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Abstract. Outlier data has attracted considerable interesting geotechnical data.
When doing classical linear least squares regression, if the regression data sat-
isfied certain regression weights, the ordinary least squares regression is con-
sidered as the best method. However, the estimating and regression results may
be inaccurate in case of these data not meeting given assumptions. Particularly
in least squares regression analysis, there is some data (outliers) violating the
assumption of normally distributed residuals. Under situation of regression data
blending to outliers, robust regression is the best fit method. It can discriminate
outliers and offer robust results when the regression data exists outliers. The
purpose of this study is to make use of robust regression method to trend
regression in geotechnical data analysis. Without defining absolute outliers from
geotechnical testing data, outlier data of undrained shear strength is detected
based on robust regression result.
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1 Introduction

Geotechnical engineers face a number of uncertainties [1, 2]. Soil materials formed
from geological weathering processes, and by physical means to deliver the soil to the
current position [3]. In the forming process, the soil is influenced by various stress, pore
fluid, and physical and chemical changes. Therefore, it is not surprising that there are
always some outliers in geotechnical data. When dealing with geotechnical problems,
empirical correlations between in situ or laboratory test results and geotechnical
parameters are often used in geotechnical design. When establishing such empirical
correlations, mostly adopted method is regression analysis, including linear or non-
linear regression [4].

Linear least squares regression (LLR) is a modeling approach by far the most
widely used. When people say they use “regression”, “linear regression” or “least
squares” to adapt their data, they usually mean doing LLR. LLR is not only the most
widely used method of modeling, but also have adapted to a variety of circumstances,
beyond its immediate scope [5].
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A mathematical method that finds the best-fit curve for a given set of points is to
minimizing the sum of the squares of the distances of regression data deviating from
the curve. The sum of squares of the offset distances is used instead of the absolute
values of the offset distances because this allows the residuals to be treated as a
continuously differentiable quantity. Whereas, because of the use of the square of the
offset, peripheral points may have a disproportionate effect on fit. Whether the results
are desirable or not, it depends on the issue of question [6].

The statistical observations of outliers are significantly different from the other
sample values. Least-squares regression is obviously the best option if errors are
normally distributed. Then, other means is eagerly required if these errors are not
normally distributed. One particular distribution is the long tail error distribution of
great concern. One solution is still to use the LLR method after removing the largest
remaining value as outliers. However, this solution may be infeasible if several larger
residual values exist by reason that the poor nature of the outlier tests. In addition,
outlier testing is an acceptance/rejection process. The testing processes are neither
smooth or statistically efficient. Robust regression (RR) is another option for
least-squares regression in the case of the data contaminated with outliers. It can also be
used to detect influential observations when the data is exposed to outliers [7].

It is difficult to define absolute outliers from geotechnical testing data, but it is
possible to indicate the least predictable or relatively outlying data points using sta-
tistical tools. The objective of this paper is to demonstrate the advantages of RR
analysis used in geotechnical data comparing with least square regression analysis. The
procedure of RR is discussed shortly, based on LLR method. And then, Regression
analysis is operated on undrained shear strength (su) data derived from CPTU test with
both RR and LLR. Comparing regression result, the outlier of su data can be detected
based on RR method.

2 su Data from CPTU

Unlike traditional sampling and laboratory tests, the piezocone penetration (CPTU)
tests overcome the sampling disturbances with ease. In addition, comparing with
conventional sampling and laboratory tests, CPTU tests can define an profile of su
along with depth with remarkable less time and effort. Besides, the profile of su results
is nearly continuous with depth, instead of at relatively few points of sampling and
testing.

Various methods were proposed to determine su results from CPTU data. Gener-
ally, these methods can be divided into theoretical and empirical relationships. The
cone penetration into soils is a complex process. Because of the limitation of theoretical
methods applied to simulating soil behavior during cone penetration process, empirical
relationships are more favored to determine su data in this study. These empirical
relationships mainly include the direct or indirect correlations between cone penetration
resistance and su. Another reason for adopting empirical determining relationships is to
avoid too much on site and lab work.

A regular practice to determine to su is to establish a relationship between su and a
net cone resistance. The net cone resistance is defined as qt � rv0, where rv0 is the
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in-situ total overburden stress. The equation links su to the net cone resistance is given
as:

su ¼ qt � rv0
Nkt

ð1Þ

where Nkt is an constant quantity. Numerous studies have been conducted to determine
the proper values of Nkt. In this research, Nkt is chosen to be 12.

3 Robust Linear Regression

3.1 Procedure of Robust Linear Regression

When the error distribution is not a normal distribution, the linear least squares esti-
mation is not suitable, especially when the error has a heavy tail characteristic. The
usual approach is to remove these relatively large weight data from the observed data in
the least squares regression process. Another approach, so-called “robust regression,”
uses a more sophisticated approach that makes the method insensitive to outlier data.
The most extensively used robust regression method is m-estimate. Such estimates can
be viewed as a generalization of maximum likelihood estimates and is therefore called
“m-estimate.”

Considering the most generally linear regression model,

yi ¼ aþ b1xi1 þ b2xi2 þ . . .þ bkxik þ ei
¼ x0ibþ ei

ð2Þ

for the i th of n observations.
To estimate b for b, the linear regression form is

byi ¼ aþ b1xi1 þ b2xi2 þ . . .þ bkxik þ ei ð3Þ

and the residuals are given by

ei ¼ yi � ŷi ð4Þ

In M-estimation method, the estimator b is inferred by minimizing a specific
objective function over all b,

Xn
i¼1

qðeiÞ ¼
Xn
i¼1

qðyi � x0ibÞ ð5Þ

where the specific function q defines the weight of each residual in the specific
function.

Let u ¼ q0 be the derivative of q. u is called the influence curve. Deriving the
partial derivative of the objective function, combining with the coefficients b and
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setting the equation to zero and, then yields a coefficient estimation equation with kþ 1
rank:

Xn
i¼1

uðyi � x0ibÞx0i ¼ 0 ð6Þ

Define the weight function

xðeÞ ¼ uðeÞ
e

ð7Þ

and let

xi ¼ xðeiÞ ð8Þ

The equation of the estimated coefficient can be rewritten as

Xn
i¼1

xiðyi � x0ibÞx0i ¼ 0 ð9Þ

To solve these estimating equations is equivalent to a weighted least-squares
regression, finding min

P
x2

i e
2
i .

However, the weights depend on the residuals, the residuals depend on the esti-
mated coefficients, and the estimated coefficients depend on the weights. Therefore, the
iterative weighting least squares (IRLS) is used to solve this problem: A solution
(called iteratively reweighted least-squares), is therefore required:

Set least-squares estimates as initial estimates bð0Þ.
In every iteration t, residuals eðt�1Þ

i are determined, and corresponding weights

xðt�1Þ
i from the former iteration are also calculated.
To solve new weighted-least-squares estimates

bðtÞ ¼ X 0W ðt�1ÞX
h i�1

X 0W ðt�1Þy ð10Þ

where X is the model matrix, with x0i as its i th row, and W ðt�1Þ ¼ diag xðt�1Þ
i

n o
is the

current weight matrix.
Repeating step 2 and step 3 until the estimated coefficients tend to converge.
The asymptotic covariance matrix of b is

mðbÞ ¼ Eðu2Þ
½Eðu0Þ2� ðXX

0Þ�1 ð11Þ
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Using
P ½uðeiÞ�2 to estimate Eðu2Þ, and ½Pu0ðeiÞ=n�2 to estimate ½Eðu0Þ2� pro-

duces the estimated asymptotic covariance matrix, m̂ðbÞ (which is not reliable in small
samples).
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Fig. 1. su data from CPTU test
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Fig. 2. RR result of su data
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3.2 Results of RR Regression and LLR Regression

A case study demonstrates the RR method on the su data form CPTU test. The number
of su data used for regression is about 50. Visual inspection on the su data, the outlier
data is likely located in Zone 1 and Zone 2, shown in Fig. 1. To detect the outlier data
and get a better function to describe the sus data trend with depth, RR method and LLR
method are used to regression analysis.
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Fig. 3. LLR result of su data
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Fig. 4. Comparison of all results
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The RR result is shown in Fig. 2 and LLR result in Fig. 3. Both results are pro-
vided with regression functions with 95% confidence interval. Take an inspection on
the results in Figs. 2 and 3. It is obliviously that the RR regression function has a
narrower 95% confidence interval (Fig. 2) than the LLR regression function (Fig. 3).
And the RR regression function lies in the middle of su data in the trend direction. The
su data scatters in both side of the RR regression function in equally chance. As a
contrast, the LLR regression function has a wider 95% confidence interval. And the
LLR crosses less su data than RR regression in the trend direction. Most important is
that the su data scatters more in upper 95% confidence interval than in lower 95%
confidence interval, as shown in Fig. 3. It means that the LLR is bias in such situation.
As shown in Fig. 2, data in Zone 1 and Zone 2 and Zone 3 is more likely to be outlier
data (Fig. 4).

4 Conclusion

This paper demonstrates the RR regression analysis and LLR analysis in the case that
outlier data existed in the su data. The regression analysis results show that RR method
can deal with the outlier data in su data very well. The RR regression function can give
a more desirable result than the LLR function. Usually, the RR regression function has
a narrower confidence interval than the LLR regression function. It is highly recom-
mended that RR regression analysis should be adopted in the case that there is some
outlier data existing in the geotechnical data.
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