
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Efficient privacy-preserving implicit authentication

Alberto Blanco-Justicia, Josep Domingo-Ferrer⁎

Universitat Rovira i Virgili, Department of Computer Science and Mathematics, CYBERCAT-Center for Cybersecurity Research of Catalonia, UNESCO Chair in Data
Privacy, Av Països Catalans 26, Tarragona, Catalonia E-43007

A R T I C L E I N F O

Keywords:
Privacy-preserving implicit authentication
Bloom filters
Privacy

A B S T R A C T

The number of online service accounts per person has rapidly increased over the last years. Currently, people
have tens to hundreds of online accounts on average, and it is clear that users do not choose new, different, and
strong passwords for each of these accounts. On the other hand, it is quite inconvenient for the user to be forced
to explicitly authenticate each time she wants to use one of her many accounts; this is especially true with small
user devices like smartphones. Implicit authentication is a way to mitigate the preceding problems by authen-
ticating individuals based not only on their identity and credentials, but on how they interact with a device, i.e.
their behavior. User behavior can be characterized by collecting keystroke patterns, browser history and con-
figuration, IP addresses and location, among other characteristics of the user. However, keeping the user’s be-
havior profile in authentication servers can be viewed as privacy-invasive. Privacy-preserving implicit authen-
tication has been recently introduced to protect the privacy of the users’ profiles, specifically against the party
performing the authentication, which we call the server in the sequel. Yet, the privacy-preserving implicit au-
thentication schemes proposed so far involve substantial computation both by the user and the server. We
propose here a practical mechanism based on comparing behavior feature sets encoded as Bloom filters. The new
mechanism entails much less computation and can accommodate much more comprehensive sets of features
than previous alternatives.

1. Introduction

Implicit authentication refers to a software system authenticating
individuals based on the way they interact with their device, i.e. their
behavior. In this context, the user behavior can be determined by col-
lecting a variety of features, such as keystroke patterns, browser history
and configuration, IP addresses, location, visible antennas, etc. Implicit
authentication is a complement, rather than a substitute, of the usual
explicit authentication based on identifiers and/or credentials.
Authenticating implicitly can make life easier for users by reducing the
number of times they have to authenticate explicitly.

Implicit authentication is gaining importance as the smartphone
market rises. Relatively small and sometimes unwieldy screen key-
boards in smartphones make typing strong passwords a difficult task.
This situation, added to the well-known problem of weak password
choices, repeatedly aired in the media, makes the use of secondary
authentication mechanisms almost mandatory. Among these, biometric
(fingerprint) authentication and two-factor authentication with one-
time passwords are the most common choices. Biometric authentication
has the shortcomings of needing special sensors in the user’s device and
requiring the authenticating server to acquire and store the user’s

reference biometric pattern. Two-factor authentication, on its side, has
an intrinsic problem: the second channel (email, SMS, mobile app) used
for confirmation is usually accessible on the same device (typically an
Internet-enabled smartphone) used for the primary channel, so both
channels may be simultaneously compromised.

Implicit authentication is not free of problems either. A salient issue
is the privacy exposure of end users, who need to be profiled in order to
provide a reference pattern against which their current behavior can be
authenticated by the server. To keep the user’s profile private against
the server, researchers have proposed privacy-preserving implicit au-
thentication [6,18]. In these proposals, the user’s reference profile is
stored in encrypted form at the server and the fresh usage sample
captured by the user’s device is compared against that reference profile.
While this solves the privacy issues, it entails substantial computation,
both by the user’s device and the server.

1.1. Contribution and plan of this paper

We propose a computationally efficient privacy-preserving implicit
authentication mechanism in which only fingerprints of the users’ usage
profiles are revealed. We use Bloom filters to encode the user’s

https://doi.org/10.1016/j.comcom.2018.04.011
Received 16 November 2017; Received in revised form 9 March 2018; Accepted 13 April 2018

⁎ Corresponding author.
E-mail addresses: alberto.blanco@urv.cat (A. Blanco-Justicia), josep.domingo@urv.cat (J. Domingo-Ferrer).

Computer Communications 125 (2018) 13–23

Available online 27 April 2018
0140-3664/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01403664
https://www.elsevier.com/locate/comcom
https://doi.org/10.1016/j.comcom.2018.04.011
https://doi.org/10.1016/j.comcom.2018.04.011
mailto:alberto.blanco@urv.cat
mailto:josep.domingo@urv.cat
https://doi.org/10.1016/j.comcom.2018.04.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2018.04.011&domain=pdf

reference profile and we leverage the properties of Bloom filters to
compute the distance between the stored reference profile and the fresh
samples provided by the user. The privacy of users’ profiles is protected
as long as cryptographic hash functions are secure.

Our proposed mechanism produces fingerprints of the feature sets
that are compact and can be easily integrated in existing authentication
protocols, for example, as headers in HTTP packets.

Section 2 gives an overview of related subjects, including implicit
authentication systems and privacy-preserving implicit authentication
systems. Section 3 describes the adversarial model. Section 4 describes
Bloom filters in detail. Section 5 recalls the types of features included in
users’ profiles, and how to compute the dissimilarity between sets of
features, depending on their type. Section 6 presents our proposed
mechanism. Section 7 discusses the privacy and the security of our
proposal. Finally, Section 8 analyzes the accuracy and the performance
of the new system. Conclusions and future research lines are gathered in
Section 9.

2. Related work

2.1. Implicit authentication

In implicit authentication, a server can authenticate users by
checking whether their behavior is compatible or similar enough to
their past recorded behavior. In this context, the user’s behavior can be
modeled as a combination of features like her browsing history, usual
location, keystroke patterns, usually visible cell stations, etc. A user
profile consists of one or several such sets of features.

In [11], empirical evidence was given that the features collected
from the user’s device history are effective to distinguish users and
therefore can be used to implicitly authenticate them (instead of or in
addition to explicit authentication based on the user’s providing a
password). Muncaster and Turk propose a general framework for con-
tinuous authentication of users in [16], based on the integration of
active (e.g. fingerprints) and passive (e.g. keystroke patterns) biometric
measurements. Dynamic Bayesian networks are used to aggregate the
classification decisions and scores from the different biometric au-
thentication mechanisms. They demonstrate the framework with face
recognition and keystroke pattern analysis. Clarke and Furnell explore
authentication using keystroke patterns analysis in [5]. The authors use
neural networks to decide whether the users interacting with the
smartphones’ keyboards are the rightful owners of the devices. The
authors acknowledge, however, that keystroke analysis is too depen-
dent on the specific user (not all users use the keyboard enough, and
some vary their writing patterns constantly), and so multimodal ap-
proaches seem a better solution. The authors in [19] propose SenGuard,
an implicit authentication mechanism for mobile devices, which uses
information from the touch screen, location, means of transport and
voice patterns. Authentication decisions are taken with a space-time
multi-modality classifier.

These proposals are designed as local authentication mechanisms to
the mobile device and do not need to take privacy into account, since
data are not meant to leave the local device. However, we argue that
storing the profile in the user’s device is insecure, because an intruder
may gain access to it and learn sensitive information about the user, or
even impersonate her. Therefore, it is safer to store the users’ profiles in
a secure facility, for example in the provider’s premises. However, a
user profile includes potentially sensitive data, and storing it outside
the user’s device violates her privacy.

This privacy risk is only partly mitigated by using a third party to
store the users’ profiles, for example the ISP or carrier. The typical ar-
chitecture in this case consists of the user’s device, a service provider
and the carrier.

2.2. Privacy-preserving implicit authentication

In the privacy-preserving implicit authentication system proposed
by Safa et al. [18], the user’s device encrypts the user’s usage profile at
set-up time, and forwards it to the carrier, who stores it for later
comparison. In this case, the security problem outlined in the previous
section is fixed because the profile is never stored in the user’s device (it
is collected, encrypted, sent and immediately deleted by the device).
Likewise, the privacy problem is also solved, because the profile sent to
the carrier is encrypted. In fact, since the user’s profile is exported in
encrypted form, strictly speaking the carrier is no longer needed as a
third party to store profiles and conduct the authentication: both
functions could be performed by the service provider himself. There-
fore, we will name the authenticating party as the server, which can be
the carrier or the service provider.

The core of [18] is the algorithm for computing the dissimilarity
score between two inputs: the fresh sample provided by the user’s de-
vice and the profile stored at the server. All the computation takes place
at the server and both inputs are encrypted: indeed, the server stores
the encrypted profile and the user’s device sends the encrypted fresh
sample to the server. Note that the keys to both encryptions are only
known to the user’s device (it is the device that encrypts everything).

The server computes a dissimilarity score at the feature level, while
provably guaranteeing that: (i) no information about the profile stored
at the server is revealed to the device other than the average absolute
deviation of the stored feature values; (ii) no information about the
fresh feature value provided by the device is revealed to the server
other than how it is ordered with respect to the stored profile feature
values.

The score computation protocol uses two different encryption
schemes: a homomorphic encryption scheme HE (for example, Paillier)
and an order-preserving symmetric encryption scheme OPSE. This
protocol is restricted to numerical features, due to the kind of compu-
tations that need to be performed on them. Such a limitation is a
shortcoming, because behavior characterization may require non-nu-
merical features, e.g. the browser history.

The implicit authentication system proposed by Domingo-Ferrer
et al. [6] tries to overcome some of the limitations of the previous
approach: it uses a single cryptosystem, it does not leak the order of
fresh sample values, it does not leak the average absolute deviation of
the stored feature values, and it can deal with non-numerical features.
To do so, it builds on the work done by Blanco-Justicia et al. [2], which
proposes a mechanism to compute the distance between preference
functions, defined as sets of independent categorical features, corre-
lated categorical features, or independent numerical features.

In [6], the user’s device encodes and encrypts the user’s profile
using the Paillier cryptosystem and sends it to the server, along with
some auxiliary values. Neither the encrypted set nor the auxiliary va-
lues reveal anything about the user’s profile, except for the size of the
set. Moreover, the user only keeps a secret auxiliary value and deletes
the Paillier secret key, so the profiles cannot be recovered from the
device either. To authenticate, the user’s device sends an encrypted
fresh sample of her activity to the server and then user and server en-
gage in a two-party protocol to compute the distance between the
stored or reference profile and the new sample. Note that the results are
never decrypted, but checked using the server’s and the user’s auxiliary
values.

Although Domingo-Ferrer et al. [6] solves several shortcomings of
[18], it remains very demanding in computational terms. In fact,
computing the auxiliary values during set-up requires inverting ma-
trices, which in practice limits the maximum allowable size of the
feature sets (due to computing time constraints).

In [22], the authors use a well-known approach in data mining, i.e.
dimensionality reduction, to reduce the information revealed by the
profiles, while keeping enough information for profiles to be correctly
classified. This proposal, though, is limited to numerical features and

A. Blanco-Justicia, J. Domingo-Ferrer Computer Communications 125 (2018) 13–23

14

does not entirely hide profile information.
In this new proposal, we capitalize on the work done in [2,6]: while

we continue to compute the distances between the profiles via set in-
tersection, we take the novel approach of doing so using Bloom filters to
relieve the computational complexity.

3. Problem statement

3.1. Scenario

We consider a scenario in which smartphone users log into online
services offered by some service provider. Users set their login in-
formation at registration time, and this information is managed by ei-
ther the service provider or by a third party (an identity provider that
delivers authentication services). The entity in charge of authenticating
users offers an additional security measure: it analyzes the behavior of
users to detect potentially compromised user accounts. The service
provider denies service to accounts labeled as compromised, and the
rightful owners of those accounts are notified.

As mentioned in the introduction above, implicit authentication
complements explicit authentication (based e.g. on username-password)
by trying to minimize the number of times users are asked to input their
credentials. During an initial or training phase after the user registers to
the service, the smartphone starts sending protected user profiles to the
service provider. While in this training phase, the service provider will
keep requesting the user credentials as usual. This phase is also used to
set the threshold to accept an authentication attempt by the user. When
the training phase ends, the service provider will stop requesting the
user credentials unless implicit authentication fails, in which case it will
request them. This procedure is similar to those already implemented
by Google, Steam and others: when the user logs in from a new device
(i.e. a device from which the user has never logged in to the service
before), the service provider requests the user credentials.

3.2. User profiles, behavior samples and feature sets

In this section, we describe the user profiles as we will use them
throughout the rest of this work. A user profile is a list of snapshots of
the user’s behavior at different times. These snapshots, or samples, are
labeled by a timestamp and contain one or more feature sets. Each
feature set contains readings from one specific data source in the user’s
device for a fixed period of time.

Fig. 1 shows an example of a user profile � with two samplesS1 and
S ,2 each of them containing several feature sets Si (each of them labeled
according to the data it contains), namely installed applications, visible
cell towers, web browsing history and visited locations. The label St
refers to specific sample and the subscript t may refer to the time of
collection (a timestamp). Each of the feature sets includes information
gathered from different sources during some predefined period of time;
for example, the set labeled as CT in sample S1 may be the set of cell
towers that the device has seen during the last day.

Typical data sources considered for authentication are, among
others, installed applications, installed applications by category, usage
of applications, usage of applications by category, visible cell towers,
strength of the signal of cell towers, battery level at the time the device
is connected for charging, time between consecutive charges, power
consumption, idle and awake times, web browsing history, web
browsing history by category, and trajectories of the user. Some of these
features may be considered more important than others when taking an
authentication decision; hence, different weights may be assigned to the
various features.

In the implicit authentication protocol, the user sends a new sample
to the server, who compares it to ℓ previous samples, feature set by
feature set, to reach an authentication decision. It is also worth con-
sidering that, since users may behave differently in work days and
weekends, samples may need to be compared with parts of the profile

corresponding to similar days and times. New samples that result in
successful authentications can be stored by the server to update the user
profile.

Assuming that every feature has the same weight when taking the
authentication decision (e.g., installed applications matter as much as
visited locations), our construction allows representing each sample as
a single feature set of the following form (where each value is labeled
with the name of the feature set it comes from):

• S1: ⋯ ⋯ ⋯ ⋯App App CT URL Loc{IA: , IA: , ,CT: , ,WH: , ,L: , }1
1

2
1

1
1

1
1

1
1

• S2: ⋯ ⋯ ⋯ ⋯App App CT URL Loc{IA: , IA: , ,CT: , ,WH: , ,L: , }1
2

2
2

1
2

1
2

1
2

In this case, the implicit authentication protocol can run a single set
comparison per sample. However, if the weights of the features differ,
or the profiles contain categorical and numerical feature sets, the au-
thentication protocol will have to compute the distances between sev-
eral sets. An example of this situation is shown in Fig. 2.

In this case, to compare the sample S3 with older samples (of the
same form) in an authentication attempt, the following sets have to be
compared:

• ⋯ ⋯App App CT CT{IA: , IA: , ,CT: , CT: , }1
3

2
3

1
3

2
3

• ⋯ ⋯URL URL Loc Loc{WH: , WH: , ,L: , L: , }1
3

2
3

1
3

2
3

• ⋯K K{ , , }1
3

2
3

Fig. 1. User profile with two behavior samples. Within each sample, feature sets
are as follows: installed applications (IA), visible cell towers (CT), web
browsing history (WH), visited locations (L).

Fig. 2. Behavior sample with different weights (denoted by ω1 and ω2).
Categorical feature sets: installed applications (IA), visible cell towers (CT), web
browsing history (WH), visited locations (L). Numerical feature set: kilometers
walked each hour (K).

A. Blanco-Justicia, J. Domingo-Ferrer Computer Communications 125 (2018) 13–23

15

While the mechanisms for the collection of data and the data
sources themselves are outside of the scope of this work, we impose the
requirement that features must be discretized, for example via gen-
eralization/coarsening. Take location data as an example: GPS location
data are too fine-grained for comparison using our distance computa-
tion mechanism, so we require them to be coarsened either by trans-
lating the latitude-longitude pairs to names (e.g. street names), or by
truncating some decimals (which in practice amounts to defining a grid
in a map).

3.3. Privacy attacker

We regard any entity with legitimate or illegitimate access to the
stored user profiles as a potential privacy attacker. An attacker seeing
the profile of a user learns sensitive information about the user, such as
her typical locations, her preferences, the software installed on her
computer, etc. The user’s profile may also allow inferring the user’s
identity, in case the latter is not readily available. Hence, user profiles
must be protected while in transit and when stored on the server pre-
mises.

3.4. Impersonator

An attacker who gains access to a user’s device, her account cre-
dentials (e.g. login and password) or both, may try to impersonate the
user by accessing her accounts. By analyzing the behavior of the im-
personator it should be possible to detect the attack and deny access to
the impersonator.

4. Bloom filters

Bloom filters [3] are probabilistic space-efficient data structures
that encode datasets while still allowing membership queries. But the
appeal of Bloom filters goes beyond efficient set encoding and mem-
bership checking: they also allow computing set unions and intersec-
tions, and therefore the Jaccard distance between sets, while offering
security guarantees based on those of cryptographic hash functions.

A Bloom filter consists of a bit array = ⋯ −B b b, , m0 1 of length m,
with all bits initially set to 0, and is equipped with k different hash
functions with range … −m[0, , 1] each of which maps some set element
to one of the m array positions with a uniform random distribution.
Typically k≪m. An element e to be inserted is hashed with the k hash
functions, and the corresponding bits ⋯ −b b, ,h e h e() ()k0 1 are set to 1.
Accordingly, a membership query for element e is performed by
checking whether = ⋯= =−b b 1h e h e() ()k0 1 .

Membership queries to a Bloom filter can certainly return false
positives: the query answer can say that an element not in the set be-
longs to it. However, proper parameter setting (in particular increasing
m), can make the false positive rate arbitrarily low, as it follows from
the expression of the probability of false positive: if a Bloom filter
contains n elements, this probability is given by

⎜ ⎟
⎛
⎝

− ⎛
⎝

− ⎞
⎠

⎞
⎠m

1 1 1 .
kn k

(1)

The above expression can be viewed as the probability that the indices
obtained by hashing the element with the k hash functions are all set to
1, either by another single element (which is unlikely, because it would
mean that the k hash values of the second element collide with those of
the first one) or by a combination of other inserted elements. Note that
Expression (1) is only an approximation, because it assumes that a bit is
set to 1 independently of the values of the other bits, which is a sim-
plification of reality [4].

The number of elements encoded in a Bloom filter (i.e. the cardin-
ality of the encoded set S) is approximated as

≈ − ⎛
⎝

− ⎞
⎠

S m
k

H B
m

ln 1 () ,S

(2)

where BS is the bit array resulting from encoding S, H(·) is the
Hamming weight of a bit array (number of bits set to 1), m is the length
of the Bloom filter and k is the number of hashes [21].

4.1. Bloom filters in privacy-preserving data mining

Private matching schemes are an interesting multi-party computa-
tion primitive in privacy-preserving data mining. They are useful for
relational equi-joins and intersections of databases privately held by
different entities that do not want to disclose their respective databases
to each other. They can also play a role when searching some text in
documents, matching preferences in social networks, or comparing user
profiles. In this paper, we use them for the latter purpose.

Among the various implementations of private matching schemes in
the literature, the work in [8] is perhaps one of the most relevant. In
this work, the authors propose several protocols for private computa-
tion of set intersections and set intersection cardinalities under different
adversarial models. In these protocols, the sets are encoded as poly-
nomials and encrypted under the Paillier cryptosystem, whose homo-
morphic properties allow for the evaluation of encrypted polynomials.
In [2], the authors build upon these protocols to compute distances
between private functions, including numerical ones. These protocols,
however, rely on expensive cryptographic operations and thus are not
practical for very big datasets.

In [7], the authors propose a private matching scheme based on
garbled Bloom filters and oblivious transfer that overcomes the scal-
ability problem of previous proposals. In this protocol, the datasets are
encoded as garbled Bloom filters (an extension of Bloom filters). The
parties then engage in an oblivious transfer protocol to compute a new
Bloom filter that encodes the intersection of the original sets. Pinkas
et al. [17] improve on the efficiency of the previous protocol. The
mechanism described in [14] uses the homomorphic properties of the
Goldwasser–Micali cryptosystem to test membership of elements in
encrypted Bloom filters (the Bloom filter is encrypted bit by bit).
Schnell et al. [20] also use Bloom filters to link records from vertically
partitioned data with encrypted identifiers.

Bloom filters have been used in other applications of privacy-pre-
serving data mining; for example, to implement a secure dot product
protocol to derive association rules from vertically partitioned data
[12].

4.2. Union and intersection of sets

The union and intersection of encoded sets can be easily computed
by performing the bitwise ∨ (or) and ∧ (and) operations, respectively. If
we assume the sets A and B and their respective encodings BA and BB

are of the same size m, with BA and BB having both k hash functions, the
Bloom filter

= ∧ … ∧∩ − −B b b b b, ,A B A B A m B m,0 ,0 , 1 , 1

represents the encoding of the intersection set A ∩ B. Likewise, the
union set can be obtained by computing the bitwise ∨ operation.

Note that a Bloom filter obtained by encoding A ∩ B or A ∪ B will not
be exactly equal to the Bloom filters obtained by performing the above
operations. This is due to the underlying probabilistic nature of Bloom
filters, and may cause some elements to be lost or the false positive rate
to increase.

Finally, by applying Expression (2) to the resulting Bloom filters, we
can obtain estimates of the cardinalities of the union and the intersec-
tion of sets. We plan to use the cardinality of the intersection of two sets
to compute their distance.

A. Blanco-Justicia, J. Domingo-Ferrer Computer Communications 125 (2018) 13–23

16

4.3. Security and privacy of Bloom filters

Gerbet et al. [9] give security definitions for Bloom filters, by de-
riving them from the standard security properties of cryptographic hash
functions.

Definition 1 (Support). The support of a vector B of size m, denoted as
supp B(), is the set of its non-zero coordinate indices:

supp = ∈ … − ≠B i m b() { [0, , 1], 0}.i

Definition 2 (Pre-image of a Bloom filter). Given a Bloom filter B, a pre-
image of the filter is a string y∈ {0, 1}* with indices

supp= … ⊆−I h y h y B{ (), , ()} ()y k x0 1 .

In a pre-image attack, an adversary is given B. Finding pre-images
becomes easier as the support of the filter increases (as a consequence
of the insertion of more elements). In the extreme case in which the size
of the support equals the length m of the filter, finding a pre-image is
trivial. This is why we define a pre-image attack to be successful only if the
attacker finds a pre-image y that coincides with an element inserted in B.
Even if the attacker does not know the elements inserted in B, she may
be able to recognize one when she hits it, due to any redundancy in the
element (for example, an URL is easy to recognize).

Definition 3 (Second pre-image of a Bloom filter). Given a Bloom filter Bx

containing an element x∈ {0, 1}* with indices = … −I h x h x{ (), , ()},x k0 1 a
second pre-image of the filter is another string y≠ x with

= … −I h y h y{ (), , ()}y k0 1 such that supp⊆I B()y .

In a second pre-image attack, an adversary is given Bx and its element
x. The attack succeeds if the attacker finds a second pre-image y≠ x
that also passes the membership test.

Definition 4 (Collision in a Bloom filter). Given a Bloom filter B, two
strings x∈ {0, 1}* and y∈ {0, 1}*, with x≠ y, = … −I h x h x{ (), , ()},x k0 1
and = … −I h y h y{ (), , ()}y k0 1 are a collision if both supp⊆I B()x and

supp⊆I B()y .

In a collision attack, an adversary is given B. The attack succeeds if
the adversary finds a collision.

In the system we propose, servers store the users’ profiles encoded
as Bloom filters. Therefore:

• In order to preserve the privacy of the users, it is important that the
server, or any attacker with access to the server, cannot obtain the
profiles of the users from their encoded versions. Thus, we need
Bloom filters to resist pre-image attacks in order to ensure the
privacy of the users.

• On the other hand, resistance to second pre-image attacks is needed
to ensure that the server or any attacker cannot replace a known
legitimate profile by a fabricated profile that also passes the au-
thentication test.

• Finally, resistance to collision attacks is needed to ensure that it is
not easy for the attacker to find a random profile that passes the
authentication test as if it was some legitimate profile (unknown to
the attacker).

Gerbet et al. [9] also provide the computational complexities of pre-
image and second pre-image attacks against Bloom filters, and point out
that typical implementations of Bloom filters use non-cryptographic
hash functions for efficiency reasons and are thus weak against these
attacks. They recommend using keyed hash functions, such as message
authentication codes (e.g. HMAC) to thwart attacks against Bloom fil-
ters. Using HMAC does not only increase the domain of the hash
function (the HMAC input is augmented with the key), but also makes
the computation slower, which is a desirable property to keep hash
functions secure against brute-force search.

4.4. Secure instantiation of the Bloom filters

We follow the construction in [15] to build our Bloom filters. Ba-
sically, the k hash functions hi(x) are constructed from two independent
hash functions g1(x) and g2(x) as = +h x g x ig x m() () () modi 1 2 . This
strategy reduces the computing time to encode the sets, while main-
taining the false positive rate as low as if k independent hash functions
were used. In addition, to ensure that the domain of the hi(x) is large,
we take g2(x) to be keyed, that is, keyg x(,),2 so that hi(x) is also keyed,
that is, keyh x(,)i .

The optimal values for m and k can be computed as a function of the
maximum number N of allowed element insertions, and the maximum
acceptable false positive rate ρ [9]:

= − =m
N ρ

k m
N

ln
(ln 2)

, ln 2.2 (3)

5. Dissimilarity of sets

In this section, we describe methods to compute the dissimilarity
between sets from the size of their intersection. We draw on the work in
[2], and so we remain close to their terminology. In that article, three
types of feature sets are considered: independent categorical feature
sets, correlated categorical feature sets, and independent numerical
feature sets. We will limit our description and protocol to the first and
third cases, because the second case requires supporting computation of
intersections between multisets, something that we cannot accomplish
with standard Bloom filters.

5.1. Independent categorical feature values

Consider two sets X and Y containing independent categorical va-
lues, such that the relationship between any two values is equality or
nothing. These sets might for example represent the user’s browser
history (containing only domain names, but not specific pages, because
specific pages would be clearly correlated to their domains), visible cell
towers, or installed applications. The (dis)similarity between X and Y
can be computed as the multiplicative inverse of the size of their in-
tersection, that is 1/|X ∩ Y|, or ∞ when the intersection is empty. Note
that Bloom filters allow computing also the cardinality of the union of
two sets, which makes it possible, in our case, to compute the Jaccard
similarity index = ∩ ∪J X Y X Y X Y(,) / or its complement, the
Jaccard distance, that is = − =d X Y J X Y(,) 1 (,)J

∪ − ∩ ∪X Y X Y X Y()/ . This latter distance, being normalized, is a
very convenient measure.

Clearly, the more the coincidences between X and Y, the more si-
milar is the profile stored at the server to the fresh sample collected by
the device.

5.2. Independent numerical feature values

In this case, the profile of the user is a set of numerical values, for
example, sensor data, the browser history expressed as the number of
accesses to each website in a list, a histogram of user preferences, etc.

Given two sets = ⋯X x x{ , , }t1 and = ⋯Y y y{ , , },t1 a way to measure
the dissimilarity between them is to compute ∑ −= x yi

t
i i1 . If X and Y

represent normalized histograms, that is, 0≤ xi≤ 1 for all i and
∑ == x 1i

t
i1 (or 100 if the values are given as percentages), we could also

normalize the resulting distance, because the maximum possible dis-
tance is known (2 if the features of each histogram add to 1).

6. Privacy-preserving implicit authentication using Bloom filters

In this section we describe the system we propose to implicitly au-
thenticate users from their recorded behavior. We use Bloom filters to
encode the users’ profiles so that the server cannot obtain the profile of

A. Blanco-Justicia, J. Domingo-Ferrer Computer Communications 125 (2018) 13–23

17

a user from its Bloom filter representation; this guarantees privacy. The
decision whether a user is authenticated or not will be taken by com-
puting the distance between previously recorded profiles and the fresh
samples the user provides to the server; authentication will be positive
if that distance is below a predefined threshold.

First, we give a high-level vision of the architecture. Then, we
specify the authentication protocol.

6.1. Architecture

The high-level architecture of our implicit authentication me-
chanism is centered on: (i) a protection module in the user’s smart-
phone that collects sensor data and protects the samples; and (ii) a
distance computation module on the server’s side that can compute the
(dis)similarity of the encoded fresh sample and the encoded recorded
user profile, and return an authentication score or decision. We propose
two alternative architectures built on these core modules. The first one,
shown in Fig. 3, is a traditional approach, in which the service provider
is in charge of authenticating its users; the second one, shown in Fig. 4,
follows a single sign-on approach, in which an identity provider, for
example the carrier, is in charge of authenticating the users on behalf of
the service provider.

Next, we briefly describe the two above-mentioned core modules.
Then, the interaction between the protection module and the distance
computation module, that is, the implicit authentication protocol, is
described in Section 6.2.

We assume in the sequel that the user’s device is not infected by a
malware capable of reading sensor data. This is a reasonable assump-
tion, because an infected user’s device could leak the user’s behavior
anyway, so there would be no point in caring to use privacy-preserving
implicit authentication.

If one wishes protection against malware at the user’s device, then
the device’s sensor data should be only available in privileged execution
mode (e.g. ARM’s TrustZone [1]) and our authentication mechanism

should run also in this mode.

6.1.1. Protection module
The protection module in the user’s device is a software module that

first gathers data from the device. These data are used to build the fresh
sample of the user profile which will be the input to implicit authen-
tication. Then the protection module protects the sampled profile by
encoding it into a Bloom filter. Finally, the module sends the Bloom
filter to the server.

6.1.2. Distance computation module
The distance computation module runs on the server side and is

capable of comparing protected behavior samples against previously
stored protected reference user profiles. The comparison returns an
authentication score that is compared with a threshold, in order to
output an authentication decision.

6.2. Implicit authentication protocol

6.2.1. Set-up protocol
Let the initial user’s profile be � = ∅. The aim of the set-up protocol

is to begin populating this profile with one or several behavior samples.
Let the first sample S0 be a collection of sets S = ≤ ≤S i p{ 1 },i0 0, in
which every set = …S s s{ , , }i

i
n

i
0, 1

0, 0, is a labeled feature set, for n≤N. The
maximum allowed value N, as well as the values k and m (number of
hash functions and length of the Bloom filters, respectively), are set by
the server (who may be the carrier or the service provider). The weights
of each of the feature sets are also set by the server.

The sample S0 and every subsequent sample St to be added to the
user’s profile are preprocessed as follows:

• Sets of categorical features S∈St i t, are aggregated as described in
Section 3.2, by concatenating the label of the feature set to each of
the feature values and uniting them into sets Rt, j, taking into

Fig. 3. Basic architecture.

Fig. 4. Architecture with an identity provider (IP).

A. Blanco-Justicia, J. Domingo-Ferrer Computer Communications 125 (2018) 13–23

18

account the weights of each of the features. For example, sets Ap-
plications: {WhatsApp, Facebook} and Antennas: {ANT001,
ANT004} can be aggregated into Applications_Antennas: {Applica-
tions:WhatsApp, Applications:Facebook, Antennas:ANT001, Antenna-
s:ANT004}, as long as feature sets Applications and Antennas weigh
the same in the authentication decision.

• Regarding sets of numerical features inS ,t for each St, i the following
set is built

= ≤ ≤ ≤ ≤R j l j n l s{(,): 1 , 1 }.t i j
t i

,
,

(4)

For example, from =S {2, 3, 1}, one would build

=R {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 1)}.

The sizes of these sets are also required to be less than or equal to N.

The protocol proceeds as follows, using the modified sample
R = ≤ ≤R j q{ 1 }j0 0, :

1. The user initializes a set of Bloom filters R = ≤ ≤B B j q{ , 1 },R j0 0,
each of them of size m, by setting all their bits to 0.

2. Then, the device generates a large random number, say key, and
stores it in a secure location (for example, a hardware-backed key
storage).

3. The user inserts all elements in R0, j into B ,R j0, for 1≤ j≤ q, that is,
for every feature ∈r R ,l

j
j

0,
0, the user computes the index set

key key= … −I h r h r{ (,), , (,)}r l
j

k l
j

0
0,

1
0,

l
j0,

and sets the corresponding bits to 1.
4. Finally, the user sends RB 0 to the server in a confidential manner

and deletes S ,0 R0 and RB 0 from the device.

In the last step of the set-up protocol, the user can send RB 0 con-
fidentially to the server by encrypting RB 0 under the server’s public key.
This protocol can be executed several times within a predefined
training period, in order to populate the user’s profile � with additional
samples St . During this phase, the authentication server also sets the
authentication decision threshold, as well as the weights for each of the
feature samples, as depicted in Section 3. In general, a rather restrictive
threshold is preferable, since any false negatives can be resolved by
resorting to explicit authentication.

6.2.2. Authentication protocol
To authenticate the user, the server needs to compute the distances

between the feature sets included in the new behavior sample provided
by the user and the reference profile (which may consist of several
behavior samples).

Let the user’s new collected sample be a list of feature sets Sf . The
user’s device preprocesses the sample to obtain the modified sampleR ,f
in the same way described in the set-up phase, and builds a set of Bloom
filters RB ,f also in the same way described in the set-up phase. The
authentication protocol proceeds as follows:

1. The user and the server agree on a fresh random secret key K (for
example, using Diffie–Hellman key exchange).

2. The user’s device sends RB f encrypted under K to the server, and
deletes S ,f Rf and RB f .

3. The server then computes the distances between the protected
sample RB f and ℓ previously stored samples in the user profile. The
feature sets in each of the samples are assumed to be labeled in such
a way that only compatible features are compared. The distances are
computed as follows:

• For sets of categorical features, the server computes |Rt, j ∩ Rf, j|
and |Rt, j ∪ Rf, j|, as described in Section 4.2 and using Expression
(2), and obtains the Jaccard distance d R R(,),J t j f j, ,t f j, , for

− < <f t fℓ and all i.

• For sets of numerical features, the server computes |Rt, j|, |Rf, j|
and |Rt, j ∩ Rf, j|, and obtains the distance as

= + − ∩d R R R R2t f j t j f j t j f j, , , , , , (5)

because, using Expression (4),

+ − ∩R R R R2t j f j t j f j, , , ,

∑ ∑= + −
= =

s s s s s s(max{ , } min{ , }) 2 min{ , }
l

n

l
t j

l
f j

l
t j

l
f j

l

n

l
t j

l
f j

1

, , , ,

1

, ,

∑ ∑= − = −
= =

s s s s s s(max{ , } min{ , }) .
l

n

l
t j

l
f j

l
t j

l
f j

l

n

l
t j

l
f j

1

, , , ,

1

, ,

4. By aggregating the distances for all j’s according to their weights,
the server obtains a vector = ⋯− − −δ δ δ[, ,]f f f fℓ 1, 1, of the distances
between the new sample and ℓ past samples in the user profile. This
vector is used then to compute a score (e.g. the mean and standard
deviation of the distances) which is compared to a threshold t to
return an authentication decision.

5. On a successful authentication, the server may store RB f as addi-
tional reference for authentication. On a failed attempt, the service
provider will revert to the default explicit authentication me-
chanism (such as username-password), and will notify the user of a
possibly fraudulent authentication attempt.

7. Privacy and security analysis

As introduced in Section 3, a privacy attacker’s objective is to learn
the behavior of the authenticated users. We have the following two
claims related to privacy.

Claim 1 (Privacy at the user’s device). Assuming that the device has not
been tampered with, and that subsequent executions are performed in a
secure mode (e.g. ARM’s TrustZone [1]), an attacker with access to a user’s
device cannot obtain past feature samples.

Justification. The user’s device deletes the profiles and the pro-
tected profiles after set-up and after every authentication attempt. □

Claim 2 (Privacy at the server). The server (or an attacker) does not learn
anything about the plaintext profiles other than the number of encoded
elements and the sizes of the intersections and unions with other protected
profiles of the same user.

Justification. The server does not receive the plaintext feature sets
but Bloom filter encodings of such sets. To recover one feature in the
plaintext profile, the server, or any attacker with access to the protected
profile, needs to find not just a pre-image of the Bloom filter(s) (see
Section 4.3), but the right pre-image corresponding to the feature. If the
server finds a spurious pre-image (not corresponding to any element),
privacy is not violated.

Now, as described in Section 4.4, our instantiation of Bloom filters
uses keyed cryptographic hash functions, which, ideally, are resistant to
pre-image attacks. These hash functions have much larger domains (as
their input includes a long secret key only known to the user’s device)
and take longer to compute than plain hash functions. This thwarts
brute-force attacks attempting to find pre-images by exhaustive search.
Hence, finding pre-images (even spurious ones) is not feasible, let alone
finding the right pre-images corresponding to inserted features. □

Regarding security against impersonation, we can justify the fol-
lowing claim.

Claim 3 (Security against impersonation). An impersonator with access to
the user’s device has no better chance to cheat the system than guessing a
sample profile close enough to the reference profile stored at the server,

A. Blanco-Justicia, J. Domingo-Ferrer Computer Communications 125 (2018) 13–23

19

where the impersonator’s guess must be made without knowing the reference
profile or any previous fresh sample of the legitimate user.

Justification. By Claim 1, having access to the user’s device does
not give the impersonator access to past samples. Let us examine her
other options, which consist of attacking the set-up protocol, the au-
thentication protocol or the Bloom filters used in either protocol.

Attacks during set-up. Since the Bloom filters corresponding to sam-
ples in the user’s profile are registered in a confidential manner at set-
up time (see last step of the set-up protocol in Section 6.2.1), the im-
personator cannot get hold of any Bloom filter registered by a legit-
imate user. On the other hand, the set-up protocol cannot be executed a
second time after the predefined training period has expired, and so, an
attacker cannot replace after set-up the Bloom filters in the user’s
profile with new Bloom filters of her choice (the only Bloom filters that
can be added to the user’s profile after set-up are those corresponding to
fresh samples that were successfully authenticated, see last step of the
authentication protocol in Section 6.2.2).

Attacks during authentication. Each fresh sample is encrypted under a
different fresh random secret key K agreed upon by the user and the
server in the first step of the authentication protocol (see Section 6.2.2).
Hence:

• The attacker cannot get hold of any previous plaintext Bloom filter
submitted by the legitimate user, and therefore she cannot re-submit
this Bloom filter under a fresh key agreed upon between the attacker
and the server.

• The attacker cannot replay any eavesdropped encryption of a Bloom
filter under a previous K′ agreed upon between the legitimate user
and the server, because a fresh K must be agreed upon each time the
implicit authentication protocol is run.

Attacks to Bloom filters. Finding a second pre-image for unknown
legitimate (BS, S), where S is a feature set and BS is a Bloom filter
containing the elements of S, is not easier than finding a second pre-
image for known (BS, S); the latter is difficult in our instantiation of
Bloom filters based on keyed cryptographic hash functions. Similarly,
finding collisions S, S′ for unknown legitimate (BS, S) is not easier than
finding collisions for known (BS, S); the latter is difficult in our in-
stantiation of Bloom filters based on keyed cryptographic hash func-
tions. Hence, the only strategy to pass the authentication protocol that
remains to an attacker having access to the user’s device is to guess a
fresh sample Sf such that its corresponding Bloom filters RB f are close
to some of the Bloom filters stored by the server for the user to be
impersonated. □

8. Experimental analysis

To test the applicability of our mechanism, we implemented our
implicit authentication protocol in Python. Our choice for the hash
functions in the Bloom filters is hi
key key= +x x i x m(,) SHA-512() HMAC(,) mod , with i ranging from 1

to k. This construction follows the guidelines of [15] and is assumed to
be resistant against pre-image and second pre-image attacks; however,
new security requirements and attacks may require updating the above
choice of hash functions (this cautionary note is similar to the caveats
about hash functions in the context of digital signatures). The test bed
in which the tests were performed is an Ubuntu x64 14.04 LTS running
on an Intel i7-2600 at 3.4 GHz and with 16GB DDR3 1333 MHz.

The proposed mechanism is to be executed in part by the users’
devices, and so we conducted an experiment to find out the difference
in execution time of hash functions in the test bed and conditions de-
scribed above against a smartphone. This test consisted in the execution
of 100,000 hashes on 64 byte long messages. We used a Samsung
Galaxy S7 for comparison. The mean execution time of hash functions
in the test bed described above is 6.02 µ s, while the execution time in
the smartphone is 13.36 µ s. This gives a relative difference of 2.21
times. This difference, while not excessive, should be taken into account
in all the following tests.

8.1. Speed test for categorical features

In a first test, we checked the speed of the set-up and implicit au-
thentication protocols for different values of n, the size of the feature
sets. Parameters m and k were set as per Eq. (3). A user’s profile con-
taining a single feature set was considered and the results are shown in
Fig. 5. The running time of the set-up protocol does not include the
encryption of BR. Also, the running time of the implicit authentication
protocol does not include the execution of the protocol to agree on K.
The reason to exclude such cryptographic components is that we use
them as a black box: they are not part of the core of our proposal and
their running time depends very much on the precise cryptographic
algorithms and implementations used.

It may be surprising that the running times of both protocols are so
similar. The explanation is that both protocols perform very similar
tasks. As described in the previous section, the set-up protocol builds a
Bloom filter containing the features in the set and sends it to the server.
On the other hand, the implicit authentication protocol builds a Bloom
filter with the features in a fresh sample and sends it to the server, who
compares it with the reference profile received at set-up time. It turns
out that the time needed to compare two Bloom filters is negligible (less
than 1 ms) with respect to the time needed to build a Bloom filter
(23.4 s for =n 1, 000, 000), so that the latter dominates the total run-
ning time of the implicit authentication protocol.

8.2. Accuracy test for categorical features

In this second test, we measured the loss of accuracy introduced by
our mechanism in the case of independent categorical features. For such
a purpose, we generated 5000 pairs of feature sets of size =n 50 with
independent categorical features. The first feature set of each pair was
taken as the user’s profile submitted at set-up time. The second one was
taken as a fresh sample submitted at authentication time. Each of the
fresh samples was modified by randomly changing up to 50% of their
features. Next, with a threshold =t 0.3, we classified each of the pairs
by computing the Jaccard distance of the pair and tagging it as accepted
if its distance was below the threshold or rejected otherwise. Then, we
ran our protocol for all pairs with different values of m and k and we
counted how many pairs were misclassified (that is, accepted pairs that
did not pass authentication, false negatives, plus rejected pairs that
passed it, false positives). The results are shown in Fig. 6.

The vertical dashed line at approximately =m 29.5 is the optimal

Fig. 5. Categorical features. Running times for different values of the feature set
size n. The user profile is assumed to contain a single feature set.

A. Blanco-Justicia, J. Domingo-Ferrer Computer Communications 125 (2018) 13–23

20

value for m as per Expression (3), using = =N n 50 and =ρ 0.001. We
can see that for values of m greater than or equal to the optimal value,
the error rate falls below 5%; in fact, it approaches 0% for m close to
220. Note that for =m 25 and =k 4 or =k 8, the error rate is 1. This is
because for values of m below the optimal value, the Bloom filter is
quickly filled with 1’s. When all its m bits become 1’s, by Expression (2)
the Bloom filter contains ∞ elements (− ln 0); in other words, any
element passes the membership test. Hence, a large filter size m is re-
commended, and the implicit authentication time plot shows that sizes
as large as =m 220 are quite manageable in terms of time. Regarding
storage and communication, large m values are not problematic either,
because Bloom filters can be easily stored and sent in lossless com-
pressed form.

8.3. Accuracy and speed test for numerical features

In this test, we checked the accuracy of our mechanism in the case
of independent numerical features. We followed an approach similar to
the one in the previous test. We generated a reference profile consisting
of a single feature set S0 consisting of =n 50 percentage values adding
to 100, that is, a normalized histogram. The features in S0 might re-
present the user’s 50 most visited websites with their relative fre-
quencies. From S0, we generated additional feature sets Si for
1≤ i≤ 100, by modifying each of the 50 features of S0 randomly and
re-normalizing. Feature set S0 was taken as the user’s profile submitted
as set-up time. Sets …S S, ,1 100 were taken as fresh samples.

We computed the difference between two samples as

∑= −
=

d S S s s(,) .i
j

j j
i

0
1

50
0

The average introduced distance d(S0, Si) for 1≤ i≤ 100 was 5.43. As
our method cannot deal with real numbers, we made a transformation
by multiplying by 100 and rounding each feature values. This proce-
dure introduced an error of 0.46%. Note that multiplying feature values
by 100 to eliminate the decimal positions increases the size of the sets
R0 and Ri, respectively built during set-up and authentication according
to Expression (4), because the maximum values for sj

0 and sj
i increase by

a factor of 100.
We set =m 220 and =k 4. By using our implicit authentication

method, the average error introduced for 1≤ i≤ 100 was 0.83%.
Beyond measuring the accuracy, we also measured the time taken

by the set-up and the implicit authentication protocols. Since we are in
the independent numerical feature case, the set-up protocol consisted of
building the set R0 from the user’s profile feature set S0, and building
the corresponding Bloom filter (see Section 6.2.1). The mean time in
this case was 133 ms. The implicit authentication protocol consisted of
building the set Ri from a fresh sample profile Si, for some

∈ …i {1, ,100}, then computing the sizes |R0|, |Ri| and |R0 ∩ Ri| and fi-
nally computing the distance from these sizes as per Expression (5). The
mean time of the authentication protocol was 133.3 ms (very similar to
the mean time of the set-up protocol).

8.4. Tests on the GCU dataset

Finally, we tested our authentication mechanism with the GCU
(Glasgow Caledonian University) Dataset Version 1 [13]. The GCU
Dataset contains sensor data from 7 Android users. The data consist of
WiFi networks, cell towers, application use and light and sound levels.

In this experiment, we used the application usage data to authen-
ticate users. Since these data are categorical and independent, we used
the Jaccard similarity coefficient to test the users. The experiment
began by choosing one of the 7 users at random, and building a re-
ference user profile by storing 50 samples of the chosen user. Then, we
made 1,000,000 authentication attempts, by choosing sample readings
at random from all 7 users. We authenticated a user when the average
similarity, computed as the average similarity of the random sample
against the 50 reference samples, was above a pre-specified threshold,
taking into account the standard error of the computed average.

In Fig. 7, we show the performance metrics of this authentication
mechanism for the GCU dataset, including false positive and negative
rates, for increasing values of the threshold. Fig. 7(a) shows the results
of the experiment when computing the distances with cleartext sam-
ples, while Fig. 7(b) shows the results for comparisons using our pro-
posed mechanism based on Bloom filters. Note that the results of both
approaches are nearly identical, showing that the use of Bloom filters to
protect the user profiles does not significantly affect the authentication
accuracy with respect to comparing the profiles in the clear.

An additional positive side effect of using Bloom filters is that, be-
cause of their nature, that is, being bit strings of a fixed length, the
storage requirements for such an authentication mechanism become
simpler to predict than those of a mechanism which uses the raw data,
which are sets of variable size of numerical and/or categorical values.

8.5. Comparison with previous proposals

Privacy-preserving implicit authentication requires an underlying
private matching scheme. The major private matching schemes in the
literature fall into two categories: those based on garbled circuits and
the Freedman–Nissim–Pinkas scheme [8].

The existing privacy-preserving implicit authentication schemes
[6,18] are based on [8]. The oldest one, [18], requires the user to
compute two encryptions (one using Paillier and the second one using
an order preserving encryption scheme) for each feature, then decrypt a
Paillier encryption and reencrypt using the OPSE scheme. On the other

Fig. 6. Categorical features. Accuracy and running times for different values of m and k. Results were obtained as the average of 5000 pairs of feature sets, each
containing =n 50 features.

A. Blanco-Justicia, J. Domingo-Ferrer Computer Communications 125 (2018) 13–23

21

hand, our previous scheme [6] requires computing only one Paillier
encryption per feature, so it outperforms [18] by being able to perform
tens of comparisons in tens of seconds.

If one resorts to garbled circuits as a private matching scheme, the
current implementations of this generic multiparty construction allow
comparing up to ten thousand set elements in the order of hundreds of
seconds [10].

In contrast, our current proposal allows comparing feature sets of 1
million elements in the order of tens of seconds.

This radical performance improvement over previous works comes
at the expense of some relaxation in security. Whereas the homo-
morphic encryption used in our previous papers was resistant to mal-
icious user devices, the approach based on Bloom filters presented in
this paper requires the user device to be protected against malware. All
in all, though, the fact that the new approach allows basing authenti-
cation on more comprehensive sets of features compensates the pre-
vious shortcoming: by protecting the user device against malware, one
attains a much more accurate implicit authentication.

9. Conclusions and future work

We have proposed a computationally efficient privacy-preserving
implicit authentication protocol. Our protocol builds on the work in
[6], but avoids the high complexity of that proposal that limited the size
of user profiles that could be managed. To make the computation
lighter, we have used the properties of Bloom filters to calculate the
sizes of the union and intersection of encoded sets. Our protocol is
simple and fast, and therefore ready to be implemented in production
systems. Additionally, the privacy of the user profiles is protected be-
cause the profiles cannot be recovered from their Bloom filter encod-
ings.

Our efficiency improvement, however, comes at the cost of losing
the semantic security provided by the aforementioned protocol. In an
extreme scenario, such a loss might impact on the privacy of our so-
lution. We plan to solve this problem in future work, by considering the
use of oblivious transfer protocols and homomorphic encryption (such
as Goldwasser–Micali).

Another line of future research relates to finding ways of using
Bloom filters to deal with correlated features in profiles, that is, features
that are not independent of each other (for example, if the feature va-
lues are the IDs of cell towers or Internet access points seen by the
device, nearby cell towers/access points are more similar to each other
than distant cell towers/access points).

Acknowledgments and disclaimer

The following funding sources are gratefully acknowledged:

European Commission (projects H2020 644024 “CLARUS” and H2020
700540 “CANVAS”), Government of Catalonia (ICREA Acadèmia Prize
to J. Domingo-Ferrer and grant 2014 SGR 537), Spanish Ministry of
Economy, Industry and Competitivity (project TIN2014-57364-C2-R
“SmartGlacis”). The authors are with the UNESCO Chair in Data
Privacy, but the views in this paper are their own and do not necessarily
reflect those of UNESCO.

References

[1] ARM TrustZone, https://www.arm.com/products/security-on-arm/trustzone.
Accessed.

[2] A. Blanco-Justicia, J. Domingo-Ferrer, O. Farràs, D. Sánchez, Distance computation
between two private preference functions, Proceedings of the 29th IFIP
International Information Security Conference, Springer, 2014, pp. 460–470.

[3] B.H. Bloom, Space/time trade-offs in hash coding with allowable errors, Commun.
ACM 13 (7) (1970) 422–426.

[4] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison, M. Smid,
Y. Tang, On the false-positive rate of bloom filters, Inf. Process. Lett. 108 (4) (2008)
210–213.

[5] N.L. Clarke, S.M. Furnell, Authenticating mobile phone users using keystroke ana-
lysis, Int. J. Inf. Secur. 6 (1) (2007) 1–14.

[6] J. Domingo-Ferrer, Q. Wu, A. Blanco-Justicia, Flexible and robust privacy-preser-
ving implicit authentication, Proceedings of the 30th IFIP International Information
Security Conference, Springer, 2015, pp. 18–34.

[7] C. Dong, L. Chen, Z. Wen, When private set intersection meets big data: an efficient
and scalable protocol, Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, ACM, 2013, pp. 789–800.

[8] M.J. Freedman, K. Nissim, B. Pinkas, Efficient private matching and set intersection,
Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques-EUROCRYPT, Springer, 2004, pp. 1–19.

[9] T. Gerbet, A. Kumar, C. Lauradoux, The power of evil choices in Bloom filters, 45th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(2015) 101–112. IEEE.

[10] Y. Huang, D. Evans, J. Katz, Private set intersection: are garbled circuits better than
custom protocols? NDSS, (2012).

[11] M. Jakobsson, E. Shi, P. Golle, R. Chow, Implicit authentication for mobile devices,
Proceedings of the 4th USENIX conference on Hot topics in security, USENIX
Association, 2009. 9–9.

[12] M. Kantarcioglu, R. Nix, J. Vaidya, An efficient approximate protocol for privacy-
preserving association rule mining, Proceedings of the Pacific-Asia Conference on
Knowledge Discovery and Data Mining, Springer, 2009, pp. 515–524.

[13] H.G. Kayacik, M. Just, L. Baillie, D. Aspinall and N. Micallef, Data driven authen-
tication: on the effectiveness of user behaviour modelling with mobile device sen-
sors, arXiv:1410.7743.

[14] F. Kerschbaum, Outsourced private set intersection using homomorphic encryption,
Proceedings of the 7th ACM Symposium on Information, Computer and
Communications Security, ACM, 2012, pp. 85–86.

[15] A. Kirsch, M. Mitzenmacher, Less hashing, same performance: building a better
bloom filter, Random Struct. Algorithm. 33 (2) (2008) 187–218.

[16] J. Muncaster, M. Turk, Continuous multimodal authentication using dynamic
Bayesian networks, Proceedings of 2nd Workshop Multimodal User Authentication,
Toulouse, France, 2006.

[17] B. Pinkas, T. Schneider, M. Zohner, Faster private set intersection based on
OTextension, 23rd USENIX Security Symposium (USENIX Security 14), (2014), pp.
797–812.

[18] N.A. Safa, R. Safavi-Naini, S.F. Shahandashti, Privacy-preserving implicit authen-
tication, Proceedings of the IFIP International Information Security Conference,

Fig. 7. Performance indicators of the implicit authentication mechanism on the GCU dataset. TPR stands for true positive rate (correct authentication) and TNR for
true negative rate (correct non-authentication). Type I Error stands for false positive rate and Type II for false negative rate.

A. Blanco-Justicia, J. Domingo-Ferrer Computer Communications 125 (2018) 13–23

22

https://www.arm.com/products/security-on-arm/trustzone
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0001
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0001
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0001
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0002
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0002
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0003
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0003
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0003
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0004
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0004
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0005
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0005
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0005
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0006
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0006
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0006
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0007
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0007
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0007
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0008
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0008
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0009
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0009
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0009
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0010
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0010
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0010
http://arxiv.org/abs/1410.7743
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0011
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0011
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0011
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0012
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0012
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0013
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0013
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0013
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0014
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0014
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0014
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0015
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0015

Springer, 2014, pp. 471–484.
[19] W. Shi, J. Yang, Y. Jiang, F. Yang, Y. Xiong, SenGuard: passive user identification on

smartphones using multiple sensors, Wireless and Mobile Computing, Networking
and Communications (WiMob), 2011 IEEE 7th International Conference, IEEE,
2011, pp. 141–148.

[20] R. Schnell, T. Bachteler, J. Reiher, Privacy-preserving record linkage using Bloom

filters, BMC Med. Inform. Decis. Mak. 9 (1) (2009) 41.
[21] S.J. Swamidass, P. Baldi, Mathematical correction for fingerprint similarity mea-

sures to improve chemical retrieval, J. Chem. Inf. Model 47 (3) (2007) 952–964.
[22] S. Taheri, M.M. Islam, R. Safavi-Naini, Privacy-enhanced profile-based authenti-

cation using sparse random projection, IFIP International Conference on ICT
Systems Security and Privacy Protection, Springer, Cham, 2017, pp. 474–490.

A. Blanco-Justicia, J. Domingo-Ferrer Computer Communications 125 (2018) 13–23

23

http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0015
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0016
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0016
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0016
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0016
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0017
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0017
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0018
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0018
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0019
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0019
http://refhub.elsevier.com/S0140-3664(17)31222-7/sbref0019

	Efficient privacy-preserving implicit authentication
	Introduction
	Contribution and plan of this paper

	Related work
	Implicit authentication
	Privacy-preserving implicit authentication

	Problem statement
	Scenario
	User profiles, behavior samples and feature sets
	Privacy attacker
	Impersonator

	Bloom filters
	Bloom filters in privacy-preserving data mining
	Union and intersection of sets
	Security and privacy of Bloom filters
	Secure instantiation of the Bloom filters

	Dissimilarity of sets
	Independent categorical feature values
	Independent numerical feature values

	Privacy-preserving implicit authentication using Bloom filters
	Architecture
	Protection module
	Distance computation module

	Implicit authentication protocol
	Set-up protocol
	Authentication protocol

	Privacy and security analysis
	Experimental analysis
	Speed test for categorical features
	Accuracy test for categorical features
	Accuracy and speed test for numerical features
	Tests on the GCU dataset
	Comparison with previous proposals

	Conclusions and future work
	Acknowledgments and disclaimer
	References

