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Abstract: Convolutional neural network (CNN) based approaches are the state of the art in various computer vision tasks
including face recognition. Considerable research effort is currently being directed toward further improving CNNs by focusing
on model architectures and training techniques. However, studies systematically exploring the strengths and weaknesses of
existing deep models for face recognition are still relatively scarce. In this paper, we try to fill this gap and study the effects of
different covariates on the verification performance of four recent CNN models using the Labelled Faces in the Wild dataset.
Specifically, we investigate the influence of covariates related to image quality and model characteristics, and analyse their
impact on the face verification performance of different deep CNN models. Based on comprehensive and rigorous
experimentation, we identify the strengths and weaknesses of the deep learning models, and present key areas for potential
future research. Our results indicate that high levels of noise, blur, missing pixels, and brightness have a detrimental effect on
the verification performance of all models, whereas the impact of contrast changes and compression artefacts is limited. We find
that the descriptor-computation strategy and colour information does not have a significant influence on performance.

1 Introduction
Recent advances in deep learning and convolutional neural
networks (CNNs) have contributed to significant performance
improvements in a number of computer vision problems, ranging
from low-level vision tasks such as saliency detection and
modelling [1, 2] to higher-level problems such as object detection
[3, 4], recognition [5–9], tracking [10–12], or semantic
segmentation [13–15]. Deep learning-based approaches have been
particularly successful in the field of face recognition, where
contemporary deep models now report near perfect performance on
popular, long-standing benchmarks such as LFW [16], which due
to its difficulty, represented the de facto standard for evaluating
face recognition technology for nearly a decade.

Most of the ongoing research on deep learning-based face
recognition focuses on new model architectures, better techniques
for exploiting the generated face representations, and related
approaches aimed at improving both the performance and
robustness of deep face recognition technology on common
benchmark tasks [17–19]. Research in these areas is typically
conducted on unconstrained datasets with various sources of image
variability present at once, which makes it difficult to draw clear
conclusions about the sources of errors and problems that are not
addressed appropriately by the existing deep CNN models. Much
less work is devoted to the systematical assessment of the
robustness of deep learning models for face recognition against
specific variations. Considering the widespread use of deep CNN
models for face recognition, it is of paramount importance that the
behaviour and characteristics of these models are well understood
and open problems pertaining to the technology are clearly
articulated.

In this paper, we contribute toward a better understanding of
deep learning-based face recognition models by studying the
impact of image-quality and model-related characteristics on face
verification performance. We use four state-of-the-art deep CNN
models, i.e. AlexNet [20], VGG-Face [19], GoogLeNet [21], and
SqueezeNet [22], to compute image descriptors from input images
and investigate how quality-related factors such as blur,

compression artefacts, noise, brightness, contrast, and missing data
affect their performance. Furthermore, we also explore the
importance of colour information and descriptor-computation
strategies through rigorous experimentation using the LFW (LFW)
benchmark [16]. The deep CNN models considered in this work
are representatives of the most commonly employed CNN
architectures in use today and were selected due to their popularity
within the research community. The studied covariates, on the
other hand, represent factors commonly encountered in real life
that are known to affect face recognition technology to a significant
extent [23] and have not yet been studied sufficiently in the
literature in the context of deep learning.

The comprehensive analysis presented in this paper builds on
the previous works from [24, 25]. These works both focused on
closed-set face identification and investigated the robustness of
deep CNN models under facial appearance variations caused by
head pose, illumination, occlusion, misalignment in [24], and by
image degradations in [25]. Complementing and extending these
previous works, we provide in this paper a rigorous and
systematical evaluation of the impact of various image- and model-
related factors on deep learning-based face verification
performance. The goal of this work is to provide answers to
essential research questions such as: Are good quality images a
must for high verification performance? To what extent does image
quality affect the image descriptors generated by contemporary
deep models? Are certain model architectures more robust than
others against variations of specific covariates? Changes in which
quality characteristics are most detrimental to the verification
performance? How should image descriptors be computed?
Answers to these and similar questions are in our opinion crucial
for a better understanding of deep learning-based face recognition
technology and may point to open problems that need to be
addressed in the future. In summary, we make the following
contributions in this paper:

• We study and empirically evaluate the effect of image quality
(blur, Joint Photographic Experts Group (JPEG) compression,
noise, contrast, brightness, and missing data), and model-related
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(colour information and descriptor computation) characteristics
on the face verification performance of four state-of-the-art deep
CNN models on the LFW dataset.

• We conduct a comprehensive analysis of the experimental
results, identify the most detrimental covariates affecting deep
CNN models in face verification task, and point to potential
areas for improvement.

• We provide a comparative evaluation of the four deep CNN
models, namely AlexNet [20], VGG-Face [19], GoogLeNet
[21], and SqueezeNet [22], and make the trained models
publicly available to the research community through: https://
github.com/kgrm/face-recog-eval.

The rest of this paper is organised as follows: in Section 2, we
briefly review previous works relevant to our study. In Section 3,
we describe the evaluation methodology, models, datasets, and
experimental procedures used. In Section 4, we present quantitative
results and discuss our experiments. Finally, Section 5 concludes
this paper.

2 Related work
Understanding the strengths and weaknesses of machine learning
models is of paramount importance for real-world applications and
a prerequisite for identifying future research and developments
needs. Papers on the analysis of deep models appear in the
literature in either (i) work that focuses specifically on the
characteristics of deep models or (ii) work that explores the
characteristics of deep models as part of another contribution.
Papers from the first group such as ours typically explore various
models and as the main contribution presents general findings that
apply to several deep models, while papers from the second group
propose a new deep learning approach and then analyse its
characteristics. Both groups of work typically contribute to a better
understanding of deep models, but differ in their generality, i.e. the
number of models the findings apply to.

An example of work studying the impact of various image-
quality covariates on the performance of several deep CNN models
was presented by Dodge and Karam in [26]. Here, the authors
explored the influence of noise, blur, contrast, and JPEG
compression on the performance of four deep neural network
models applied to the general image classification task. The
authors concluded that noise and blur are the most detrimental
factors.

In [27], Chatfield et al. compared traditional machine learning
models and deep learning models on equal footing by using the
same data augmentation and preprocessing techniques that are
commonly used with CNNs on traditional machine learning
models. The authors also explored the importance of colour
information, but focused on the impact of colour on traditional
models rather than on its role in deep learning. The main finding of
this work was that deep learning models have an edge over
traditional machine learning models. However, data augmentation,
colour information, and other preprocessing tasks were found to be
important, as these approaches also helped to improve the
performance of traditional machine learning models.

An alternative view on covariate analyses involving deep
models was recently presented by Richard-Webster et al. in [28]. In
this work, the authors compare and evaluate several deep CNN
architectures from the perspective of visual psychophysics. In the
context of the object recognition task, they use procedurally
rendered images of three-dimensional models of objects
corresponding to the ImageNet object classes to determine the
‘canonical views’ learned by deep CNNs and determine the
networks' performance when viewing the objects from different
angles and distances or when the images are subjected to
deformations such as random linear occlusion of the object
bounding box, Gaussian blur, and brightness changes. The main
point made by the authors is that model comparison must be
conducted under variations of the input data, or in other words, the
analysis of the robustness of the models should be used as a
methodological tool for model comparison.

Our work builds on the preliminary results reported in [24, 25]
and extends our previous results to face verification experiments on
the LFW dataset and a wide range of image-quality and model-
related covariates. The analysis includes a larger number of deep
CNN models and is significantly more comprehensive in terms of
amount of analysed factors.

Dosovitskiy et al. describe research belonging to the group of
model-analysis work in [29]. Here, the authors present an
evaluation of the performance of their CNN in the presence of
image transformations and deformations in the context of
unsupervised image representation learning. They conclude that
combining several sources of image transformations can allow
CNNs to better learn general image representations in an
unsupervised manner. Similar to this work, we study in this paper
the effects of image deformations on the learned image
representations. However different from [29], we assess several
CNNs trained in a supervised manner.

Another work from this group was presented by Zeiler and
Fergus in [30]. Here, the authors studied the effects of image
covariates including rotation, translation, and scale in the context
of interpreting and understanding the internal representations
produced by deep CNNs trained on the ImageNet object
classification task. In their experiments, the invariance of their
CNN to the studied covariates was found to increase significantly
with network depth. They also found the deep neural network
features to increase in discriminative power with network depth in
the context of transfer learning.

More recently, Lenc and Vedaldi in [31] evaluate how well the
properties of equivariance, invariance, and equivalence are
preserved in the presence of image transformations by various
image representation models including deep CNNs. The
transformations studied include rotation, mirroring, and affine
transformations of the input images. Amongst their findings,
representations based on deep CNNs were found to be better than
other studied representations at learning either invariance or
equivariance to the studied transformations based on training
objectives.

3 Methodology
In this section, we first explain the evaluation methodology and
introduce the four deep CNN models selected for the analysis. We
then proceed by presenting the dataset and procedure used to train
the deep models and conclude the section with a detailed
description of the covariates considered in this work.

3.1 Evaluation methodology

To assess the robustness of deep CNN models against various
image degradations in face verification, we take four pretrained
state-of-the-art deep models and use the feature output of each
model as the image descriptor of the given input face image, i.e.

y = f (x), (1)

where x ∈ ℝd denotes the input image, f ( ⋅ ) represents the
selected deep model, and y ∈ ℝd′ stands for the computed image
descriptor. The dimensionality of the image descriptor, d′, varies
from model to model and depends on the design choices made
during network construction. Once the descriptors are computed
for a pair of face images, a similarity score is calculated based on
the cosine similarity between the two descriptors and used to make
a verification decision

g(x1, x2, f , T) =
w1 if δ( f (x1), f (x2)) = δ(y1, y2) ≥ T
w2 otherwise (2)

where x1 and x2 are the input images, δ( ⋅ , ⋅ ) is the cosine
similarity, T is a predefined decision threshold, and w1 and w2
represent classes of matching and non-matching identities,
respectively. Thus, a pair of images should be classified into the
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class w1 if the input images belong to the same identity and into the
class w2 if not.

To assess the robustness of the deep models with respect to
different image-quality covariates, we artificially degrade one of
the images in (2) by adding different levels of noise, blur,
compression artefacts, and the like and leave the second one
unaltered. With this procedure, we are able to directly observe the
change in verification performance as a consequence of the change
in image quality and establish a connection between a given image-
quality aspect and the performance of the deep model.

We report our results using the performance metrics introduced
by the LFW verification protocol [32], namely the mean and
standard deviation of the verification accuracy under a ten-fold
cross-validation experimental protocol. As prescribed by the LFW
experimental protocol, the decision threshold T is selected
separately for each fold.

3.2 Deep CNN models

We consider four recent deep CNN models in our experiments that
are representative of the most popular network architectures
commonly used for recognition problems, i.e.:

AlexNet: The first model used in our evaluation is the AlexNet
[20], which was the first deep CNN to successfully demonstrate
performance outperforming the classical image object recognition
procedures. The model consists of five sequentially connected
convolutional layers of decreasing filter size, followed by three
fully connected layers. One of the main characteristics of AlexNet
is the very rapid downsampling of the intermediate representations
through strided convolutions and max-pooling layers. The last
convolutional map is reshaped into a vector and treated as an input
to a sequence of two fully connected layers of 4096 units in size.
The output of this layer represents the image descriptor produced
by AlexNet.

VGG-Face: The second model used in our experiments is the
16-layer VGG-Face network, initially introduced in [19]. The
model has a deeper convolutional architecture than AlexNet and
exploits a series of convolutional layers with small filter sizes, i.e.
3 × 3. Each series of convolutional layers is followed by a max-
pooling layer, except for the last one, which is followed by two
fully connected layers identical to AlexNet. The output of the last
fully connected layer represents the VGG image descriptor.

GoogLeNet: Our third model is the GoogLeNet network, which
builds on the so-called Inception architecture [9, 21]. Here, we use
the third version of the GoogLeNet model, that is, Inception V3
[21], which consists of a hierarchy of complex inception modules/
blocks that combine channel re-projection, spatial convolution, and
pooling operations over different scales in each of the modules.
The model reduces the parameter space by decomposing spatial
convolutions with larger filter sizes (n × n) into a sequence of two
convolutional operations with respective filter sizes of n × 1 and
1 × n. The resulting network model is deeper and more complex
than AlexNet or VGG-Face, but still has fewer parameters and
lower computational complexity than VGG-Face. Unlike other
models considered in this work, no fully connected layers are used
in GoogLeNet. Instead, the last convolutional map is subjected to
channel-wise global average pooling, and the average activation
values of each of the 2048 channels are used as the feature vector
of the input image.

SqueezeNet: The last model we assess in our experiments is a
variant of the SqueezeNet network from [22]. The network features
extreme reductions in parameter space and computational
complexity via channel-projection bottlenecks (or squeeze layers),
and uses identity-mapping shortcut connections, similar to residual

networks [8], which allow for stable training of deeper network
models. SqueezeNet was demonstrated to achieve comparable
performance with AlexNet [20] on the ImageNet large-scale
recognition benchmark with substantial reductions in model
complexity and parameter space size. The model is comprised of
so-called ‘fire modules’, in which the input map is first fed through
a bottlenecking channel-projection layer and then divided into two
channel sets. The first one is expanded through a 3 × 3 convolution
and the other through channel projection. The final convolution
map is globally average-pooled into a 512 vector and then fed to a
fully connected layer with 2048 units. The output of this last layer
is the SqueezeNet image descriptor used in our experiments.

Note that using deep models as ‘black-box’ feature extractors is
a standard way of computing (learned) descriptors from input
images, as evidenced by the large body of existing research on this
topic, e.g. [28, 33, 34]. Furthermore, using distance metrics in the
feature space for similarity score calculation is also a standard
practise in the field of biometric verification, see for example [17,
19]. All in all, the deep neural network architectures considered in
this work are amongst the most popular ones found in the literature
and differ greatly in computational complexity, the number of
parameters, depth, and representational power. We summarise their
key properties including the output feature vector (descriptor) size
in Table 1. 

3.3 Datasets

We use separate datasets for training and evaluation. We chose the
VGG-Face dataset [19] to train our models and the LFW dataset
[16] to evaluate their performance.

The VGG-Face dataset was collected during the work on the
VGG-Face model [19] and, as reported by the authors, comprises
around 2.6 × 106 images of 2622 identities. Using the web
addresses and face region coordinates of the images published by
the authors, we are able to retrieve ∼1.8 × 106 of the total 2.6 × 106

face images for our version of the dataset. The structure of the
VGG dataset, with a uniformly distributed and relatively large
number of images per subject, 1000, makes it similar in utility for
training deep neural networks to the ImageNet dataset, which is
used for image classification [35].

For the experiments, we train the four deep CNN models
described in the previous section from scratch using our version of
the VGG-Face dataset to attain a fair comparison of their
expressivity and other properties given the same training dataset.
We train the models by appending a fully connected softmax layer
on top of each network and optimising the model weights in
accordance with the recognition performance on the VGG data. We
use the Adam [36] gradient optimisation method with the
categorical cross-entropy loss function. During training, we
randomly select 10% of the images of each subject for a hold-out
validation set to gauge generalisation performance. Each model is
trained to convergence using a GTX Titan X Graphics Processing
Unit (GPU). The training takes ∼2 days each for the AlexNet and
SqueezeNet models, and 1 week each for the GoogLeNet and
VGG-Face models.

For testing purposes, we select the LFW [16] dataset, which is
among the most popular datasets used to evaluate face recognition
models. The dataset consists of 13,233 images of 5749 distinct
subjects, and ships with predefined training and evaluation
protocols. Images of the dataset were gathered from the web and
feature considerable variation in pose, lighting condition, facial
expression, and background. We evaluate our models in accordance
with the so-called outside-data verification protocol, which

Table 1 Comparison of the quantitative properties of the deep learning models considered
Model #Parameters Input size Output size #Layers FLOPS/forward pass
AlexNet [20] 58 282 752 (3, 224, 224) 4096 7 1.1 × 109

VGG-Face [19] 117 479 232 (3, 224, 224) 4096 15 1.5 × 1010

GoogLeNet [21] 21 577 728 (3, 299, 299) 2048 37 5.6 × 109

SqueezeNet [22] 3 753 856 (3, 224, 224) 2048 12 9.7 × 108
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consists of 6000 image pairs drawn from the dataset equally
divided between genuine and impostor pairs, and further equally
divided into ten folds for cross-validation. The protocol also allows
to use images not part of LFW to train the models being evaluated.

3.4 Performance covariates

The performance of deep face recognition models depends on
several factors (or covariates) that can be grouped into different
categories. In this paper, we are interested in factors that relate to:
(i) the quality of the input images (image-quality covariates) and
(ii) the characteristics of the deep models (model-related
covariates).

Image-quality covariates: To evaluate the impact of reduced
image quality on the performance of our deep models, we apply
image distortions of different levels/intensities to the probe images
used in our verification experiments. Specifically, we consider the
following:

• Blur: We simulate blurring effects by applying Gaussian filters
with different standard deviations σ to the probe images. We set
the filter size in accordance with the selected standard
deviations, i.e. w, h = 2 2σ + 1, where ⌈ ⋅ ⌉ is the ceiling
operation and w and h stand for the filter width and height,
respectively. We vary the value of σ from 2 to 20 and, thus,
generate 19 probe sets of different blur levels to investigate the
impact of blurring on the performance of our deep models.

• Compression: We introduce compression artefacts by encoding
the probe images with the JPEG algorithm at different quality
presets. Lower-quality presets correspond to more aggressive
quantisation of the discrete cosine transform (DCT) coefficients.
At the extreme, the quality of 1 corresponds to the setting where
all AC components of every minimum coded unit (MCU) block
are zeroed out, and each 8 × 8 pixel block is represented by a
constant colour. We generate modified probe sets at quality
presets of 1, 3, 5, 10, 15, 20, 25, 30, 35, and 40 for exploring the
impact of JPEG compression.

• Gaussian noise: To study the impact of noise on the recognition
performance of our deep models, we add additive Gaussian
noise with a mean of 0 and various standard deviations σ to our
probe images. The modified pixel intensities are clipped to the
valid dynamic range of [0, 255]. We generate 10 modified probe
sets for σ values between 20 and 200, with a uniform step size of
20.

• Salt-and-pepper noise: Besides Gaussian noise, we also
consider salt-and-pepper noise. Here, we truncate all colour
components of each image pixel to zero with a probability of
p/2 and, similarly, set them to 255 with a probability of p/2. We
generate 25 modified probe sets for probabilities p between 0.02
and 0.5, with a uniform step size of 0.02.

• Brightness: We simulate overexposure effects by changing the
brightness level of the probe images. To this end, we multiply
the pixel intensities by a brightness factor and clip the resulting
pixel values to the valid dynamic range between [0, 255]. We
observe the impact of brightness factors between 1.5 and 9 with
a constant step size of 0.5 and generate 16 probe sets for our
brightness-related experiments.

• Contrast: To explore the impact of contrast on the verification
performance, we first subtract the central value of the dynamic
range from all images. The centred images are then multiplied
by a contrast factor and the offset, i.e. the central value, is added
back to the image. We evaluate the performance of the models at
15 different contrast factors between 0.03 and 0.79.

• Missing data: We simulate missing data (or pixels) by removing
contiguous pixel areas from the probe images. Since we set all
pixels in the given area to zero, the simulation of missing data is
similar in effect to (artificial) partial occlusions of the face. We
generate five degraded probe sets with pixels missing around the
mouth, nose, periocular, and eye regions. To be able to remove
image regions belonging to prominent facial features in a
consistent manner, we use the facial landmark detection
approach proposed by Kazemi and Sullivan in [37].

Model-related covariates: Among the model-related covariates,
we explore the following ones:

• Model architecture: Arguably the most important factor
affecting the performance of the existing deep face recognition
approaches is the architecture of the models and corresponding
training procedure used to learn the model parameters. As
indicated in the introduction section, a significant amount of
todays' research effort related to deep models is, therefore,
directed toward this area (see, e.g. [21, 22, 38]). In the
experimental section, we account for different architectures by
evaluating the four deep CNN models described in Section 3.2.

• Descriptor computation: One of the key components of state-of-
the-art face recognition systems is the visual descriptor used to
encode the input images [27]. With deep learning approaches,
the visual descriptor is typically computed directly from the
image area returned by the face detector. The predominant
approach here is to feed the detected facial area to the trained
deep model and use the output of one of the top fully connected
layers as the visual descriptor of the input image. An alternative
approach is to sample patches from the input image and to
combine the corresponding patch representations into the final
visual descriptor. Examples of the latter approach include
averaging [19] or stacking [39] of patch representations and
variants of Fisher vector encoding [40]. For our experiments, we
consider four descriptor-computation strategies. The first is a
simple approach, where the visual descriptor is computed
directly from the facial area found by the face detector. The
remaining three approaches are more complex and sample
smaller patches from the facial area before averaging the patch
representations generated by the models to produce the final
image descriptor. We explore three sampling schemes using 5,
10, and 30 patches sampled from the detected facial area. The
sampling schemes were implemented based on the suggestions
in [19] and are illustrated in Fig. 1.

• Colour space: We consider three distinct scenarios relating to
the colour information of the target and probe images used in the
verification experiments. In the first two cases, given a colour
target image, we evaluate the difference in verification
performance of the deep models given either colour or grey-
scale probe images. In the third case, we evaluate the
performance of the models when target and query images are
both grey scale. The goal of the colour-related experiments is to
investigate the need for colour input images and the capabilities
of the models to efficiently handle grey-scale images.

4 Experimental results and discussion
In this section, we describe our experiments aimed at assessing the
strengths and weaknesses of the selected four deep models. We
first present experiments related to image-quality covariates and
then report results pertaining to the model-related covariates
described in the previous section.

Fig. 1  Illustration of the three sampling schemes used to study different
descriptor-computation strategies (from left to right): the 5-patch (left), 10-
patch (centre), and 30-patch (right) schemes
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4.1 Impact of image-quality covariates

In the first series of verification experiments, we explore the
impact of Gaussian blur and JPEG compression. As can be seen in
Fig. 2 (left), image blurring has a significant effect on the
performance of all deep models, which causes a quick drop in
performance with an increase in the standard deviation of the
Gaussian filters. Interestingly, the GoogLeNet model loses
verification accuracy faster than the other three models. When
looking at the impact of JPEG compression in Fig. 2 (right), we see
that all models are mostly unaffected by the compression artefacts
until the compression quality is at its lowest possible value. Here, a
compression quality of 0 corresponds to the scenario where all AC
DCT coefficients are rounded to 0. Thus, only the DC components
remain unaltered, and consequently every MCU is represented by a
constant colour. This is equivalent to uniformly downscaling the
image by a factor of 8. We observe that the verification accuracy of
all models at the lowest JPEG quality roughly corresponds to the
accuracy on the target images degraded with Gaussian blur with
σ = 5, which is consistent with the above interpretation of the

JPEG compression process in the sense that the amount of
information preserved in the blurred and compressed images is
approximately the same. 

In the second series of experiments, we investigate the impact
of Gaussian and salt-and-paper noise on the verification
performance of the four deep models. From the results in Fig. 3, we
see that the models behave similarly for both types of noises. The
VGG-Face model performs the best and more robustly, followed
by the AlexNet and SqueezeNet models, which perform more or
less the same, and the GoogLeNet model, which is affected the
most by the presence of noise. These results suggest that noise is an
important factor affecting the performance of deep models and
consequently that sufficiently low levels of noise need to be
assured for reliable verification performance. 

In the third series of verification experiments, we study the
effects of brightness and contrast. We can see from the results in
Fig. 4 (left) that the increase in brightness has a significant impact
on the verification performance of the deep models and affects all
models to more or less the same extent. In relative terms, no model
has an edge over the others even at higher brightness factors, which

Fig. 2  Impact of blurring (left) and JPEG compression (right) on the performance of the four deep models. The graphs show the mean and standard deviation
of the verification accuracy on the LFW dataset computed over ten folds. The images on top of the graphs show sample images generated with different levels
of image distortions. The results are best viewed in colour

 

Fig. 3  Impact of Gaussian (left) and salt-and-pepper (right) noise on the performance of the four deep models. The graphs show the mean and standard
deviation of the verification accuracy on the LFW dataset computed over ten folds. The results are best viewed in colour
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are expected as important discriminative information is lost during
the brightening process due to the pixel truncation. However, in
absolute terms, the VGG-Face model is the top performer ensuring
the highest verification accuracy at all brightness factors. When
looking at the results for different contrast factors in Fig. 4 (right),
we see that the relative performance of all models degrades
similarly as the contrast decreases. In general, the models are not
particularly affected by the loss of contrast, as the verification
accuracy remains well above 0.9 even when more than 60% of the
contrast is removed. 

In the last series of experiments pertaining to image quality, we
evaluate the effects of missing data on the verification
performance. The results are displayed in Fig. 5 in the form of box
plots. We can see that the impact of missing data follows the same
relative ranking for all models: missing information around the
periocular region is the most detrimental for the verification
performance, followed in order by the eye, nose, and mouth
regions. Interestingly, we can see that the VGG-Face model is the
most affected by missing data around the periocular region,
whereas the performance degradation for other regions is equal or
lower than the degradations of the other models. We can also note
that the relative ranking of the tested models changes with respect
to the image region, from which textural information was removed.
While VGG-Face is the top performer in terms of average
verification accuracy on the original images, it falls behind
SqueezeNet and GoogLeNet when data around the eye, nose, or
periocular regions is missing. All in all, GoogLeNet appears to be
the most robust to missing data, as the performance variations are
the smallest with this model. Overall, our experiments suggest that
image quality is a crucial factor for the performance of existing
deep models and that quality assessment of the input images should
be an integral part of face recognition approaches based on deep
learning. To mitigate problems pertaining to image-quality, image
enhancement techniques need to be used or suitable data
augmentation approaches need to be integrated into the training
procedures to make the models robust against image-quality
degradations. 

4.2 Impact of model-related covariates

In the first series of experiments pertaining to model-related
covariates, we assess the impact of different model architectures on
the performance and robustness of the LFW verification task. We
present our comparison in the form of radar charts for different
probe sets that correspond to the colour-coded sample images at the
top of Figs. 2–4. For example, the red curve in each chart
corresponds to experiments with the probe images marked red in

Figs. 2–4, the green curve to experiments with probe images
marked green, and so on. Here, the larger the area covered by a
curve, the better the performance of the models across various
image-quality covariates and the closer the different colour curves
are to each other for a given architecture, the robuster the
architecture is to variations of the covariates. While all models
perform similarly, the VGG-Face model has overall a slight
advantage in terms of robustness over the remaining three models.
The SqueezeNet and AlexNet models perform almost the same,
whereas our implementation of GoogLeNet is the least robust
(Fig. 6). 

In the second series of verification experiments of this part, we
evaluate the four different descriptor-computation strategies. The
results of our experiments are presented in Fig. 7 in the form of
box-and-whiskers plots computed from the ten experimental folds
defined by the LFW verification protocol. In these experiments, we
use the original LFW images without any degradations. We find
that the SqueezeNet and VGG-Face models benefit marginally
from averaging of the generated patch representations. While the
trend shows an increase of 1–2% in verification accuracy by using
more than a single patch to generate the image descriptors, the
differences in performance are not statistically significant. The
AlexNet and GoogLeNet models, on the other hand, do not show
any improvements in performance. These results are unexpected as
all models were trained with random patches sampled from the
base face regions. We also note that while the SqueezeNet and
VGG-Face models show some improvement when using 5 patches
compared with only the central patch, there is no further
improvement from the 10- or 30-patch schemes. 

In the last series of experiments on model-related covariates, we
explore the impact of colour information. The results of the
experiment are shown in Fig. 8 again in the form of box plots. All
models exhibit the best performance, when target and probe images
are both in colour, which is expected given that they were trained
on colour data exclusively. However, with the exception of
AlexNet, we note that the accuracy of the models drops only
marginally, when either the probe or both the target and probe
images are switched to grey-scale. The difference in performance is
not statistically significant, which points to a potential degree of
redundancy in the models' architecture, observing that eliminating
two-thirds of the input information results in nearly identical
performance. 

5 Conclusion
We have presented a systematic study of covariate effects on face
verification performance of four recent deep CNN models. We

Fig. 4  Impact of image brightness (left) and image contrast (right) of the verification performance of our four deep models. The graphs show the mean and
standard deviation of the verification accuracy on the LFW dataset computed over ten folds. The results are best viewed in colour
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observe that the studied models are affected by image quality to
different degrees, but all of them degrade in performance quickly
and significantly, when evaluated on lower-quality images than
they were trained with. However, given proper architecture choices
and training procedures, a deep learning model can be made
relatively robust to common sources of image-quality degradations.

We found that the models considered were the most easily and
consistently degraded in performance through image blurring,
which is similar in nature to real-life scenarios of attempting face
recognition from low-resolution imagery. Other covariates found to
have a considerable effect on the verification performance were
noise, image brightness, and missing data, while image contrast

Fig. 5  Impact of missing data on the performance of the four deep models. The box plots show results for missing data at four different image locations, i.e.
around the mouth, the nose, the periocular region, and around the eyes. The box plots were computed from the ten experimental fold defined by the LFW
verification protocol

 

Fig. 6  Impact of the model architecture on the performance and robustness of the verification procedure. Here, the line colours correspond to the colour-
coded sample images on top of Figs. 2–4. A larger area covered by a curve indicates a better performance. The closer the curves of different colours are in a
given graph, the more robust the model is to image-quality degradations
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and JPEG compression impacted the performance of the models
only marginally.

Most of the models considered were least affected by changes
in input colour space – despite being trained on full colour images
– their performance drops negligibly when evaluated on grey-scale
images. This finding is also corroborated by the results of the
contrast experiments.

No specific architecture was found to be significantly more
robust than others to all covariates. The VGG-Face model, for
example, was most robust to noise, but performed least well for
changes in image brightness. GoogLeNet, on the other hand,
performed worst on noise and image blur, but had a slight
advantage over the remaining models with images of reduced
contrast.

On the basis of our results, we identify the following
prospective directions of further research related to deep models:

• Image enhancement: Various algorithms exist to enhance the
appearance of blurred or low-resolution images for human
perception. Given the low face recognition performance on such
images, their applicability to automated face recognition
systems is likely to be an important research direction for deep
face recognition models in the future.

• Exploitation of colour information: Given the fact that most of
the models we studied retained almost unaltered performance
when presented with grey-scale images, it appears to be the case
that the architectures considered here do not make proper use of
colour information in their input images. It follows that better
deep learning models could be developed that either make more
efficient use of their input information or that discard colour
information altogether in favour of more compact models.

• Recognition from partial data – missing data proved to be a
challenge for all evaluated models with performance
deteriorating more, when larger contiguous areas of the images
known to be important for identity inference were removed, e.g.
the periocular region. This observation suggests that research
into deep CNN models capable of recognition from partially

observed data is needed and should be a focus of future research
efforts.
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