always as suitable for
FPGA implementation as artificial neu-
ral networks because their arithmetic
operations are completely dependent

on the application and the algorithm
used. The application defines the fit
function and, depending on the op-
erations involved, it will be more or
less appropriate for FPGA implemen-
tation. Generally speaking, the more
pipelineable and parallelizable the fit

FPGA

Main Switch
SDRAM Controller

HPS

External SDRAM

FPGA-to-HPS
Bridges

HPS-to-FPGA
Bridges

FPGA-to-SDRAM
Bridges

Application
Processor

C
on

so
le

U
A

R
T

S
D

-C
ar

d
C

on
tr

ol
le

r

SD
Card

UART to
USB

Matrix
Multiplication
Convolutional

Layer 1

Matrix
Multiplication
Convolutional

Layer 2

FIGURE 8 – The implementation of a Deep-Q network on Zynq-7000. SD: secure digital.

FPGA

Main Switch

General-Purpose
Processor

SDRAM Controller

HPS

External SDRAM

H
PS

Pe
rip

he
ra

ls

FPGA-to-HPS
Bridges

HPS-to-FPGA
Bridges

FPGA-to-SDRAM
Bridges

Computing Complex

PE PE PE PE

DMA

Input Buffer Output Buffer

C
on

tro
lle

r . . .

FIGURE 7 – The implementation of a deep convolutional neural network on Zynq-7000.

46 IEEE INDUSTRIAL ELECTRONICS MAGAZINE ■ JUNE 2018

function, the better. Also, according to
Table 2, fit functions involving multi-
plications and additions are more suit-
able for FPGA implementation than
those using exponentials and divi-
sions. The operations involved in par-
ticle movement in the aforementioned
evolutionary computing algorithms are

 ■ ant colony: addition, multiplication,
division, exponential, square root,
and random number generation
[87], hence, these algorithms are
not particularly suitable for FPGA
implementation

 ■ particle swarm optimization: multipli-
cation, addition, and random num-
ber generation [88], which can be ef-
ficiently implemented in FPGA

 ■ genetic algorithms: random number
generation and movement or modi-
fications of chromosomes [89]; pro-
cessing of chromosomes perfectly
fits in FPGA hardware, to the ex-
tent that it can be concurrently ex-
ecuted for all individuals in a single
clock cycle.
Until recently, when considering

the use of configurable platforms for
implementing evolutionary computing

algorithms, both the algorithm itself
(particle movement) and the evalua-
tion of the fit function were typically
executed in hardware [88], [90]. In
some cases where simple fit functions
can be used, a soft processor (i.e., a
processor implemented using stan-
dard FPGA logic resources) may be in
charge of evaluating the fit function
in software, as reported, e.g., in [91].
However, in real-life problems it is
very usual that fit function evaluation
takes most of the execution time, and
soft processors are not fast enough
to justify a software implementation,
therefore most designers opted for
pure hardware implementations.

Today, the situation is different
with the availability of powerful FP-
SoC devices, whose embedded hard
processors work much faster than soft
ones and have in many cases floating-
point capabilities. In this scenario, the
most efficient solution is to implement
the evaluation of the fit function in
hardware and execute the algorithm
in software.

In [64], a particle swarm optimiza-
tion algorithm is proposed for evaluat-

ing the state of health of solar panels
located in remote areas, where human
intervention is difficult. In a pure soft-
ware implementation, the evaluation
of the fit function takes 83% of the ex-
ecution time. Using a Cyclone V SoC
device, the evaluation of the fit func-
tion is moved to hardware. In a first
approach, the processor waits in idle
state for the FPGA to finish this evalu-
ation. Even though, in this particular
case, the fit function is neither inter-
nally parallelizable nor pipelineable,
it can be concurrently computed for
12 particles, resulting in 3.4 times ac-
celeration with regard to the pure soft-
ware implementation.

An improved solution takes advan-
tage of idle processor time for it to
generate the random numbers to be
used in subsequent iterations of the
algorithm, resulting in 4.8 times ac-
celeration. The achieved performance
is comparable to that obtained with a
desktop computer but with much low-
er size, cost, and power consumption,
as shown in Figure 9(a). The whole
monitoring system fits in a small elec-
tric box [Figure 9(b)] and can be lo-
cated under each panel.

Closing Discussion
The ubiquitous deployment of machine
learning and artificial intelligence across
IoT devices has introduced various intel-
ligence and cognitive capabilities. One
may conclude that these capabilities

70

60

50

40

G
en

er
at

io
ns

/s

30

20

10

0
PC Cyclone V

SoC Without
FPGA

Cyclone V
with FPGA

Cyclone V
with FPGA and

Hardware/Software
Coprocessing

Float Double

(b)(a)

FIGURE 9 – (a) A performance comparison of particle swarm optimization algorithm for different Cyclone V SoC implementations and a desktop
computer. (b) The system based on a Cyclone V SoC board.

FPSoCs are suitable implementation platforms not
only for deep-learning algorithms but also for other
machine-learning algorithms.

JUNE 2018 ■ IEEE INDUSTRIAL ELECTRONICS MAGAZINE 47

have led to the success of a wide and
ever-growing number of applications,
such as object/face/speech recognition,
wearable devices and biochips, diagno-
sis software, or intelligent security and
preventive maintenance.

Developments in other areas, such
as humanoid robots, self-driving cars,
or smart buildings and cities, will likely
revolutionize the way we live in the very
near future. This new reality comes with
significant advantages but also with
many challenges related to the acqui-
sition, processing, storage, exchange,
sharing, and interpretation of the contin-
uously growing, overwhelming amount
of data generated by the IoT.

Up to now, complex applications
involving deep neural networks have
mainly used the brute force of GPUs for
both training and inference. In the last
two years, some companies have pro-
duced ASICs with better performance
and lower power consumption than
GPUs. These solutions are suitable for
high-performance computing applica-
tions, but neither the low flexibility of
ASICs nor the high-power consumption
of GPUs is suitable for many IoT appli-
cations, which demand energy-efficient,
flexible embedded systems capable of
coping with the increasing diversifica-
tion of the IoT.

In contrast, FPSoC architectures,
which include processors and FPGA
fabric in the same chip, are a balanced
solution to implement machine-learn-
ing applications for IoT devices. The
latest advancements in FPGA hardware
allow a wide range of machine-learning
algorithms to be efficiently implement-
ed. FPGAs are very well suited to per-
form deep neural network inference
because of the parallel arrangement of
neurons in layers and the type of math-
ematical functions they have to com-
pute. This will be even more so in the
future because of the trend to use sim-
pler neuron activation functions (like
ReLu) that, in addition to improving
training, fit better in FPGA resources.
Moreover, the use of quantization tech-
niques and custom data types (which
is difficult to achieve, if possible at all,
in devices with fixed architectures like
ASICs and GPUs) can significantly re-
duce complexity and improve perfor-

mance. In our opinion, the trends for
neural network implementation in IoT
devices in the following years can be
summarized as follows.

 ■ Training will rely on heavy-duty
cloud-based GPUs. ASICs like the
new Google TPU (optimized for both
inference and training, with impres-
sive performance) will have a piece
of the pie here, but with the limita-
tion posed by their lack of flexibility.

 ■ The simplest IoT devices will use
CPUs and ASICs for inference to re-
duce cost and power consumption,
respectively. Larger devices will
use FPGAs/FPSoCs for inference
because of their balanced flexibil-
ity and computer power. For heavy-
duty inference, the same consider-
ations as for training apply.
FPSoCs are an excellent alternative

for evolutionary computing, because
they allow the algorithm itself to be
executed in software while the objec-
tive function can be computed in par-
allel in hardware for all individuals.
However, their efficiency in this con-
text greatly depends on whether or
not the specific operations involved in
the computation of the objective func-
tion fit available hardware resources.
It can be concluded that, thanks to the
availability of hard processors with
floating-point units, FPSoCs are very
suitable for implementing evolution-
ary computing algorithms. In the case
of particle swarm, it has been dis-
cussed how the same performance as
a desktop computer can be achieved
with FPSoCs with a fraction of the size,
cost, and power consumption.

In our opinion, the implementation
in FPSoCs of IoT devices with machine-
learning capabilities will be boosted
by the availability of increasingly effi-
cient high-level synthesis tools based
on widely known and used languages,

such as OpenCL, C/C++, or MATLAB,
enabling software designers to take ad-
vantage of the excellent characteristics
of FPSoC devices.

Acknowledgments
Roberto Fernandez Molanes’s and Juan
J. Rodriguez-Andina’s work in this arti-
cle has been supported by the Spanish
Ministerio de Economia y Competitivi-
dad under grant TEC2014-56613-C2-1-P.

Biographies
Roberto Fernandez Molanes (roberto
fem@uvigo.es) received his M.Sc. degree
in electrical engineering and M.Sc. de-
gree in advanced technologies and pro-
cesses in industry from the University of
Vigo, Spain, in 2012 and 2013, respective-
ly, where he is currently working toward
his Ph.D. degree in the Department of
Electronic Technology. His research in-
terests include the design of hardware/
software coprocessing systems and
high-performance instrumentation us-
ing field-programmable system-on-chip
platforms. He is a Student Member of
the IEEE and a member of the IEEE In-
dustrial Electronics Society.

Kasun Amarasinghe (amarasing
hek@vcu.edu) received his B.Sc. degree
in computer science from the Univer-
sity of Peradeniya, Sri Lanka, in 2011.
He is currently reading for his doctoral
degree in computer science at Virginia
Commonwealth University, Richmond.
His research interests include interpre-
table machine learning, fuzzy systems,
deep learning, data mining, and natu-
ral language processing. His interests
also extend to applications of such
algorithms to a multitude of domains,
including cyberphysical systems and
energy systems. He has gained expe-
rience on Internet of Things systems
from multiple research projects funded
by the U.S. Department of Energy and

The ubiquitous deployment of machine learning
and artificial intelligence across IoT devices
has introduced various intelligence and
cognitive capabilities.

48 IEEE INDUSTRIAL ELECTRONICS MAGAZINE ■ JUNE 2018

industry leaders. He is a Student Mem-
ber of the IEEE and a member of the
IEEE Industrial Electronics Society.

Juan J. Rodriguez-Andina (jjrd
guez@uvigo.es) received his M.Sc. de-
gree from the Technical University
of Madrid, Spain, in 1990 and his Ph.D.
degree from the University of Vigo,
Spain, in 1996, both in electrical engi-
neering. He is an associate professor in
the Department of Electronic Technol-
ogy, University of Vigo. In 2010–2011,
he was on sabbatical leave as a visiting
professor at the Advanced Diagnosis,
Automation, and Control Laboratory,
Electrical and Computer Engineering
Department, North Carolina State Uni-
versity, Raleigh. His research interests
include the implementation of complex
control and processing algorithms and
intelligent sensors in embedded plat-
forms. He has authored more than 160
journal and conference articles and
holds several Spanish, European, and
U.S. patents. He is a Senior Member of
the IEEE and a member of the IEEE In-
dustrial Electronics Society.

Milos Manic (misko@ieee.org) re-
ceived his M.S. degree in computer
science from the University of Nis,
Serbia, in 1996 and his Ph.D. degree in
computer science from the University
of Idaho in 2003. He is a professor in
the Computer Science Department
and director of the Modern Heuris-
tics Research Group at Virginia Com-
monwealth University, Richmond. He
has more than 20 years of academic
and industrial experience leading
more than 30 research grants focus-
ing on machine and deep learning
in energy, resilience, cybersecurity,
and human–system interaction in
mission-critical infrastructures. He
is a founder of the IEEE Industrial
Electronics Society Technical Com-
mittee on Resilience and Security in
Industry. He has published more than
180 refereed articles in international
journals, books, and conferences and
holds several U.S. patents. He built his
expertise through research on a num-
ber of U.S. Department of Energy and
industry-funded projects. He is a Se-
nior Member of the IEEE and an IEEE
Industrial Electronics Society Senior
AdCom member.

References
[1] M. Jaffe. (2014). IoT won’t work without arti-

ficial intelligence. WIRED. [Online]. Available:
https://www.wired.com/insights/2014/11/iot-
wont-work-without-artificial-intelligence/

[2] E. Sappin. (2017, June 28). How AI and IoT must
work together. VentureBeat. [Online]. Avail-
able: https://venturebeat.com/2017/06/28/
how-ai-and-iot-must-work-together/

[3] E. Ahmed, I. Yaqoob, I. Abaker Targio Hashem,
I. Khan, A. Ibrahim Abdalla Ahmed, M. Imran,
and A. V. Vasilakos, “The role of big data ana-
lytics in Internet of Things,” Comput. Netw.,
vol. 129, pp. 459–471, Dec. 2017.

[4] B. Del Monte and R. Prodan, “A scalable GPU-
enabled framework for training deep neural
networks,” in Proc. 2016 2nd Int. Conf. Green
High Performance Computing (ICGHPC 2016).

[5] M. D. Valdés Peña, J. J. Rodriguez-Andina, and
M. Manic, “The Internet of Things: The role of
reconfigurable platforms,” IEEE Ind. Electron.
Mag., vol. 11, no. 3, pp. 6–19, Sept. 2017.

[6] M. Mohammadi, A. Al-Fuqaha, S. Sorour,
and M. Guizani. (2017). Deep learning for IoT
big data and streaming analytics: A survey.
arXiv. [Online]. Available: https://arxiv.org/
abs/1712.04301

[7] L. Atzori, A. Iera, and G. Morabito, “The Inter-
net of Things: A survey,” Comput. Netw., vol. 54,
no. 15, pp. 2787–2805, Oct. 2010.

[8] J. Gubbi, R. Buyya, S. Marusic, and M.
Palaniswami, “Internet of Things (IoT): A vi-
sion, architectural elements, and future direc-
tions,” Future Gener. Comput. Syst., vol. 29, no.
7, pp. 1645–1660, Sept. 2013.

[9] F. Chen, P. Deng, J. Wan, D. Zhang, A. V. Vasila-
kos, and X. Rong, “Data mining for the Internet
of Things: Literature review and challenges,”
Int. J. Distrib. Sens. Netw., vol. 11, no. 8, pp.
1–14, Aug. 2015.

[10] C. Perera, S. Member, A. Zaslavsky, and P.
Christen, “Context aware computing for the In-
ternet of Things: A survey,” Commun. Surveys
Tuts., vol. 16, no. 1, pp. 1–41, 2014.

[11] J. Tang, D. Sun, S. Liu, and J. L. Gaudiot, “En-
abling deep learning on IoT devices,” Comput.,
vol. 50, no. 10, pp. 92–96, 2017.

[12] K. Panetta. (2016, Oct. 18). Gartner’s top 10
strategic technology trends for 2017. Smarter
with Gartner. [Online]. Available: https://www
.gartner.com/smarterwithgartner/gartners-
top-10-technology-trends-2017/

[13] X.-W. Chen and X. Lin, “Big data deep learning:
Challenges and perspectives,” IEEE Access,
vol. 2, pp. 514–525, May 2014.

[14] M. Hilbert, “Big data for development: A re-
view of promises and challenges,” Dev. Policy
Rev., vol. 34, no. 1, pp. 135–174, Jan. 2016.

[15] H. Hu, Y. Wen, T. S. Chua, and X. Li, “Toward
scalable systems for big data analytics: A
technology tutorial,” IEEE Access, vol. 2, pp.
652–687, May 2014.

[16] A. Akbar, A. Khan, F. Carrez, and K. Moessner,
“Predictive analytics for complex IoT data
streams,” IEEE Internet Things J., vol. 4, no. 5,
pp. 1571–1582, Oct. 2017.

[17] D. Nallaperuma, D. De Silva, D. Alahakoon, and
X. Yu, “A cognitive data stream mining tech-
nique for context-aware IoT systems,” in Proc.
IECON 2017—43rd Annu. Conf. IEEE Industrial
Electronics Society, pp. 4777–4782.

[18] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies,
M. Smith, and P. Steggles, Towards a Better Un-
derstanding of Context and Context-Awareness.
New York: Springer-Verlag, 1999, pp. 304–307.

[19] I. Goodfellow, B. Yoshua, and A. Courville, Deep
Learning. Cambridge, MA: MIT Press, 2016.

[20] Y. LeCun, Y. Bengio, and G. Hinton, “Deep
learning,” Nature, vol. 521, no. 7553, pp. 436–
444, May 2015.

[21] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R.
Salakhudinov, R. Zemel, and Y. Bengio, “Show,
attend and tell: Neural image caption genera-
tion with visual attention,” in Proc. Int. Conf. on
Machine Learning, 2015, pp. 2048–2057.

[22] S. Venugopalan, H. Xu, J. Donahue, M. Rohr-
bach, R. Mooney, and K. Saenko. (2014). Trans-
lating videos to natural language using deep
recurrent neural networks. arXiv. [Online].
Available: https://arxiv.org/abs/1412.4729

[23] S. Wang and J. Jiang. (2015). Learning natural
language inference with LSTM. arXiv. [Online].
Available: https://arxiv.org/abs/1512.08849

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet classification with deep convolu-
tional neural networks,” in Proc. 25th Int. Conf.
Neural Information Processing Systems 25, 2012,
pp. 1097–1105.

[25] K. Simonyan and A. Zisserman. (2014). Very
deep convolutional networks for large-scale
image recognition. arXiv. [Online]. Available:
https://arxiv.org/abs/1409.1556

[26] J. Walker. (2017, Sept. 14). Smart city artificial
intelligence applications and trends. TechEm-
ergence. [Online]. Available: https://www
.techemergence.com/smart-city-artificial-
intelligence-applications-trends/

[27] J. Chin, V. Callaghan, and I. Lam, “Under-
standing and personalising smart city services
using machine learning, the Internet-of-
Things and big data,” in Proc. 2017 IEEE 26th
Int. Symp. on Industrial Electronics (ISIE), pp.
2050–2055.

[28] E. Woyke. (2018, Feb. 21). A smarter smart city.
MIT Technology Review. [Online]. Available:
https://www.technologyreview.com/s/610249/
a-smarter-smart-city/

[29] D. Marino, K. Amarasinghe, and M. Manic,
“Building energy load forecasting using deep
neural networks,” in Proc. IECON 2016 42nd
Annu. Conf. IEEE Industrial Electronics Society,
pp. 7046–7051.

[30] K. Amarasinghe, D. L. Marino, and M. Manic,
“Deep neural networks for energy load fore-
casting,” in Proc. IEEE Int. Symp. Industrial Elec-
tronics, 2017, pp. 1483–1488.

[31] E. Mocanu, P. H. Nguyen, M. Gibescu, and W.
L. Kling, “Deep learning for estimating build-
ing energy consumption,” Sustain. Energy Grids
Netw., vol. 6, pp. 91–99, June 2016.

[32] M. Manic, K. Amarasinghe, J. J. Rodriguez-An-
dina, and C. Rieger, “Intelligent buildings of the
future: Cyberaware, deep learning powered,
and human interacting,” IEEE Ind. Electron.
Mag., vol. 10, no. 4, Dec. 2016.

[33] R. J. F. Rossetti, “Traffic control & management
systems in smart cities,” Readings Smart Cities,
vol. 2, no. 3, 2016.

[34] M. Bojarski, P. Yeres, A. Choromanska, K. Choro-
manski, B. Firner, L. Jackel, and U. Muller, (2017).
Explaining how a deep neural network trained
with end-to-end learning steers a car. arXiv. [On-
line]. Available: https://arxiv.org/abs/1704.07911

[35] C.-R. Yu, C.-L. Wu, C.-H. Lu, and L.-C. Fu, “Hu-
man localization via multi-cameras and floor
sensors in smart home,” in Proc. 2006 IEEE
Int. Conf. Systems, Man and Cybernetics, pp.
3822–3827.

[36] A. H. M. Amin, N. M. Ahmad, and A. M. M. Ali,
“Decentralized face recognition scheme for
distributed video surveillance in IoT-cloud
infrastructure,” in Proc. 2016 IEEE Region 10
Symp. (TENSYMP 2016), pp. 119–124.

[37] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document
recognition,” Proc. IEEE, vol. 86, no. 11, pp.
2278–2323, Nov. 1998.

[38] J. H. Ko, Y. Long, M. Faisal Amir, D. Kim, J.
Kung, T. Na, A. Ranjan Trivedi, and S. Mukho-
padhyay, “Energy-efficient neural image pro-
cessing for Internet-of-Things edge devices,”
in Proc. Midwest Symp. Circuits Systems, 2017,
pp. 1069–1072.

[39] H. Fang and C. Hu, “Recognizing human ac-
tivity in smart home using deep learning al-
gorithm,” in Proc. 33rd Chinese Control Conf.,
2014, pp. 4716–4720.

[40] Nest Labs. (2018). What makes a Nest thermo-
stat a Nest thermostat? Nest Labs. [Online].
Available: https://nest.com/thermostats/

JUNE 2018 ■ IEEE INDUSTRIAL ELECTRONICS MAGAZINE 49

[41] G. Anders. (2017, Aug. 9). “Alexa, understand
me.” MIT Technology Review. [Online]. Available:
https://www.technologyreview.com/s/608571/
alexa-understand-me/

[42] B. Marsh. (2018). The intelligent pacemaker
that can talk to your doctor. Daily Mail. [On-
line]. Available: http://www.dailymail.co.uk/
health/article-122444/The-intelligent-pace-
maker-talk-doctor.html

[43] W. R. Dassen, K. Dulk, and H. J. Wellens, “Mod-
ern pacemakers: Implantable artificial intelli-
gence?” Pacing Clin. Electrophysiol., vol. 11, no.
11, pp. 2114–2120, Nov. 1988.

[44] J. Pacheco and S. Hariri, “IoT security frame-
work for smart cyber infrastructures,” in Proc.
2016 IEEE 1st Int. Workshops Foundations and
Applications of Self* Systems (FAS*W), pp.
242–247.

[45] A.-R. Sadeghi, C. Wachsmann, and M. Waidner,
“Security and privacy challenges in industrial
Internet of Things,” in Proc. 52nd Annu. Design
Automation Conf. (DAC ’15), 2015, pp. 1–6.

[46] A. A. Diro and N. Chilamkurti, “Distributed
attack detection scheme using deep learning
approach for Internet of Things,” Future Gener.
Comput. Syst., vol. 82, pp. 761–768, May 2018.

[47] H. Haddad Pajouh, A. Dehghantanha, R. Khay-
ami, and K.-K. R. Choo, “A deep recurrent
neural network based approach for Internet of
Things malware threat hunting,” Future Gener.
Comput. Syst., vol. 85, pp. 88–96, Aug. 2018.

[48] J. Canedo and A. Skjellum, “Using machine
learning to secure IoT systems,” in Proc. 2016
14th Annu. Conf. Privacy Security Trust (PST
2016), pp. 219–222.

[49] NVIDIA. (2018). NVIDIA Volta. NVIDIA. [On-
line]. Available: https://www.nvidia.com/en-
us/data-center/volta-gpu-architecture/

[50] Y. Pu, C. Shi, G. Samson, D. Park, K. Easton, R.
Beraha, A. Newham, M. Lin, V. Rangan, K. Cha-
tha, D. Butterfield, and R. Attar, “A 9-mm2 ul-
tra-low-power highly integrated 28-nm CMOS
SoC for Internet of Things,” IEEE J. Solid-State
Circuits, vol. 53, no. 3, pp. 1–13, 2018.

[51] C. Trigas, “Design challenges for system-in-pack-
age vs system-on-chip,” in Proc. IEEE 2003 Cus-
tom Integrated Circuits Conf., 2003, pp. 663–666.

[52] J. J. Rodríguez Andina, E. de la Torre-Arnanz,
and M. D. Valdes Peña, FPGAs : Fundamentals,
Advanced Features, and Applications in Indus-
trial Electronics. Boca Raton, FL: CRC, 2017.

[53] S. S. Iyer, “Heterogeneous integration for perfor-
mance and scaling,” IEEE Trans. Compon. Pack-
ag. Manuf. Technol., vol. 6, no. 7, pp. 973–982,
July 2016.

[54] M. Sadri, C. Weis, N. Wehn, and L. Benini, “En-
ergy and performance exploration of accel-
erator coherency port using Xilinx ZYNQ,” in
Proc. 10th FPGA World Conf. 2013, pp. 1–8.

[55] L. Costas, R. Fernandez-Molanes, J. J. Rodri-
guez-Andina, and J. Farina, “Characterization
of FPGA-master ARM communication delays
in zynq devices,” in Proc. 2017 IEEE Int. Conf.
Industrial Technology (ICIT), pp. 942–947.

[56] R. Fernandez-Molanes, J. J. Rodriguez-Andina,
and J. Farina, “Performance characterization
and design guidelines for efficient processor–
FPGA communication in Cyclone V FPSoCs,”
IEEE Trans. Ind. Electron., vol. 65, no. 5, pp.
4368–4377, May 2018.

[57] B. Fort, A. Canis, J. Choi, N. Calagar, R. Lian,
S. Hadjis, Y. T. Chen, M. Hall, B. Syrowik, T.
Czajkowski, S. Brown, and J. Anderson, “Au-
tomating the design of processor/accelerator
embedded systems with LegUp high-level syn-
thesis,” in Proc. 2014 12th IEEE Int. Conf. Embed-
ded and Ubiquitous Computing, pp. 120–129.

[58] Altera Corporation, “Implementing FPGA de-
sign with the OpenCL standard,” Altera, San
Jose, CA, WP-01173-3.0, 2013.

[59] N. Cardoso, P. Garcia, T. Gomes, F. Salgado, P.
Rodrigues, J. Cabral, J. Mendes, and A. Tavares,
“Multi-camera home appliance network: Han-
dling device interoperability,” in Proc. IEEE 10th
Int. Conf. Industrial Informatics, 2012, pp. 69–74.

[60] ARM Security Technology, “Building a secure
system using TrustZone technology,” ARM,
San Jose, CA, PRD29-GENC-009492, 2009.

[61] Y. Liu, J. Briones, R. Zhou, and N. Magotra,
“Study of secure boot with a FPGA-based IoT
device,” in Proc. Midwest Symp. Circuits Sys-
tems, 2017, pp. 1053–1056.

[62] C. Marchand, L. Bossuet, U. Mureddu, N. Bo-
chard, A. Cherkaoui, and V. Fischer, “Imple-
mentation and characterization of a physical
unclonable function for IoT: A case study with
the TERO-PUF,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 37, no. 1, pp.
97–109, Jan. 2018.

[63] ARM. (2018). Security on ARM TrustZone.
ARM. [Online]. Available: https://www.arm
.com/products/security-on-arm/trustzone

[64] R. Fernandez-Molanes, M. Garaj, W. Tang, J. J.
Rodriguez-Andina, J. Farina, K. F. Tsang, and
K. F. Man, “Implementation of particle swarm
optimization in FPSoC devices,” in Proc. 2017
IEEE 26th Int. Symp. Industrial Electronics
(ISIE), pp. 1274–1279.

[65] S. Sridharan, P. Durante, C. Faerber, and N.
Neufeld, “Accelerating particle identification
for high-speed data-filtering using OpenCL on
FPGAs and other architectures,” in Proc. 2016
26th Int. Conf. Field Programmable Logic and
Applications (FPL), pp. 1–7.

[66] D. Mahajan, J. Park, E. Amaro, H. Sharma, A.
Yazdanbakhsh, J. K. Kim, and H. Esmaeilzadeh,
“TABLA: A unified template-based framework
for accelerating statistical machine learning,”
in Proc. 2016 IEEE Int. Symp. High Performance
Computer Architecture (HPCA), pp. 14–26.

[67] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao,
S. Han, Y. Wang, and H. Yang, “Angel-Eye: A
complete design flow for mapping CNN onto
embedded FPGA,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 37, no. 1, pp.
35–47, Jan. 2018.

[68] A. X. M. Chang and E. Culurciello, “Hardware
accelerators for recurrent neural networks on
FPGA,” in Proc. 2017 IEEE Int. Symp. Circuits and
Systems (ISCAS), pp. 1–4.

[69] J. Lachmair, T. Mieth, R. Griessl, J. Hagemeyer,
and M. Porrmann, “From CPU to FPGA—Accel-
eration of self-organizing maps for data min-
ing,” in Proc. Int. Joint Conf. Neural Networks,
2017, pp. 4299–4308.

[70] W. Fang, Y. Zhang, B. Yu, and S. Liu. (2017). FP-
GA-based ORB feature extraction for real-time
visual SLAM. arXiv. [Online]. Available: https://
arxiv.org/abs/1710.07312

[71] T. Mekonnen, M. Komu, R. Morabito, T. Kaup-
pinen, E. Harjula, T. Koskela, and M. Ylianttila,
“Energy consumption analysis of edge orches-
trated virtualized wireless multimedia sensor
networks,” IEEE Access, vol. 6, pp. 5090–5100,
Dec. 2017.

[72] X. Ma, W. A. Najjar, and A. K. Roy-Chowdhury,
“Evaluation and acceleration of high-through-
put fixed-point object detection on FPGAs,”
IEEE Trans. Circuits Syst. Video Technol., vol. 25,
no. 6, pp. 1051–1062, June 2015.

[73] M. Sit, R. Kazami, and H. Amano, “FPGA-based
accelerator for losslessly quantized convolu-
tional neural networks,” in Proc. 2017 Int. Conf.
Field Programmable Technology (ICFPT), pp.
295–298.

[74] H. Nakahara, A. Jinguji, T. Fujii, and S. Sato, “An
acceleration of a random forest classification
using Altera SDK for OpenCL,” in Proc. 2016 Int.
Conf. Field-Programmable Technology (FPT),
pp. 289–292.

[75] Altera Corporation, “Floating-point IP cores
user guide,” Altera, San Jose, CA, UG-01058,
2016.

[76] R. Domingo, R. Salvador, H. Fabelo, D. Madro-
nal, S. Ortega, R. Lazcano, E. Juarez, G. Callico,
and C. Sanz, “High-level design using Intel
FPGA OpenCL: A hyperspectral imaging spa-
tial-spectral classifier,” in Proc. 2017 12th Int.
Symp. Reconfigurable Communication-Centric
Systems-on-Chip (ReCoSoC), pp. 1–8.

[77] R. Finker, J. Echanobe, I. del Campo, and K.
Basterretxea, “Controlled accuracy approxi-
mation of sigmoid function for efficient FPGA-
based implementation of artificial neurons,”
Electron. Lett., vol. 49, no. 25, pp. 1598–1600,
Dec. 2013.

[78] S. Gomar, M. Mirhassani, and M. Ahmadi, “Pre-
cise digital implementations of hyperbolic
tanh and sigmoid function,” in Proc. 2016 50th
Asilomar Conf. Signals, Systems and Computers,
pp. 1586–1589.

[79] F. Ertam and G. Aydin, “Data classification with
deep learning using Tensorflow,” in Proc. 2017
Int. Conf. Computer Science and Engineering
(UBMK), pp. 755–758.

[80] S. Shin, K. Hwang, and W. Sung, “Fixed-point
performance analysis of recurrent neural
networks,” in Proc. IEEE Int. Conf. Acoustics,
Speech and Signal Processing 2016, pp. 976–
980.

[81] M. Shah, J. Wang, D. Blaauw, D. Sylvester, H.-S.
Kim, and C. Chakrabarti, “A fixed-point neural
network for keyword detection on resource
constrained hardware,” in Proc. 2015 IEEE
Workshop Signal Processing Systems (SiPS),
pp. 1–6.

[82] X. Zhang, A. Ramachandran, C. Zhuge, D. He,
W. Zuo, Z. Cheng, K. Rupnow, and D. Chen,
“Machine learning on FPGAs to face the IoT
revolution,” in Proc. 2017 IEEE/ACM Int. Conf.
Computer-Aided Design (ICCAD), pp. 894–901.

[83] R. Doshi, K.-W. Hung, L. Liang, and K.-H. Chiu,
“Deep learning neural networks optimization
using hardware cost penalty,” in Proc. 2016
IEEE Int. Symp. Circuits and Systems (ISCAS),
pp. 1954–1957.

[84] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou,
J. Yu, T. Tang, N. Xu, S. Song, Y. Wang, and H.
Yang, “Going deeper with embedded FPGA
platform for convolutional neural network,”
in Proc. 2016 ACM/SIGDA Int. Symp. Field-Pro-
grammable Gate Arrays (FPGA ’16), pp. 26–35.

[85] N. Sugimoto, T. Mitsuishi, T. Kaneda, C. Tsuru-
ta, R. Sakai, H. Shimura, and H. Amano, “Trax
solver on Zynq with deep Q-network,” in Proc.
2015 Int. Conf. Field Programmable Technology
(FPT), pp. 272–275.

[86] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “Deep-
Burning: Automatic generation of FPGA-based
learning accelerators for the neural network
family,” in Proc. Design Automation Conf.
(DAC), 2016.

[87] C.-F. Juang, C.-M. Lu, C. Lo, and C.-Y. Wang,
“Ant colony optimization algorithm for fuzzy
controller design and its FPGA implementa-
tion,” IEEE Trans. Ind. Electron., vol. 55, no. 3,
pp. 1453–1462, Mar. 2008.

[88] W. Wang, A. C.-F. Liu, H. S.-H. Chung, R. W.-H.
Lau, J. Zhang, and A. W.-L. Lo, “Fault diagnosis
of photovoltaic panels using dynamic current–
voltage characteristics,” IEEE Trans. Power
Electron., vol. 31, no. 2, pp. 1588–1599, Feb.
2016.

[89] T. M. Chan, K. F. Man, K. S. Tang, and S. Kwong,
“A jumping gene paradigm for evolutionary
multiobjective optimization,” IEEE Trans. Evol.
Comput., vol. 12, no. 2, pp. 143–159, Apr. 2008.

[90] N. N. Morsi, M. B. Abdelhalim, and K. A. She-
hata, “Efficient hardware implementation of
PSO-based object tracking system,” in Proc.
2013 Int. Conf. Electronics, Computer and Com-
putation (ICECCO), pp. 155–158.

[91] S.-A. Li, C.-C. Wong, C.-J. Yu, and C.-C. Hsu,
“Hardware/software co-design for particle
swarm optimization algorithm,” in Proc. 2010
IEEE Int. Conf. Systems, Man and Cybernetics,
pp. 3762–3767.

[92] R. Courtland. (2015, Mar. 30). Gordon Moore:
The man whose name means progress. IEEE
Spectrum. [Online]. Available: https://spectrum
.ieee.org/computing/hardware/gordon-moore-
the-man-whose-name-means-progress

