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Abstract— Face recognition is challenge task which involves
determining the identity of facial images. With availability of a
massive amount of labeled facial images gathered from Internet,
deep convolution neural networks(DCNNs) have achieved great
success in face recognition tasks. Those images are gathered
from unconstrain environment, which contain people with
different ethnicity, age, gender and so on. However, in the actual
application scenario, the target face database may be gath-
ered under different conditions compered with source train-
ing dataset, e.g. different ethnicity, different age distribution,
disparate shooting environment. These factors increase domain
discrepancy between source training database and target appli-
cation database and make the learnt model degenerate in target
database. Meanwhile, for the target database where labeled data
are lacking or unavailable, directly using target data to fine-
tune pre-learnt model becomes intractable and impractical. In
this paper, we adopt unsupervised transfer learning methods to
address this issue. To alleviate the discrepancy between source
and target face database and ensure the generalization ability
of the model, we constrain the maximum mean discrepancy
(MMD) between source database and target database and
utilize the massive amount of labeled facial images of source
database to training the deep neural network at the same time.
We evaluate our method on two face recognition benchmarks
and significantly enhance the performance without utilizing the
target label.

I. INTRODUCTION

With availability of a massive amount of labeled im-

ages gathered from Internet, deep neural networks have

significantly improved the performance in many computer

vision applications, such as object detection [3], [15], object

classification [7], [17], face recognition [11], [19], [16], [8],

[9] and so on. Most of typical techniques are to train a

deep neural network with massive images and then apply

it to target test dataset. These methods are valid when the

training data and test data are independently and identically

drawn from the same or similarity distribution. However,

in actual application scenario, the distribution of target

and training data is always dissonant, which degenerates

model performance on target test data. To accommodate the

distribution of target data and enhance model performance,

one of the most direct approach is to fine-tune a pre-trained

deep neural network’s parameter on target database with

the supervision of data label. This strategy turns out to be

problematic for a target task where labeled data is lacking

or even unavailable. Meanwhile, the deep neural networks
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Fig. 1. We show several sample images of three face databases. (a) is
CASIA-WebFace [22]. (b) is GBU face challenge dataset [13], (c) is FERET
[14].

easily suffer from a significant amount of over-fitting under

supervision of small amount of labeled data, which usually

degenerates the generalization ability of the model.

This problem also exists in the face recognition task.

Most of deep models such as VGG-face [11], Facenet [16],

SphereFace [8] et al. , are firstly trained on a large scale

face database and then evaluated on other face databases

like LFW [4], Youtube [20], MegaFace [6] et.al. These

databases are all gathered from Internet for the convenience

of data collection. However, in real world applications, the

target test data may contain people with specific ethnicity,

age group, gender, imaging quality, pose of faces etc. and

the shooting environment of target test data and source

training data may vary greatly. These factors increase domain

discrepancy and degenerate face recognition performance on

target application. As shown in Fig. 1, there are signifi-

cant differences in the picture of different databases. The

images in CASIA-WebFace [22] are collected from Internet

under unconstrained environment and most of the figures are

celebrities and public. The GBU [13] contains still frontal

facial images acquired with digital camera. FERET [14] is

collected under constrained environment and the pictures are

all gray. Different data collection methods and application

environments cause a significant discrepancy between dif-

ferent databases. Our experiment results also show a poor

performance on target test database when directly adopting

the pre-trained model.

The approaches which are proposed to address the chal-

lenge of discrepancy between training data and test data are

often referred to domain adaptation. Generally, the databases

with large scale of labeled data are called source domain

while the databases with little or no labeled data are called

target domain. Source domain and target domain usually

share the same task but with different distribution. Depending
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on whether the label information is available for target data,

domain adaptation can be categorized into supervised or

unsupervised domain adaptation. In this work, we focus on

unsupervised domain adaptation in face recognition problem-

s. The main contribution of this paper is applying the domain

adaptation approaches to face recognition problems when the

target test dataset exists huge distribution discrepancy com-

pared with training data. We explore the training methods of

unsupervised domain adaptation without utilizing the label

of target data in deep neural networks, which significantly

alleviates the discrepancy between source and target face

database and enhances model performance on target test data.

II. RELATED WORK

Recently, all the top performing methods for face recog-

nition were all based on DCNN architectures. Facenet [16]

presented a triplet embedding loss to learn a mapping from

face images to a compact Euclidean space. The loss aimed

to separate the positive pair from the negative by a distance

margin. VGG-face model [11] is a typical application based

on VGG architectures [17]. It was trained on a large scale

datset of 2.6M images from 2622 subjects. [8] proposed

a angular softmax loss to learn angularly discriminative

features on a hypersphere manifold. These method were

all focus on utilizing a massive amount of labeled facial

images to train a DCNN of strong generalization ability

and testing on common benchmarks. All these approaches

obtained excellent performance on many benchmarks e.g.

LFW [4], YTF [20], MegaFace [6], which were also collected

from the Internet like the training data.

Deep learning architectures have been explored for domain

adaptation problems and obtained significant performance

gains. [23] comprehensively explored the transferability of

deep neural networks. It focused on the scenario where a suf-

ficient labeled data was available in target domain. However,

in practical scenario, labeled target data is usually limited

or unacquirable. To address this issue, many unsupervised

domain adaptation approaches were proposed. [18] proposed

a model that automatically learnt a representation jointly

trained to optimize for classification and domain invariance.

A single-kernel MMD was adapted as domain discrepancy

metric and only one layer was selected to transfer. Our work

is primarily motivated by [10], which further proposed a nov-

el deep neural network architecture for unsupervised domain

adaptation and transferred all the layers corresponding to

task-specific features by utilizing multi-kernel MMD. [21]

designed a weighted MMD model to alleviate the effect

of class weight bias in domain adaptation. This work was

restricted to the situation that source domain and target

domain shared the same categories, which is unsuitable

for open-set face recognition problems. [5] proposed a Bi-

shifting Auto-Encoder network, which could shift source

domain samples to target domain and also shift the target

domain samples to source domain. This method solved many

special cross domain recognition problems in face recogni-

tion scenarios such as cross view angle recognition, cross

ethnicity recognition and cross imaging sensor recognition.

III. METHOD

A. Maximum Mean Discrepancy
In the field of domain adaptation, maximum mean discrep-

ancy(MMD) has been widely adopted as a standard distri-
bution distance metric to measure the discrepancy between
source and target domains. Assuming that there are two
datasets S(represents source data) and T(represents target
data), the data are firstly mapped into a reproducing kernel
Hilbert space (RKHS) using function φ(·). Let Φ be a class
of function φ(·). The MMD between S and T is defined as
(1),

MMD2[Φ, S, T ] :=

[
sup
φ∈Φ

(ES [φ(x
S)]− ET [φ(x

T )])

]2

(1)

E represents the expectation with regard to the distribution.
We have MMD[Φ, S, T ] = 0 when S and T share the same
distribution based on the statistic tests defined by MMD. Let
xS = (xS

1 , ..., x
S
M ) and xT = (xT

1 , ..., x
T
N ) denote two set

of samples drawn from S and T, respectively. MMD can be
estimated empirically given by (2)

MMD2[Φ, S, T ] :=

[
sup
φ∈Φ

(
1

M

M∑
i=1

φ(xS
i )− 1

N

N∑
i=1

φ(xT
i )

]2

(2)
φ(·) is the mapping to the RKHS, and k(·, ·) = 〈φ(·), φ(·)〉 is
the universal kernel associated with this mapping Generally,
k(·, ·) is defined as the convex combination of m kernels
{ki} i ∈ [1,m],

k =

m∑
i=1

βiki, s.t.

m∑
i=1

βi = 1, βi ≥ 0 (3)

{βi} is the coefficients of ith kernel.

Obviously, as the definition above, the calculation of

MMD does not require the category information of source

data or target data. Hence, the MMD can be utilized in

unsupervised domain adaptation when the target labeled is

lacking or unavailable.

B. Deep Unsupervised Domain adaptation

Supervised CNNs based feature representations have been

shown to be extremely effective for many computer vision

tasks. However, as the unavailability of target labeled data,

directly adapting CNNs to the target domain via fine-tuning

is impractical. To address this issue, training a joint source

and target CNN architecture is adapted in our approaches.

The joint architecture we used is as Fig. 2 shows. A mas-

sive amount of source labeled facial images are utilized to

guarantee the generalization ability of deep CNNs through

training a classification network. Meanwhile, the domain loss

minimizes the domain discrepancy by constraining the MMD

between source data and target data.
According to the observation of [23], the transfer ability

drops in higher layers with increasing domain discrepancy
and transfer learning method would obtain better perfor-
mance when transferring higher layers of the deep neural
network. Selecting suitable transfer layers can significantly
enhance the transfer efficiency. In order to better measure
the domain discrepancy and enhance transfer efficiency, we
simultaneously transfer several higher layers of deep neural
network as [10] mentioned, which is called multi-layer
adaptation. We extend the VGG-Face architecture proposed
in [11] and adopt a multi-layer adaptation regularizer based
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Fig. 2. The joint deep neural network architecture for unsupervised domain
adaptation. The inputs of the upper network are source labeled images while
the lower are target unlabeled data. All the source face and target face are
aligned to the same reference point(the yellow dotes in the facial images).
The blue dotted oval represents the source domain distribution and the
crosses inside donate source face. The orange dotted oval represents the
target domain distribution and the dotes inside donate target face. Domain
loss aims at minimizing the distribution discrepancy of two domains.

on MMD on layer FC6 and FC7. The loss function is as (4)
shows,

L = Lc(x
s, ys) + λ

l2∑
l=l1

MMD2
k(S, T ) (4)

where Lc is the classification loss function on the source

labeled data and we adopt softmax loss function in our

experiments. xs represents the source data and its ground

truth label is ys. MMD2
k denotes the distance between the

source data, S, and the target data, T. In the architecture of

VGG-FACE, l1 and l2 respectively represent layer FC6 and

FC7. λ is a penalty parameter to balance the contribution of

classification loss and domain discrepancy loss. If λ is set

too low, MMD regularizer may have no effect on eliminating

domain discrepancy while if λ is set too high, the heavily

regularization may get all points in feature space together. In

order to better measure the domain discrepancy, we adopt a

multi-kernel-MMD as the definition of (3).

IV. EXPERIMENT

In this section, we evaluate our unsupervised domain adap-

tation methods on two famous face recognition benchmarks.

We will begin with introducing the detailed information and

evaluation protocol of the datasets we utilized, followed

by illustrating the training details of our experiments and

reporting result of on two face recognition benchmarks.

A. Dataset and Evaluation Protocol

CASIA-WebFace: CASIA-WebFace dataset is a large

scale face dataset gathered from Internet. It contains 10,575

subjects and 494,414 images. The large scale of labeled facial

data does great help to train DCNNs. In our experiments, we

adopt this dataset as the source domain data for training the

classification network.

GBU: Its full name is The Good, the Bad, and the Ugly
Face Challenge. This dataset consists of three partitions.

Different partitions contain pairs of images with different

difficulty levels based on the performance of three top

performers in the FRVT 2006. The Good partition consists

images which are easy to match. The Bad partition contains

pairs of images of average difficulty to recognize. The Ugly

partition contains pairs of images considered difficult to

recognize. Each of partitions consists of a target set and a

query set. Both target set and query set contain 1085 images

for 437 distinct people. Following the evaluation protocol of

[13], we use ROC analysis and compare the the verification

rate for each partition at a FAR(false accept rate) of 0.001 of

different algorithms. We utilize part of images from FRGC

[25] as the target training data, which consists of 19270 still

front faces. The subjects in target training set do not appear

in the three partitions.

FERET: The FERET database consists of a total of 14051

gray-scale images representing 1,199 individuals. The facial

images in FERET are divided into five set, respectively is

fa(used as a gallery set), fb(images with different expression),

fc(images with different illumination), dup I(the images were

taken later in time) and dup II(the images were taken at

least a year after the corresponding gallery images). The

recognition rates at rank 1 are reported in our experiments.

B. Training Details

As Fig. 2 shows, all the images of different datasets

are aligned to the same reference point using three facial

landmarks(left eye, right eye and center of mouth). The

images are firstly resized to 250×250 and then a random crop

of 224×224 is fed to DCNNs. We also augment the data by

flipping it horizontally with 50% probability. The VGG-face

model was train on 2.6 millon facial images. The reported

results on LFW and YTF shown the excellent performance of

this model. However, we know nothing about the face aligned

method in [11]. Inconsistent alignment methods between

training data and test data may cause a poor performance

while testing. To address this issue, we firstly use the CASIA-

WebFace dataset to train classification network based on pre-

train VGG-FACE model. The CASIA-WebFace dataset and

other target datasets share the uniform alignment methods as

we mentioned before. As the last classifier is trained from

scratch, we set its learning rate to be 10 times that of the

lower layers. The based learning rate is fixed at 10−4. The

batch size is set to 32 and the network is trained for 2×104

iterations.

After training the basic classification networks on CASIA-

WebFace, we add the target data and joint classification loss

and domain loss to train the domain adaptation network. As

Fig. 2 shows, our network architecture is comprised of two

basic DCNNs which are identical in structure and shared

by parameters. One is for classification on source data and

the other is for feature calculating on target data. We extend

the VGG-Face [11] network as our basic architectures and

adopt the model we trained on CASIA -WebFace before to

initialize network parameters. The preprocessing of target

data is the same as source data we mentioned before. At this

stage, the learning rate of all layers is fixed to 10−4.

The kernel we use in MMD is Gaussian kernel k(xi, xy) =

e−‖xi−xy‖2/γ where γ donates the bandwidth. In our exper-

iment, we use both single-kernel and multi-kernel MMD as
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the domain discrepancy metric. When using multi-kernel M-

MD, we consider five Gaussian kernels by setting bandwidth

to γm · (1, 21, 22, 23, 24), respectively, where γm is set to

the median pairwise distances [24] on training data. When

adopting single-kernel MMD, we only utilize one Gaussian

kernel which bandwidth is set to γm. To be fair, the hyper-

parameter λ in (4) is fixed at 0.5 in all experiments. To

evaluate the effectiveness of multi-layer and multi-kernel

adaptation, we make several variants of the deep adaptation

networks, respectively are DANs7 (using single-kernel and

transferring FC7 layer only), DANs6,7 (using single-kernel

and transferring both FC6 and FC7 layer), DANm7 (using

multi-kernel and transferring FC7 layer only) and DANm6,7
(using multi-kernel and transferring both FC6 and FC7
layer).

C. Experiment Results

In the experiment of GBU challange dataset, we report

the VR(verification rate) for three partitions, the Good, the

Bad and the Ugly at a FAR(false accept rate) of 0.001.

We evaluate the performance of the four variants of deep

adaptation networks and compared them with other methods.

Fusion-baseline in [12] donated the the FRVT 2006 fusion

algorithm and the result VGG-face was reported in [12] by

utilizing the pre-trained VGG-face model. The VGG-CASIA
represents the model we trained in stage 1 on CASIA-

WebFace dataset and we choose it as our baseline. The exact

results are shown in Table I.

TABLE I

VR AT FAR = 0.001 FOR GBU PARTITIONS.

Method Ugly Bad Good
Fusion-baseline[12] 15.00% 80.00% 98.00%
VGG[12] 26.00% 52.00% 85.00%

VGG-CASIA 48.80% 73.55% 95.57%
DANs7 60.78% 84.95% 98.00%
DANs6,7 63.42% 87.08% 98.54%
DANm7 68.42% 87.68% 98.67%
DANm6,7 69.42% 88.87% 98.93%

As the result reported in Table 1, the baseline model

trained on CASIA-WebFace only obtains much better per-

formance compared the result reported in [12]. The result

suggests that the uniform face aligned algorithm of source

domain and target domain images is the key to ensuring

model performance in the face recognition problem. The

DANm6,7 performs the best with an improvement up to

20.62% on the Ugly partition, 14.13% on the Bad partition

and 3.1% on the Good partition compared with our baseline.

The models trained with single-kernel MMD obtain a little

bit worse results compared with multi-kernel MMD. We can

observe that the unsupervised domain adaptation network

can significantly improve the performance on target dataset

and the multi-kernel MMD combined with transferring multi-

layer is more beneficial to alleviate the domain discrepancy.

We further present the ROC curve in Fig. 3. As the the trend

of the ROC curve shows, the performance of deep adaptation

network is superior on all three partitions.
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Fig. 3. ROCs on the GBU partitions. ROCs are shown for the VGG-CASIA
baseline and the unsupervised domain adaptation algorithms.

In the experiments of FERET, we report the recognition

rates of four sets and their average. The exact results are

shown in Table II. We firstly reported two classical methods

TABLE II

RECOGNITION RATES ON FERET.

Method fb fc dup I dup II Avg.
LBP[1] 97.00% 79.00% 66.00% 64.00% 81.00%
PCANet[2] 99.58% 100% 95.43% 94.02% 97.26%

VGG-CASIA 99.67% 98.45% 95.15% 95.72% 97.25%
DANs7 99.74% 98.96% 97.09% 97.43% 98.31%
DANs6,7 99.75% 98.97% 96.40% 97.00% 98.03%
DANm7 99.58% 99.48% 96.54% 97.01% 98.15%
DANm6,7 99.67% 99.48% 97.37% 98.29% 98.70%

performance on FERET. One is LBP[1], which designed

facial image representation based on local binary pattern

(LBP) texture features. [2] proposed a simple deep networks

based on principal component analysis (PCA) for image

classification. We still choose the model trained on CASIA

webface as the baseline in this experiment. After the un-

supervised domain adaptation training, we obtain a bit of

performance boost compared with our baseline and other

approaches, especially in the subsets of dup I and dup II.

Similar to the experiment on GBU, the network DANm6,7

obtains the best accuracy of 98.70% on average.

V. CONCLUSIONS

In this paper, we focus on the issue of domain discrep-

ancy between source training data and target test data in

face recognition scenario. We adopt a deep unsupervised

domain adaptation neural network and jointly utilize the

labeled large scale source data and unlabeled target data to

alleviate the domain discrepancy. We show the transferability

between source face and target face by the multi-kernels

MMD constraining on multi-layers representation. Empirical

results show that the method can significantly enhance model

performance on target test data without utilizing the label

information.
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