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Sample selection via angular distance in the space of the arguments
of an artificial neural network.

J.M. Fernandez Jaramillo®*, R. Mayerle®

®Technology Center West coast, University of Kiel (CAU), Hafentérn d-25761, Buesum, Germany

Abstract

In the construction of an artificial neural network (ANN) a proper data splitting of the
available samples plays a mayor role in the training process. This selection of subsets for
training, testing and validation affects the generalization ability of the neural network. Also
the number of samples has an impact in the time required for the design of the ANN and the
training. This paper introduces an efficient and simple method for reducing the set of samples
used for training a neural network. The method reduces the required time to calculate the
network coefficients, while keeping the diversity and avoiding overtraining the ANN due the
presence of similar samples. The proposed method is based on the calculation of the angle
between two vectors, each one representing one input of the neural network. When the angle
formed among samples is smaller than a defined threshold only one input is accepted for the
training. The accepted inputs are scattered throughout the sample space. Tidal records are
used to demonstrate the proposed method. The results of a cross-validation show that with
few inputs the quality of the outputs is not accurate and depends on the selection of the first
sample, but as the number of inputs increases the accuracy is improved and differences among
the scenarios with a different starting sample have and important reduction. A comparison
with the K-means clustering algorithm shows that for this application the proposed method
with a smaller number of samples are producing a more accurate network.
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1. Introduction

Artificial neural networks are used for the
prediction and reconstruction of time series
of several types, specially in geosciences sev-
eral applications are available, including the
short or long term forecast of water lev-
els in rivers (Bazartseren et al. (2003) and
Ferndndez et al. (2010)), discharges in rivers
(Tayyab et al. (2016), Krishna et al. (2011)),
water temperature (Piotrowski et al. (2015)),
in coastal areas (Bowles et al. (2012) and
Ferndndez Jaramillo (2014)), wave forecast
(Gopinath and Dwarakish (2015)), and for
reconstruction of tidal records (Tirozzi et al.,
2006). The effectiveness and relevance of the
ANN compared with other linear methods
like ARIMA (Box and Jenkins (1976)) is ev-
ident when the relation between the inputs
and outputs is not linear (Wang et al. (2015)).
In the case of the water level in natural ar-
eas, the influence of environmental condi-
tions like wind, waves or local bathymetry are
main causes of such non linearities (Longuet-
Higgins (1970) and Komen et al. (1996)).

The process of training an ANN requires to
present a set of samples to adjust the weights
of the different neurons and their connection.
The amount and quality of those samples will
determine the computational effort required
for the training and the capability to make a
good generalization of the prediction (Macas
et al. (2016)). If several samples are repre-
senting similar scenarios, not only it will re-
quire a longer time to determine the param-
eters of the artificial neural network but it
could also lead to overtraining. In the case of
water level predictions in coastal areas, low

speed wind conditions are more frequent and
prone to be measured than conditions with
strong wind arriving from different directions.
Samples representing heavy storms are even
less frequent. Under low wind conditions the
water level behaves more like astronomical
tides. We proposed a simple method based
in the angle formed by two vectors to filter
the samples in order to reduce the size of the
training set, while keeping the diversity and
quality of the prediction.

2. Methodology

Feed forward ANN are commonly used for
time series, (see Fig. 1), The ANN consists
of an input layer, at least one hidden layer
and an output layer. In the input layer each
node z; is assigned to each argument provided
for the ANN. This can be represented as a n-
dimensional vector . The output layer could
have one or multiple elements representing
the prediction of the network. They are rep-
resented by the vector y. The number of hid-
den layers and the nodes contained in each
element varies according to the difficulty of
the problem. As the number of elements in-
creases, it permits to handle more complex
interactions, but they are harder to train and
prone to be overfitted.

Overfitting occurs when the degrees of free-
dom of the model are increased. This hap-
pens when the number of parameters is high
compared to the number of observations.
Strategies to reduce the impact of overfitting
in the reduction of the dimension of parame-
ter space or the effective size of each dimen-
sion are summarized by Prechelt (1998). To



Yo
(O Output layer

Hidden layer

] O Input layer

Figure 1: General Feedforward Neural Network

reduce the number of parameters of an ANN
the inclusion of greedy constructive learn-
ing, pruning or weight sharing can be imple-
mented. Moreover to reduce “the size of each
parameter dimension”, Prechelt suggests reg-
ularization or early stopping.

Early stopping splits the data in 3 sets,
the training, the validation and the test.
The training set is used to tune the parame-
ters of the ANN. The resulting error is then
compared in the validation dataset to decide
when to stop. The estimation of the error in
the training set is calculated at every itera-
tion in order to figure out whether a change
is accepted or not. For the validation set the
error is calculated at a lower frequency to re-
duce the computational effort. The earlier
stop will limit overfitting and the required
time for training. This is because the error
is not allowed to reduce in the training set
when this improvement is not also reflected
in a better capacity of the model to represent
the untrained values. Finally the predictive
capacity of the ANN is assessed against data
from the test set.

Attention should be payed to the amount

and quality of the samples used to adjust
the model. It is a common practice to take
about 50 to 60% of the available samples
for training and the remaining for validation
of the ANN (Prechelt, 1998). The samples
are selected depending on different criteria.
Training samples can be created from random
subsets for cross-validation (Prechelt, 1998).
For time series a continuous period, where
in some cases the selected length considers
the properties of the modeled process.- As an
example, Tirozzi et al. (2006) selected 1000
hourly samples along 42 days, which cover 3
semi-monthly tidal periods. During an ex-
perimental design, the selection of optimal
measurements can be taken in to account,
for example to evaluate the performance of
an ANN trained by random, equal-spaced
and latin hypercube samples (Lunani et al.,
1995), while Tong and Liu (2005) used sam-
ples from a Hammersley-net obtaining better
results in generalization performance. Some
works have been done to group the samples
by the use of clustering algorithms (Sahoo
et al. (2012), May et al. (2010), Faraoun and
Boukelif (2006) and Ding et al. (2011) )



The training of an ANN is usually done
by the gradient descent method or by the re-
silient back-propagation (RPROP). RPROP
is a modification of the gradient descent
method that does not take the gradients to
define the required correction (Riedmiller,
1994). This method considers the change in
the sign of the error. If two consecutive errors
have the same sign, the correction term will
increase. If there is an inversion of the sign,
the amount of correction is reduced.

3. Proposed method for the reduction
of the sample pool

To reduce redundancy in the information
provided by the samples during the training
process, a filter has been implemented. This
filtering avoids the superfluous information
and it also saves computational efforts in the
iterative training. For the proposed method
the angle (o) between two vectors u; and u;
(see Eq. 1) of n dimensions (with n being
the number of elements of the input layer) is
considered. To determine the angle formed
by the elements of the input set, the origin
of the vector space is considered at the mean
value of all the elements as follows:

(1)

cos (u;, uj) = (ui —@) (u; — )
T = | [luy — all

In which: w; is one sample already selected
for the training, u; is one sample that is
tested in order to be included in the train-
ing set and @ is the mean of all the samples.

Whenever the angle o formed by two sam-
ples is lower than some selected reference

Figure 2: Sample Selection

value, the sample is rejected from the pool
employed for training (see Fig. 2). The re-
duced set of samples provides an efficient way
to speed up the procurement of an ANN with
no loss of significance in the results. It also
helps to keep the generalization of the ob-
tained model.

The algorithm (see Fig. 3) to implement
the method is as follows:

1. Split the list of available samples [S] in
two lists, in the first one store the sam-
ples candidates [C] to be used during the
training and validation, the other will be
used for testing [W] the quality of the
ANN.

2. Calculate the mean vector of all available
candidates C.

3. For each sample, subtract the mean
value.

4. Sort the samples obtained in the previ-
ous step according to the norm in de-
scending order.

5. Create an empty list for the training el-
ements {T/} and one for the validation

[V’} elements.
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Figure 3: Adopted data assimilation scheme

6. Choose a value for o € [0,7]. Smaller
values allows more samples to be in-

cluded in [T/].

7. Take the first available sample from the
candidates list €7 (The one with the
biggest norm) and add to the training
set [T’}.

8. Take the next available sample C}, and
for each member of the training LT'} cal-
culate the cosine of the angle between
the two vectors.

9. If the cosine is smaller than the cos(«)
selected in step 6 for any element of {T /} ,
include the sample in the validation list
[V’} and stop comparing for the candi-
date C}, otherwise add the sample to the
training list [T’}.

10. Repeat step 8 until no more samples are
available.

11. Add the mean value to each member of
the training and validation sets and re-
turn [T] and [V].

The ANN is trained with the obtained set
of samples. After applying the filter, early
stopping is implemented by comparing the
RMSE between the outputs obtained with
the training samples [T'] and the validation
set [V]. An upper limit is defined for the
tolerated discrepancy in the RMSE between
both groups. If the difference between the
validation error and the one from the training
is bigger than the limit, the training process
is stopped. If the accuracy of the results is
not satisfactory, a new filter with a less re-
strictive angle « is applied and the training
is repeated. To save time, the RMSE for val-
idation samples is calculated only every 1000
iterations.



The upper limit for the number of com-
parisons of the angle of vectors is given by
m(n — 1)/2, with “m” being the number of
samples finally accepted for training and “n”
the number of candidates to be used in the
training. The comparison of the angle be-
tween one candidate and the elements already
conforming the training set is stopped as soon
as the angle is smaller than the required.
Then in the worst case this comparison has a
complexity of O(n?), this occurs when every
single sample is accepted and the total num-
ber of comparisons is n(n — 1)/2. The best
case has a complexity of O(n), when only the
first sample is accepted and all the remaining
are rejected.

4. Results

4.1. Study case

In order to test the proposed method, it
is used to filter the inputs of ANN created
for the estimation of water levels in a coastal
area. Two networks are used, one for hind-
cast and one for a short term forecast. The
inputs are water levels and wind data from a
tidal gauge located at Buesum. The output is
given by the predicted water levels at a tidal
gauge located at Rochelsteert. Both stations
are located in the German North Sea.

For the hindcast is adopted an ANN where
only water level measured every 20 minutes
over a period of 11 hours and 20 minutes pre-
vious to the time when the hindcast is cal-
culated. This has a total of 35 elements in
the input layer, 24 neurons in the first hidden
layer and 3 in the second hidden layer. The
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Figure 4: Filtered samples using different values of «
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output is defined as the water level in Rochel-
steert. For the forecast also wind measure-
ments at the same times as the hindcast are
used as inputs, included in the ANN as the
components in North-South and West-East
directions. For the forecast then the total
number of elements of the input layer is 105.
The output is the water level in the Rochel-
steert station 12 hours in advance. More de-
tails about the design of the ANN are given
in (Ferndndez Jaramillo, 2014).

There are more than 430,000 measure-
ments recorded each minute along 313 days of
information. By taken samples every 20 min-
utes, the total number of sample elements is
reduced to 21,500. After cleaning samples
containing noise or missing information, the
first 8,864 valid elements are selected as pos-
sible candidates for the training and valida-
tion set, while the remaining are kept for the
test samples.

Fig. 4 illustrates three cases of training
sets obtained from different values of a. From
top to bottom results with the angles equal
to m/2,m/3 and w/6 are presented. A bigger
angle is more restrictive reducing the num-
ber of accepted samples. With a > 7/2 (see
Fig. 4.a) only four samples are included in
the training set. Each sample represents a
different scenario. The most evident differ-
ence is the time shift, corresponding to differ-
ent phases in the tidal cycle. Three scenarios
have a similar tidal range, while the fourth
covers a situation when the low tide stays in
a condition of high water level due to a wind-
driven surge condition. As long as more sam-
ples are allowed by relaxing the angle «, other
scenarios of water level are presented to the

ANN. As a result a wider range of tidal am-
plitudes and tidal phases is included in the
process. With 7/6 (see Fig. 4.c) the avail-
able phases and water levels for the training
represent weather conditions including calm
periods and surges.

Next the ANN is trained with the outputs
from the proposed filter. For this, differ-
ent values of « are selected, starting with a
large angle and reducing it in order to include
more samples. For the early stop, a differ-
ence of 10% is allowed between the RMSE of
the training and validation samples. Also the
maximum number of iterations is defined as
1, 000, 000.

Fig. 5 presents the results from the pro-
posed algorithm for a selected number of an-
gles a for the hindcast and the forecast. The
x-axis represents the number of samples that
are actually used for the training, and the
y-axis the RMSE in cm for the training, val-
idation and test sets. The labels in this fig-
ure present the cos(«), the number of sam-
ples obtained from the application of the al-
gorithm for this angle, the required time in
hours and the number of iterations to per-
form the training of the network with these
samples. It is evident that in the training
the computational time grows by increasing
the number of samples. For the RMSE it can
be seen in Fig. 5.a that using less than 42
samples (cos(a) = 0.720) the errors are rel-
atively large, but after that point the error
is decreasing. The drawback is that the time
consumed to find a better solution is much
larger. For example, to obtain RMSE val-
ues of 17.4, 15.0 and 13.9 cm, computational
times of 0.9, 7.3 and 39.5 hours are required
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respectively. Reducing the RMSE only 1.1
cm takes more than 5 times longer than for a
reduction of 2,4 cm. The RMSE of 13.9 cm
is obtained with 517 samples for the train-
ing, this represents only 6.3% of the available
candidates.

More uncertainties could be observed dur-
ing the forecast, and that is reflected in a
higher RMSE than the one obtained for the
hindcast (see Fig. 5.b). As during the hind-
cast, there is a minimum number of sam-
ples required to obtain a fast reduction of
the error. In this case after 70 samples
(cos = 0.775) there is an important improve-
ment in the forecast error. The RMSE re-
duces until a local minimum of 27.3 cm when
165 samples (cos = 0.840) are used. After
a small increment of the RMSE, it decreases
again in all the remaining attempts. The next
improvement is obtained with 1932 samples
(cos = 0.950), obtaining an RMSE of 27.2
cm after 39,7 hours of computational time.
The minimum is obtained with 4274 samples
(cos = 0.975) (the largest set of samples used
and around half of the available candidates)
with an RMSE of 26.6 cm but requiring 84.0
hours. It is important to note that for the
same station using a physical driven model
the RMSE is 33.7 cm (Fernandez Jaramillo,
2014). This means that the ANN has a per-
formance that compares and even exceeds the
physical based model in this location.

4.2. Cross-validation

To verify if the selection of the samples ac-
cording to the magnitude of the norm pro-
vides the best results, a cross-validation is

performed. This cross-validation helps to un-
derstand the influence of the selection order
of the samples for training. For one angle, 45
training sets are generated starting each one
with a different sample (Starting samples are
picked every 200 elements in the candidate
list). This is repeated for different angles.
Then the ANNSs are trained and tested to ob-
tain the performance.

Fig. 6 shows the box plot for the different
experiments. The median is represented by
an horizontal line inside the box. The mean
is plotted as a square. Both the median and
mean of each box are connected with the re-
spective values of the next box. For few sam-
ples, the dispersion of the results is large. As
more samples are considered this dispersion
is reduced as can be observed from the in-
terquartile range (IQR = Q3 — @Q1).

In the case of hindcast, where the uncer-
tainties are smaller, just 55 samples (cos =
0.750) produce a small IQR, after that some
outliers are present. With 517 samples (cos =
0.900), the mean and the median converge
and no more outliers are present. After this
point, increasing the number of samples is not
able to improve the capacity of prediction of
the ANN.

For the forecast more uncertainties are
present, therefore the reduction of the IQR
requires the inclusion of more samples. At
least 495 samples (cos = 0.900) are required
to grant the convergence of the estimators
and avoid the presence of outliers. After
this point there are still small improvements
in the RMSE by including extra samples.
The minimum is obtained with 2694 samples
(cos = 0.960). This shows that there is an in-
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fluence in the selection of the initial sample,
but when the samples are selected according
to the descending order by magnitude, the
results have RMSE values in the lower limit
from the cross-validation, and also its effect is
negligible as more samples are included. Re-
ducing the angle a looking for the conver-
gence of the RMSE (as shown in Fig. 5) is
enough to trust the results without requiring
a cross-validation every time.

4.3. Comparison with K-means clustering

The K-means clustering is an algorithm
that creates a predefined number of clusters
where the centroid of each is representative
for several samples that share similar char-
acteristics. Faraoun and Boukelif (2006) and
Ding et al. (2011) used K-means as an un-
supervised method to reduce the number of
samples that are presented for doing the su-
pervised training of the ANN. One difference
between the proposed method and the K-
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means is that in the proposed method, the
user decides an angle to filter the samples,
then the total number of samples is not un-
der his control, while in the K-mean the num-
ber of clusters to be generated are decided
from the beginning. Another important dif-
ference is that with the angular distance the
actual samples are used. With K-means, the
centroid tends to smooth the extreme values
when few clusters are selected. Then the an-
gular distance is more likely to capture ex-
treme events.

The following statistical relations are used
to compare the results from the proposed
method with the K-means. The error defined
as the difference between the observed wa-
ter level and the estimation from the neu-
ral network (e y — ¥), the mean error
(me = €), the mean absolute error (mae

le]), the standard deviation of the error (o,
\/Z (e — me)?/n), the asymmetry coefficient
(ac = Y €*/no?) and the root square mean

10



error (rmse = /> e2/n).

Comparisons between the two methods for
selecting samples have been carried out con-
sidering the hindcast and the forecast peri-
ods measuring the performance taking into
account all the measurements and outputs in-
dividually, but also the extreme values that
in the case of tides are given by the low and
the high tides.

Figures 7, 8 and 9 show RMSE, ME and
AC for each of the hindcast and forecast
cases, regarding to all water levels measure-
ments, and only comparing low and high tide
values. In order to improve legibility of the
details, the vertical axes is split in two ranges
with different resolution, one coarser to show
the magnitude of the worst obtained values,
and one at a finer scale to appreciate the dif-
ferences as the two methods are converging.

Comparing the results of using the angle
among vectors and the K-means, it is evi-
dent that the drop in the RMSE occurs with
less elements than with the K-means. For
the hindcast (see Fig. 5.a and 7.a) it occurs
with 42 samples for the proposed method and
859 clusters with K-means. For the forecast-
ing (see Fig. 5.b and 7.b) the drop appears
with 70 samples and 844 clusters. In both
cases the proposed method allows to train a
network with a smaller RMSE independent
of the number of elements used. Except for
the low tide, with a small number of samples
and clusters, the proposed method it is bet-
ter, but after the K-means error drops, they
present similar RMSE values.

Using both algorithms produce ANNs that
converge faster in terms of the mean error

Hindcast Forecast
Par. Ang. Ang. K-m. Ang. Ang. K-m.
cos angle 0.800 0.920 - 0775 0.920 -
N samples 93 859 839 84 844 844
RMSE 174 138 19.0 282 275 299
MAE 136 10.7 149 221 21.1 240
ME 0.3 3.9 5.6 5.3 6.9 9.6
AC 34 54 -21 -06 -03 -02

Table 1: Error comparison using all observations

(see Fig. 8). Still, the angular distance
method requires less samples to reach a mean
error close to the mean error obtained if all
the samples were used to train the ANN. The
long term tendency for the mean error is that
the ANNs are under estimating the water
level in the range of 4 and 6 cm for the hind-
cast and between 5 to 12 cm for the forecast.

The skewness measured by the asymmetry
coefficient AC also shows (see Fig. 9) that
the angular distance method is able to reach
a reasonable value with a small number of
samples. With a big number of samples the
two methods converge to similar values. The
AC is positive when only high and low tide
are considered. This means that the median
of the errors is smaller than the mean error
and, as the mean error is positive, the me-
dian error it is closer to zero. When all the
samples are considered the skewness of the
hindcast is negative. This implies that most
of the errors are greater than the mean er-
ror and are underestimating the water level
more than the reported mean error. Finally,
for the forecast the asymmetry is closer to
0, meaning that the errors are symmetrically
distributed around the reported mean error.

Table 1 presents the results for the forecast
and hindcast using all the observed values.

11
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Figure 9: Asymmetry coeflicient for different number of elements in the training set using the K-means and

the proposed method. a) Hindcast b) Forecast
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Hindcast ‘ Forecast Hindcast ‘ Forecast
Par. Ang. K-m. Ang. K-m. Par. Ang. K-m. Ang. K-m.
cos angle 0.920 - 0.920 - cos angle 0.920 - 0.920 -
N samples 859 859 844 844 N samples 859 859 844 844
RMSE 138 227 273 320 RMSE 120 156 259 26.1
MAE 104 16.8 20.5 254 MAE 9.0 126 193 198
ME 4.5 127 123 213 ME 6.3 7.3 5.2  -1.0
AC 1.6 3.6 2.1 4.0 AC 2.9 1.3 1.1 0.2

Table 2: Error comparison for high tide

The presented values correspond to the first
K-means results with a reasonable RMSE
(859 clusters for hindcast and 844 clusters
for forecast) and two values for the angu-
lar distance method. The ANN trained with
the smaller number of samples from the an-
gular distance that has a lower RMSE than
the K-means (99 samples that corresponds to
cos = 800 for the hindcast and 84 samples
with cos = 0.775 for the forecast) and also
the model that trained with the same number
of elements from the angular distance and K-
means. In both cases the results from the pro-
posed method are better than the K-means
for the RMSE, MAE and ME, while the AC
is better for the K-means. It is important to
note that the angular distance method only
requires 11% of the samples used by the K-
means to obtain the same quality in trained
ANNs (0.93% of the total number of valida-
tion samples). Comparing the computational
time, it is approximately 18 times faster. On
the other hand, if the number of elements are
kept equal, a similar computational time is
expected with lower errors provided by the
angular distance method.

Table 2 presents only the values for the

Table 3: Error comparison for low tide

high tide for the angular distance and the K-
means using the same number of elements. It
is clear that at this point the angular distance
performs much better than the K-means both
for hindcast and forecast. For most of the er-
ror criteria there are no improvements for the
angular distance if more samples are included
beyound this point. In the case of K-means,
improvements can be achieved by using more
clusters, but at a higher computational cost.

Similarly Table 4.3 presents only the values
for the low tide were both methods use the
same number of elements. For the selected
values, the angular distance method is better
than the K-means even though the difference
is not as big as for the high tide. For the fore-
cast, the proposed method is slightly better
than the K-means with respect to the RMSE
and MAE but not for the ME and AC. In the
case of ME and AC values, it is a coincidence
that 844 clusters is a transition case were the
values of both of them in the low tide are
passing from big negative values to positive
numbers (see Fig. 8 and Fig. 9). Therefore
these values are not conclusive about the per-
formance of the method in this case.
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5. Conclusions

The angle between vectors is an easy
method to select samples that show spread-
ing in the space of the inputs. The proposed
method enables to reduce the redundancy of
information, avoiding the use of two or more
samples that are similar to each other. As
the selected samples are in general those that
differ more from others, the resulting train-
ing dataset contains a higher diversity and is
able to produce an ANN with a similar per-
formance than networks trained with more
inputs. The reduced number of samples has
a clear advantage to speed-up the training
process. This is relevant in the design of the
architecture of a new ANN where the number
of input nodes and hidden layers are still to be
determined and several scenarios need to be
tested to find an optimal configuration. After
the architecture is defined, in some cases it is
possible to increase the number of samples for
the final model if still smaller errors can be
obtained in a reasonable time. The proposed
method is more efficient capturing extreme
values than the K-means. When compar-
ing with the clustering algorithm K-means,
the proposed method is clearly providing not
only an smaller dataset (with its great bene-
fit in reducing computational time) but also
an smaller RMSE.
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