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We apply an artificial neural network to model and verify material properties. The neural network
algorithm has a unique capability to handle incomplete data sets in both training and predicting, so it
can regard properties as inputs allowing it to exploit both composition-property and property-
property correlations to enhance the quality of predictions, and can also handle a graphical data as a
single entity. The framework is tested with different validation schemes, and then applied to materials
case studies of alloys and polymers. The algorithm found twenty errors in a commercial materials
database that were confirmed against primary data sources.
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1. Introduction

Through the stone, bronze, and iron ages the discovery of new
materials has chronicled human history. The coming of each age
was sparked by the chance discovery of a new material. However,
materials discovery is not the only challenge: selecting the correct
material for a purpose is also crucial [1]. Materials databases curate
and make available properties of a vast range of materials [2–6].
However, not all properties are known for all materials, and fur-
thermore, not all sources of data are consistent or correct, intro-
ducing errors into the data set. To overcome these shortcomings
we use an artificial neural network (ANN) to uncover and correct
errors in the commercially available database MaterialUniverse
[5] and Prospector Plastics [6].

Many approaches have been developed to understand and pre-
dict materials properties, including direct experimental measure-
ment [7], heuristic models, and first principles quantum
mechanical simulations [8]. We have developed an ANN algorithm
that can be trained frommaterials data to rapidly and robustly pre-
dict the properties of unseen materials [9]. Our approach has a
unique ability to handle the data sets that typically have incom-
plete data for input variables. Such incomplete entries would usu-
ally be discarded, but the approach presented will exploit it to gain
deeper insights into material correlations. Furthermore, the tool
can exploit the correlations between different materials properties
to enhance the quality of predictions. The tool has previously been
used to propose new optimal alloys [9–14], but here we use it to
impute missing entries in a materials database and search for erro-
neous entries.

Often, material properties cannot be represented by a single
number, as they are dependent on other test parameters such as
temperature. They can be considered as a graphical property, for
example yield stress versus temperature curves for different alloys
[15]. In order to handle this type of data more efficiently, we treat
the data for these graphs as vector quantities, and provide the ANN
with information of that curve as a whole when operating on other
quantities during the training process. This requires less data to be
stored than the typical approach to regard each point of the graph
as a new material, and allows a generalized fitting procedure that
is on the same footing as the rest of the model.

Our proposed framework is first tested and validated using gen-
erated exemplar data, and afterwards applied to real-world exam-
ples from the MaterialUniverse and Prospector Plastics databases.
The ANN is trained on both the alloys and polymers data sets,
and then used to make predictions to identify incorrect experimen-
tal measurements, which we correct using primary source data. For
materials with missing data entries, for which the database pro-
vides estimates from modeling functions, we also provide predic-
tions, and observe that our ANN results offer an improvement
over the established modeling functions, while also being more
robust and requiring less manual configuration.

In Section 2 of this paper, we cover in detail the novel framework
that is used to develop the ANN. We compare our methodology to
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Fig. 1. Artificial Neural Network (ANN) to interpolate data sets of materials
properties. The graphs show how the outputs for y1 (top) and y2 (bottom) are
computed from all the inputs xi . I � 2 similar graphs can be drawn for all other yj to
compute all the predicted properties. Linear combinations (gray lines on the left) of
the given properties (red) are taken by the hidden nodes (blue), a non-linear tanh
operation is applied, and a linear combination (gray lines on the right) of those is
returned as the predicted property (green). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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other approaches, and develop the algorithms for computing the
outputs from the inputs, iteratively replacing missing entries, pro-
moting graphing quantities to become vectors, and the training
procedure. Section 3 focuses on validating the performance of the
ANN. The behavior as a function of the number of hidden nodes is
investigated, and a method of choosing the optimal number of hid-
den nodes is presented. The capability of the network to identify
erroneous data points is explained, and a method to determine
the number of erroneous points in a data set is presented. The per-
formance of the ANN for training and running on incomplete data is
validated, and tests with graphing data are performed. Section 4
applies the ANN to real-world examples, where we train the ANN
on MaterialUniverse [5] alloy and Prospector Plastics [6] polymer
databases, use the ANN’s predictions to identify erroneous data,
and extrapolate from experimental data to impute missing entries.

2. Framework

Our knowledge of experimental properties of materials starts
from a database, a list of entries (from now on referred to as the
‘data set’), where each entry corresponds to a certain material.
Here, we take a property to be either a defining property (such
as the chemical formula, the composition of an alloy, or heat treat-
ment), or a physical property (such as density, thermal conductiv-
ity, or yield strength) [1]. The following approach treats all of these
properties on an equal footing.

To predict the properties of unseen materials a wide range of
machine learning techniques can be applied to such databases
[16]. Machine learning predicts based purely on the correlations
between different properties of the training data, which imbues
the understanding of the physical phenomena involved. We first
define the ANN algorithm in Section 2.1, and explain its implemen-
tation to incomplete data in Section 2.2. Our extension to the ANN
to account for graphing data is described in Section 2.3. The train-
ing process is laid out in Section 2.4. Finally, we critically compare
our ANN approach to other algorithms in Section 2.5.

2.1. Artificial neural network

We now define the framework that is used to capture the func-
tional relation between all materials properties, and predict these
relations for materials for which no information is available in
the data set. The approach builds on the formalism used to design
new nickel-base superalloys [9]. We intend to find a function f that
satisfies the fixed-point equation fðxÞ � x as closely as possible for
all elements x from the data set. There a total of N entries in the
data-set. Each entry x ¼ ðx1; . . . ; xIÞ is a vector of size I, and holds
information about I distinct properties. The trivial solution to the
fixed-point equation is the identity operator, so that fðxÞ ¼ x. How-
ever, this solution does not allow us to use the function f to impute
data, and so we seek a solution to the fixed-point equation that by
construction is orthogonal to the identity operator. This will allow
the function to predict a given component of x from some or all
other components.

We choose a linear superposition of hyperbolic tangents to
model the function f,

f : ðx1; . . . ; xi; . . . ; xIÞ # ðy1; . . . ; yj; . . . ; yIÞ ð1Þ

with yj ¼
XH
h¼1

Chjghj þ Dj;

and ghj ¼ tanh
XI

i¼1

Aihjxi þ Bhj

 !
:

This is an ANN with one layer of hidden nodes, and is illustrated
in Fig. 1. Each hidden node ghj with 1 6 h 6 H and 1 6 j 6 I per-
forms a tanh operation on a superposition of input properties xi
with parameters Aihj and Bhj for 1 6 i 6 I. Each property is then pre-
dicted as a superposition of all the hidden nodes with parameters
Chj and Dj. This is performed individually for each predicted prop-
erty yj for 1 6 j 6 I. There are exactly as many given properties as
predicted properties, since all types of properties (defining and
physical) are treated equally by the ANN. Provided a set of param-
eters Aihj, Bhj;Chj, and Dj, the predicted properties can be computed
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from the given properties. The ANN always sets Akhk ¼ 0 for all
1 6 k 6 I to ensure that the solution of the fixed-point equation
is orthogonal to the identity, and so we derive a network that
can predict yk without the knowledge of xk.

2.2. Handling incomplete data

Typically, materials data that has been obtained from experi-
ments is incomplete, i.e. not all properties are known for every
material, but the set of missing properties is different for each
entry. However, there is information embedded within property-
property relationships: for example ultimate tensile strength is
three times hardness. A typical ANN formalism requires that each
property is either an input or an output of the network, and all
inputs must be provided to obtain a valid output. In our example
composition would be inputs, whereas ultimate tensile strength
and hardness are outputs. To exploit the known relationship
between ultimate tensile strength and hardness, and allow either
the hardness and ultimate tensile strength to inform missing data
in the other property, we treat all properties as both inputs and
outputs of the ANN. We have a single ANN rather than an exponen-
tially large number of them (one for each combination of available
composition and properties). We then adopt an expectation-
maximization algorithm [17]. This is an iterative approach, where
we first provide an estimate for the missing data, and then use the
ANN to iteratively correct that initial value.

The algorithm is shown in Fig. 2. For any material x we check
which properties are unknown. In the non-trivial case of missing
entries, we first set missing values to the average of the values pre-
sent in the data set. An alternative approach would be to adopt a
Fig. 2. If we want to evaluate the ANN for a data point x which has some of the
entries for its properties missing, we will follow the process described by this graph.
After checking for the trivial case where all entries are existent, we set x0 ¼ x, and
replace all the missing entries by averages from the training data set. We then
iteratively compute xnþ1 as a combination xn and f applied to xn until a certain point
of convergence is reached, and return the final xn as a result instead of fðxÞ.
value suggested by that of a local cluster. With estimates for all
values of the neural network we then iteratively compute

xnþ1 ¼ cxn þ ð1� cÞfðxnÞ: ð2Þ
The converged result is then returned instead of fðxÞ. The func-

tion f remains fixed on each iteration of the cycle.
We include a softening parameter 0 6 c 6 1. With c ¼ 0 we

ignore the initial guess for the unknowns in x and determine them
purely by applying f to those entries. However, introducing c > 0
will prevent oscillations and divergences of the sequence, typically
we set c ¼ 0:5.

2.3. Functional properties

Many material properties are functional graphs, for example to
capture the variation of the yield stress with temperature [15]. To
handle this data efficiently, we promote the two varying quantities
to become interdependent vectors. This will reduce the amount of
memory space and computation time used by a factor roughly pro-
portional to the number of entries in the vector quantities. It also
allows the tool to model functional properties on the same footing
as the main model, rather than as a parameterization of the curve
such as mean and gradient. The graph is represented by a series of
points indexed by variable ‘. Let x be a point from a training data
set. Let x1;‘ and x2;‘ be the varying graphical properties, and let all
other properties x3; x4; . . . be normal scalar quantities. When fðxÞ
is computed, the evaluation of the vector quantities is performed
individually for each component of the vector,

y1;l ¼ f 1ðx1;‘; x2;‘; x3; x4; . . .Þ: ð3Þ
When evaluating the scalar quantities, we aim to provide the

ANN with information of the x2ðx1Þ dependency as a whole, instead
of the individual data points (i.e. parts of the vectors x1;‘, and x2;‘). It
is reasonable to describe the curve in terms of different moments
with respect to some basis functions for modeling the curve. For
most expansions, the moment that appears in lowest order is the
average x1h i, or x2h i respectively. We therefore evaluate the scalar
quantities by computing,

y3 ¼ f 3ð x1h i; x2h i; x3; x4; . . .Þ: ð4Þ
This can be extended by defining a function basis for expansion,

and include their higher order moments. This approach automati-
cally removes the bias due to differeing numbers of points in the
graphs.

2.4. Training process

The ANN has to first be trained on a provided data set. Starting
from random values for Aihj;Bhj;Chj, and Dj, the parameters are var-
ied following a random walk, and the new values are accepted, if
the new function f models the fixed-point equation fðxÞ ¼ x better.
This is quantitatively measured by the error function,

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
x2X

XI

j¼1

f jðxÞ � xj
� �2vuut : ð5Þ

The optimization proceeds by a steepest descent approach [18],
where the number of optimization cycles C is a run-time variable.

In order to calculate the uncertainty in the ANN’s prediction,
frðxÞ, we train a whole suite of ANNs simultaneously, and return
their average as the overall prediction and their standard deviation
as the uncertainty [19]. We choose the number of models M to be
between 4 and 64, since this should be sufficient to extract themean
and uncertainty. In Section 3 we show how the uncertainty reflects
the noise in the training data and uncertainty in interpolation.
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Moreover, on systems that are not uniquely defined, knowledge of
the full distribution of models will expose the degenerate solutions.
2.5. Alternative approaches

ANNs like the one proposed in this paper (with one hidden layer
and a bounded transfer function; see Eq. (1)) can be expressed as a
Gaussian process using the construction first outlined by Neal [20]
in 1996. Gaussian processes were considered as an alternative to
building the framework in this paper, but were rejected for two
reasons. Firstly, the ANNs have a lower computational cost, which
scales linearly with the number of entries N, and therefore ANNs
are feasible to train and run on large-scale databases. The cost
for Gaussian processes scales as N3, and therefore does not provide
the required speed. Secondly, materials data tends to be clustered.
Often, experimental data is easy to produce in one region of the
parameter space, and hard to produce in another region. Gaussian
processes can only define a unique length-scale of correlation and
consequently fail to model clustered data whereas ANNs perform
well.
3. Testing and validation

Having developed the ANN formalism, we proceed by testing it
on exemplar data. We will take data from a range of models to
train the ANN, and validate its results. We validate the ability of
the ANN to capture functional relations between materials proper-
ties, handle incomplete data, and calculate graphical quantities.

In Section 3.1, we interpolate a set of 1-dimensional functional
dependencies (cosine, logarithmic, quadratic), and present a
method to determine the optimal number of hidden nodes. In Sec-
tion 3.2, we demonstrate how to determine erroneous entries in a
data set, and to predict the number of remaining erroneous entries.
Section 3.3 provides an example of the ANN performing on incom-
plete data sets. Finally, in Section 3.4, we present a test for the
ANN’s graphing capability.
Fig. 3. Training an ANN on toy-model data for (a) a cosine function, (b) a logarithmic fu
noise. (d) For the quadratic function, the performance with different number of hidde
validation rms are computed and plotted.
3.1. One-dimensional tests

The ANN was trained on a (a) cosine function, (b) logarithmic
function with unequally distributed data, and (c) quadratic func-
tion with results shown in Fig. 3. All of the data is generated with
Gaussian distributed noise to reflect experimental uncertainty in
real-world material databases. The cosine function is selected to
test the ability to model a function with multiple turning points,
and was studied with H ¼ 3 hidden nodes. The logarithmic func-
tion is selected because it often occurs in physical examples such
as precipitate growth, and is performed with H ¼ 1. The quadratic
function is selected because it captures the two lowest term in a
Taylor expansion, and is performed with H ¼ 2.

Fig. 3 shows that the ANN recovers the underlying functional
dependence of the data sets well. The uncertainty of the model is
larger at the boundaries, because the ANN has less information
about the gradient. The uncertainty also reflects the Gaussian noise
in the training data, as can be observed from the test with the log
function, where we increased the Gaussian noise of the generated
data from left to right in this test. For the test on the sin function,
the ANN has a larger uncertainty for maxima and minima, because
these have higher curvature, and are therefore harder to fit. The
correct modeling of the smooth curvature of the cosine curve could
not be captured by simple linear interpolation.

The choice of the number of hidden nodes H is critical: Too few
will prevent the ANN frommodeling the data accurately; too many
hidden nodes leads to over-fitting. To study the effect of changing
the number of hidden nodes, we repeat the training process for the
quadratic function with 1 6 H 6 6, and determine the error d in
three ways. Firstly, the straight error d. The second approach is
cross-validation by comparing to additional unseen data [21].
The third and final approach is evaluate the reduced error

d� ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2H=N

p ; ð6Þ

which assumes that the sum of the squares in Eq. (5) is
v2-distributed, so we calculate the error per degree of freedom,
which is N � 2H, where the 2H parameters in the ANN arise
nction with unequally distributed data, and (c) a quadratic function with Gaussian
n nodes is tested, and the rms (Eq. (5)), the reduced rms (Eq. (6)), and the cross-
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because each of the H indicator functions in Eq. (1) has two
degrees of freedom: a scaling factor and also a shift. The results
are presented in Fig. 3(d).

The error, d, monotonically falls with more hidden nodes. This is
expected as more hidden nodes gives the model the flexibility to
describe the training data more accurately. However, it is impor-
tant that the ANN models the underlying functional dependence
between those data points well, and does not introduce overfitting.
The cross-validation results increase above H ¼ 2 hidden nodes,
which implies that overfitting is induced beyond this point. There-
fore, H ¼ 2 is the optimal number of hidden nodes for the quadratic
test. This is expected since we choose tanh as the basis functions to
build our ANN, which is a monotonic function, and the quadratic
consists of two parts that are decreasing and increasing
respectively.

In theory, performing a cross-validation test may provide more
insight into the performance of the ANN on a given data set, how-
ever, this is usually not possible because it has a high computa-
tional cost. We therefore turn to the reduced error, d�. This also
has a minimum at H ¼ 2, and represents a quick and robust
approach to determine the optimal number of hidden nodes.

Cross-validation also provides an approach to confirm the accu-
racy of the ANN predictions. For the optimal number of hidden
nodes we perform a cross-validation analysis by taking the three
examples in Fig. 3, remove one quarter of the points at random,
train a model on the remaining three quarters of the points, and
then re-predict the unseen points. We then compare the error to
the predictions of an ANN trained on the entire data set. The results
are summarized in Table 1. The error in the cross-validation anal-
ysis is only slightly larger than the error when trained off all
entries, confirming the accuracy of the ANNs.

In this section, we were able to prove that the ANN is able to
model data accurately, and laid out a clear prescription for deter-
mining the optimal number of hidden nodes by minimizing d�.
Table 1
The results of cross-validation testing for the three models (a) a cosine function, (b) a
logarithmic function with unequally distributed data, and (c) a quadratic function
with Gaussian noise. The second column gives the error when the ANN is trained on
all of the data, and the third column the error in points unseen in training during
cross-validation.

Data set Error all Error cross-validation

Cosine 0.06 0.07
Logarithm 0.05 0.06
Quadratic 1.2 1.4

Fig. 4. Blue dashed line: Quadratic curve for generating data. Red/green points:
Data points generated from the blue line with Gaussian noise that have/have not
been identified as erroneous. Black line: Prediction of the model with uncertainty.
The Gaussian noise of the generated data increases proportional to the value of the
toy-model function. Observe that less points are identified as erroneous at the right
end of the plot, since the certainty of the ANN is lower in that region. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
3.2. Erroneous entries

The ANN can be used to search for erroneous entries in a data
set. As the ANN captures the functional dependence of the training
data and the uncertainty in the estimate, the likelihood of an entry
being erroneous can be determined by computing the number of
standard deviations that this entry lies away from the ANN’s
prediction,

DrðxÞ ¼
XG
j¼1

f jðxÞ � xj
f rj ðxÞ

: ð7Þ

For a well-behaved data set with no errors the average absolute
value of Dr should be approximately unity. However, in the pres-
ence of erroneous entries, those entries with anomalously large
DrðxÞ can be identified, removed, or corrected. In this section, we
will analyze the ability of the ANN to uncover erroneous entries
in an exemplar set of data.

The case study is based on a quadratic function shown in Fig. 4
containing Ng ‘good’ points and Nb ‘bad’ points. Good points would
be the experimental data with small Gaussian distributed noise,
whereas bad points would occur through strong systematic mis-
takes modeled with a broad uniform distribution shown in Fig. 5.
The results are shown in Fig. 4, where only 25% of the data is plot-
ted. The ten points that are identified to be the most erroneous
ones in this set are removed first, and have been highlighted in
the graph.

The upper limit of Dr that we use to extract erroneous entries
from the data set has to be chosen correctly. We want to eliminate
as many erroneous entries as possible, while not removing any
entries that hold useful information. We therefore proceed by
developing a practical method to analyze how many erroneous
data entries are expected to remain in the data set after extracting
a certain number of entries. In a practical application, the main-
tainer of a large materials database might opt to continue remov-
ing erroneous entries from the database until the expected
number of erroneous entries that a user would encounter falls
below 1.

The probability density for finding erroneous entries in the
region where erroneous entries have been removed from the sam-
ple is approximately equal to the probability density for finding
further erroneous entries in the region of remaining entries. There-
fore, the expected number of remaining erroneous entries is

Nrem ¼ Nfound

1� Dyrem
Dytot

; ð8Þ

where Nrem;found are the number of remaining and found erroneous
data entries respectively, and Dytot;rem refer to the range over which
the total and remaining entries are spread respectively.
Fig. 5. Theory of how many entries should be left using a uniform distribution of
‘bad’ entries.



Fig. 7. The toy-model data that is used for training of the ANN is shown as Z as a
function of X together with the predictions of the ANN without providing X or Y
respectively. The ANN learns the Z ¼ X þ Y dependence, and uses the average of X
or Y values respectively to replace the unknown values.

Fig. 8. Deviation Dz of the predicted values of Z from the true values from the
training data set as a function of X. An exact prediction would be represented by
Dz ¼ 0 as indicated by the dashed gray line. The accuracy of the ANN predictions get
worse with increasing level of fragmentation of the training data set.
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Returning to the exemplar data set, we compare Nrem with the
true number of remaining erroneous entries in Fig. 6. The method
provides a good prediction for the actual number of remaining
erroneous entries.

The neural network can identify the erroneous entries in a data
set. Furthermore, the tool can predict which are the entries most
likely to be erroneous allowing the end user to prioritize their
attention on theworse entries. The capability to predict the remain-
ing number of entries allows the end user to search through and
correct erroneous entries until a target quality threshold is attained.

3.3. Incomplete data

In the following section, we investigate the capability of the
ANN to train on and analyze incomplete data. This requires at least
three different properties to study, and therefore our tests will be
on three-dimensional data sets. This procedure can be studied for
different levels of correlation between the properties, and we study
two limiting classes: completely uncorrelated, and completely cor-
related data. In the uncorrelated data set the two input variables
are uncorrelated with each other, but still correlated to the output.
In the correlated data set the input variables are now correlated
with each other, and also correlated to the output. We focus first
on the uncorrelated data.

3.3.1. Fully uncorrelated data
To study the performance on uncorrelated data we perform the

following two independent tests: we first train the ANN on incom-
plete uncorrelated data, and run it on complete data, and secondly
train on complete uncorrelated data, and run on incomplete data.

For N ¼ 20 points X ¼ fx1; . . . ; xNg distributed evenly in the
interval 0 6 x � 10 we generate a set of random numbers
Y ¼ ðy1; . . . ; yNÞ uniformly distributed between �2.5 and 2.5. We
let Z ¼ X þ Y ¼ ðx1 þ y1; . . . ; xN þ zNÞ, which is shown in Fig. 7. This
data set is uncorrelated because the values of Y, a set of random
numbers, are independent of the values X; therefore a model needs
both x and y to calculate z.

We first train the ANN on all of the training data, and ask it to
predict z while providing (i) x and y, (ii) x only, and (iii) y only.
The results of (ii) and (iii) are shown in Fig. 8 alongside the training
data, where z is plotted as a function of x. Fig. 8 reveals that when
provided with both x and y the ANN is able to capture the full
z ¼ xþ y dependence for the complete training data with maxi-
mum deviation jDzj 6 0:13. However, when the ANN is provided
only with the x values, but not y, the best that the ANN could do
is replace y with its average value, 0. Fig. 7 confirms that the
ANN returns z ¼ xþ Yh i ¼ x. However, when the ANN is provided
with the y values but not the x, the best that the ANN could do is
replace x with its average value, 5. Fig. 7 shows that it returns
Fig. 6. Blue points: the neural network prediction of, after removing a certain
number of erroneous entries (x-axis), how many erroneous entries remain in the
data set. A perfect prediction of the remaining number of erroneous entries would
be the green points.
z ¼ Xh i þ y ¼ 5þ y. This confirms that after training off a complete
uncorrelated data set, that when confronted with incomplete data,
the ANN delivers the best possible predictions given the data avail-
able. The analysis also confirms the behavior of the ANN when pre-
sented with completely randomly distributed data: it correctly
predicts the mean value as the expected outcome.

The second scenario is to train the ANN on an incomplete data
set. Later, when using the neural network to predict values of z, val-
ues for both x and y are provided.We take the original training data,
and randomly choose a set of entries (in any of X; Y , or Z), and set
them as blank. We train the ANN on data sets that are (i) complete,
(ii) 40%, (iii) 50 %, and (iv) 60%missing values. The ANN is then asked
to predict z for given x and y, and the error in the predicted value of z
shown in Fig. 8. The accuracy of the ANN predictions decreases with
increasing fragmentation of the training data. Yet, even with 60%
fragmentation the ANN is still able to capture the z ¼ xþ y accu-
rately with Dzj j 6 0:41 60%. This is less than the separation of 0:5
between adjacent points in Z, so despite over half of the datamissing
the ANN is still able to distinguish between adjacent points.

3.3.2. Fully correlated data
We next turn to a data set in which given just one parameter,

either x or y, it is possible to recover z ¼ xþ y. This requires that
y is a function of x, and so is fully correlated. We now set y ¼ x2,
and perform the tests as above. Now after training on a complete
data set, the ANN is able to predict values for z when given only
x or y. The ANN also performs well when trained from an incom-
plete data set.

3.3.3. Summary
We have successfully tested the capability of the ANN to handle

incomplete data sets. We performed tests for both training and
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running the ANN with incomplete data. The ANN performs well
when the training data is both fully correlated and completely
uncorrelated, so should work well on real-life data.
3.4. Functional properties

We now test the capability for the ANN to handle data with
functional properties (also referred to as graphing data) as a single
entity. As before we have a functional variable X ¼ fx1; . . . ; xNg
with N ¼ 5 equidistant points in the interval from 1 to 5. At each
value of x point we introduce a vector quantity, dependent on a
variable Y ¼ fy1; . . . ; y‘g that can have up to ‘ ¼ 10. We compute
the vector function z‘ ¼ 4xþ y2‘ =4, with additional Gaussian noise
of width 1 and train an ANN on this data set. We show the training
data as well as the ANN prediction for z in Fig. 9, which confirms
that the ANN is able to predict the underlying functional depen-
dence correctly.

The real power of the graphing capability is to predict x with
different number of elements provided in the vector ðy; zÞ. We
show the predictions of the ANN in Fig. 10. With all 10 components
of the vector provided the ANN makes accurate predictions for x.
With fewer components provided the accuracy of the predictions
for x falls, but even if just 2 elements are provided the ANN is still
able to distinguish between the discrete values of x.

We confirm that the ANN is able to fully handle vector and
graphical data. The ANN gives accurate predictions for both the
functional properties when providing non-functional properties
only, and vice versa. This new capability allows the ANN to handle
a new form of real-world problems, for example the temperature
dependence of variables such as yield stress. Temperature can be
used only as an input for the yield stress, without the need to repli-
cate other properties that are not temperature dependent, for
example cost. The reduction in the amount of data required will
increase the efficiency of the approach and therefore the quality
of the predictions.
Fig. 9. Training data, true function and predicted ANN function for different values
of x.

Fig. 10. Predict x from the training data with different number of ðy; zÞ- pairs
provided. The gray dotted lines indicate the true value of x.
4. Applications

With the testing on model data complete we now present case
studies of applying the ANN to real-life data. In this section, we will
use the ANN framework to analyze the MaterialUniverse and
Prospector Plastics databases. We first focus on a data set of 1641
metal alloys with a composition space of 31 dimensions (that is
each metal is an alloy of potentially 31 chemical elements). We
train neural networks of 4 hidden nodes to predict properties such
as the density, the melting point temperature, the yield stress, and
the fracture toughness of those materials. Secondly, we examine a
system where not all compositional variables are available: a poly-
mer data set of 5656 entries, and focus on the modeling of its ten-
sile modulus.

We use the trained ANN to uncover errors by searching for
entries multiple standard deviations Dr away from the ANN pre-
dictions. We compare the results to primary sources referenced
from the MaterialUniverse data set to determine whether the entry
was actually erroneous: a difference could only be due to a tran-
scription error from that primary data set into the MaterialUniverse
database.

When analyzing the density data, we can confirm the ability of
the ANN to identify erroneous entries with a fidelity of over 50%.
For the melting temperature data, we show that for missing entries
the ANN yields a significant improvement in the estimates pro-
vided by the curators of the database. When advancing to the yield
stress properties of the materials, we observe that our methods can
only be applied when additional heat treatment data is made avail-
able for training the ANN. Unlike established methods, our frame-
work is uniquely positioned to include such data for error-finding
and extrapolation. For the fracture toughness data, we exploit cor-
relations with other known properties to provide more accurate
estimation functions compared to established ones. Finally, in the
polymer data, we exploit the capability of our ANN to handle an
incomplete data set without compositional variables, and instead
characterize polymers by their properties.
4.1. Density

The density of an alloy is set primarily by its composition, the
data for which can be provided in a convenient form for training
the ANN. This makes the density data set an attractive starting
point for our investigation.

We first construct a model following the rule of mixtures by cal-
ibrating a weighted average of the densities of each constituent
element to the MaterialUniverse density data. This model offers
an average rms error of 0.19 g cm�3. We then construct a data
set that is the difference between the model and the original den-
sity data and compositions, and use this to train the ANN. The
resulting rms error in the ANN prediction was 0.12 g cm�3, a signif-
icant improvement on the rule of mixtures.

With an ANN model for density in place, we use it to search for
erroneous entries within the density training set. For each entry we
calculate the number of standard deviations from the ANN predic-
tion, with the top 20 being considered as candidates for being erro-
neous. Of the 20 entries with highest Dr, 7 were found to be
incorrect after comparing to a primary data source, these entries
tabulated in Table 2. Of the remaining 13, 7 are found to be correct,
and no source of primary data could be found for the remaining 6.
The ANN detected errors with a fidelity of 50%. Following these
amendments, using Eq. (8), we predict that the number of remain-
ing erroneous entries to be 17.

The ability to identify erroneous entries in a materials database,
as well as the ability to assess the overall quality should be of inter-
est to the curators of such databases. We therefore now use the



Table 2
A list of MaterialUniverse entries (source) for density in g cm�3 that were identified by
the ANN as being potentially erroneous by the number of standard deviations Dr , and
then subsequently confirmed to be incorrect by a primary source database (actual).

Alloy Source ANN Dr Actual

Stainless steel, Ilium P 7.6 7.9 12 7.75–8.0 [4]
Tool steel, AISI M43 8.4 8.0 �12 7.7–8.0 [4]
Copper-nickel, C70400 8.5 8.9 11 8.9 [4]
Tool steel, AISI A3 8.0 7.7 �20 8.9 [4]
Tool steel, AISI A4 7.9 7.8 9 8.0 [4]
Tool steel, AISI M6 8.5 8.0 11 7.7–8.0 [4]
Aluminum, 8091, T6 2.6 2.5 10 2.5 [4]
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ANN to search for errors in other quantities in the MaterialUniverse
data set.
4.2. Melting temperature

The melting point of a material is a complex function of its com-
position so modeling it is a stern test for the ANN formalism. Fur-
thermore, the melting temperature data set in theMaterialUniverse
database has 80% of its data taken from experiments with the
remaining 20% estimated from a fitting function by the database
curators. This means that we have to handle data with underlying
differing levels of accuracy.

We begin by training the ANN on only the experimental data.
We seek to improve the quality of the data set by searching and
correcting erroneous entries as was done for density. After identi-
fying and correcting the 4 incorrect entries listed in Table 3, we
estimate that there are still 5 erroneous entries in the data set. This
leaves us with just 0:3% of the database being erroneous, and
hence with a high-quality data set of experimental measurements
to study the accuracy of the MaterialUniverse fitting function.

We now wish to quantify the improvement in accuracy of the
ANN model over the established MaterialUniverse fitting model
for those entries for which no experimental data is available. We
do so by analyzing the 30 entries where the ANN and the fitting
function are most different. By referring to primary data sources
in Table 4 we confirmed that the ANN predictions are closer to
the true value than the fitting function’s prediction in 20 cases, fur-
Table 3
Erroneous entries for melting temperature in K from the MaterialUniverse database
(source) alongside predictions from the ANN, that differ by Dr standard deviations,
subsequently confirmed to be incorrect by a primary source databases (actual).

Alloy Source ANN Dr Actual

Wrought iron 1973 1760 �37 1808[4]
Nickel, INCOLOY840 1419 1661 8 1724–1784[22]
Titanium, a-b 1593 1878 17 1866 [4]
Steel, AISI 1095 1650 1699 13 1788 [23]

Table 4
Differences in the estimates of the melting temperature in K from the actual value for
the 7 points where the established fitting function (EFF), and the ANN differ the most
and primary source data is available.

Alloy DEFF DANN

Steel Fe-9Ni-4Co-0.2C, quenched [24] �94 9
Tool steel, AISI W5, water-hardened [24] 48 �19
Tool steel, AISI A4, air-hardened [24] 56 16
Tool steel, AISI A10, air-hardened [23] 59 �61
Tool steel, AISI L6, 650 �C tempered [24] 59 14
Tool steel, AISI L6, annealed [24] 59 14
Tool steel, AISI L6, 315 �C tempered [24] 59 14
ther away in 4 cases, and no conclusion is possible in 4 cases due to
a lack of primary data.

Sometimes there are two sources of primary data that are
inconsistent. In these cases we can use the ANN to determine
which source is correct. Assuming that out of several experimental
results only one can be correct, we can decide which one it is by
evaluating Dr for each entry, and comparing the resulting differ-
ence in likelihood for each of the values being correct. For example,
for the alloy AISI O1 Tool steel, the value from one source is 1694 K,
only 0.6 standard deviations away from the ANN prediction of
1698 K, whereas the value given by the other source, 1723 K, is
4.5 standard deviations away. The value of 1694 K expð�0:62Þ=
expð�4:52Þ � 109-times more likely to be correct and we can
therefore confidently adopt this value.

The ANN yields a clear improvement over the established fitting
model. Having accurate modeling functions available for is crucial
for operators of materials databases, and improvements over cur-
rent modeling functions will greatly benefit usage of those data-
bases in industrial applications.

4.3. Yield stress

We now study yield stress, a property of importance for many
engineering applications, and therefore one that must be recorded
with high accuracy in the MaterialUniverse database. Yield stress is
strongly influenced by not only the composition but also the heat
treatment routine. Initial attempts to use composition alone pro-
duces an inaccurate ANN with relative error of 0:349 because
alloys with similar or identical compositions had undergone a dif-
ferent heat treatment and so have quite different yield stress. To
capture the consequences of the heat treatment routine additional
information can be included in the training set. For example, the
elongation depends on similar microscopic properties to yield
stress, such as the bond strength between atoms and the ease of
dislocation movement, and so has a weak inverse correlation with
yield stress. Elongation was therefore included in the training set,
and as summarized in Table 5 we observed a reduction in the aver-
age error to 0:092 as a result.

To directly include information about the heat treatment a bit-
wise representation for encoding information on the range of dif-
ferent heat treatments into input data readable by the ANN was
devised. This was achieved by representing the heat-treatment
routine of an alloy bit-wise, indicating whether or not the alloy
had undergone the possible heat treatments: tempering, anneal-
ing, wrought, hot or cold worked, or cast. Table 5 shows that
including this heat treatment data allows the ANN to model the
data better than established modeling frameworks, with the aver-
age error reduced to 0:052. This error can be compared with the
standard polynomial fitting model previously used by MaterialUni-
verse, which has an error of 0:072. This confirms the increased
accuracy offered by the ANN.

With the ANN model established, we can then use it to search
for erroneous entries within theMaterialUniverse database. Follow-
ing the prescription developed in density and melting point, of the
Table 5
The effect of adding heat treatment into the training set on the average error in the
ANN predictions of yield stress. Separate results for ferrous and non-ferrous alloys as
well as the entire metals data set are shown. The error from the established fitting
model used within MaterialsUniverse is also shown.

Data set Error

Composition alone 0.349
Composition and elongation 0.092
Composition, elongation, and heat treatment 0.052
Established model 0.072



Table 6
Erroneous entries for yield stress in MPa from the MaterialUniverse database (source)
alongside predictions from the ANN, that differ by Dr standard deviations,
subsequently confirmed to be incorrect by a primary source databases (actual).

Alloy Source ANN Dr Actual

Stainless steel, AISI 301L 193 269 5 238 [23]
Stainless steel, AISI 301 193 267 5 221 [23]
Aluminum, 1080, H18 51 124 5 120 [23]
Aluminum, 5083, wrought 117 191 14 300,190 [4,23]
Aluminum, 5086, wrought 110 172 11 269,131 [4,23]
Aluminum, 5454, wrought 102 149 14 124 [23]
Aluminum, 5456, wrought 130 201 11 165 [23]
Nickel, INCONEL600 223 278 10 P550 [23]

Table 8
Relative error in the available models for fracture toughness, calculated over only the
experimentally determined data.

Model ANN Steels Nickel Aluminium

Logarithmic error 0.065 0.188 0.102 0.086
Data points 202 81 5 57
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twenty alloys with the largest Dr in the estimate of yield stress,
eight were confirmed by comparison to primary sources to be erro-
neous, and are included in Table 6. The other twelve entries could
not be checked against primary sources, resulting in an fidelity in
catching errors that could be confirmed of 100%.

4.4. Fracture toughness

Fracture toughness indicates how great a load a material con-
taining a crack can withstand before brittle fracture occurs.
Although it is an important quantity it has proven to be difficult
to model from first principles. We therefore turn to our ANN. Frac-
ture toughness depends on both the stress required to propagate a
crack and the initial length of the crack. We can therefore identify
the UTS and yield stress as likely correlated quantities. Addition-
ally, elongation a measure of the materials ability to deform plas-
tically, is also relevant for crack propagation.

The model functions fitted by the curator of MaterialUniverse all
use composition as an input so we follow their prescription. An
efficient way to identify the properties most strongly correlated
to fracture toughness is to train the ANN with each quantity in turn
(in addition to the composition data), and then evaluate the devi-
ation from the fracture toughness data. The properties for which
the error is minimized are the most correlated. Table 7 shows that
elongation is the property most strongly correlated to fracture
toughness. Whilst yield stress, Young modulus, and UTS offer some
reduction in the error, including these quantities to the training
data will not lead to a significant improvement on the average
error obtained from composition and elongation alone.

The MaterialUniverse fracture toughness data contains only
around 200 values that have been determined experimentally,
with the remaining 1400 values estimated by fitting functions.
These are polynomial functions which take composition and elon-
gation as input, and are fitted to either steels, nickel, or aluminum
separately. We train the ANN over just the experimentally deter-
mined data, and compare the error in its predictions to those from
the known fitting functions. Table 8 shows that the ANN is the
most accurate, having a smaller error than the fitting function for
all three alloy families. While the different fitting functions are
‘trained’ only on the subset of the data for which they are designed,
the ANN is able to use information gathered from the entire data
Table 7
Error in the ANN when different quantities are used in the training data set to fit
fracture toughness.

Data set Relative error

Composition alone 0.144
Composition & elongation 0.113
Composition & young modulus 0.136
Composition & yield stress 0.132
Composition & UTS 0.134
Composition, elongation & yield stress 0.106
set to produce a better model over each individual subset. This is
one of the key advantages of a ANN over traditional data modeling
methods.

4.5. Polymers

In this section, we study polymers, which is an incomplete data
set. Polymer composition cannot be described simply by percent-
age of constituent elements (as in the previous example with met-
als) due to the complexity of chemical bonding, so we must
characterize the polymers by their properties. Some properties
are physical, such as tensile modulus and density; others take dis-
crete values, such as type of polymer or filler used, and filler per-
centage. As the data [6] was originally compiled from
manufacturer’s data sheets, not all entries for these properties
are known, rendering the data set incomplete.

We analyze a database of polymers that has the filler type as a
class-separable property. Many other properties exhibit a split
based on filler type, such as tensile modulus, flexural strength, or
heat deflection temperature. We first focus on the tensile modulus
shown in Fig. 11. Analysis of the predicted entries in Table 9 uncov-
ers three erroneous entries that could be confirmed against pri-
mary source data. All three of these polymers had been entered
into the database incorrectly, being either one or three orders of
magnitude too large.

Thedata set is incomplete somanypolymershave unknownfiller
type. The vast majority of entries sit at the expected density of 0.9 g
cm�3. However, some entries sit well away from there. Since the
data set includes no other properties that can account for this dis-
crepancy, a reasonable assumption is that these entries do not have
zerofiller, but instead are lackingfiller information. TheANNapplies
this observation to predict the filler type and fraction. In Table 9 we
show five polymers for which the filler type and fraction were cor-
rectly predicted when compared to primary sources of data.

Having successfully confirmed the ANN’s ability to model
incomplete data, we have completed our tests on real-life data.
The ANN can perform materials data analysis that has so far not
been possible with established methods, and hence our framework
yields an important improvement in operating large-scale
materials databases. With polymers being another class of materi-
als of great importance to industry, we have again shown how our
approach will have an impact across a broad range industrial fields.
Fig. 11. Polymer tensile modulus against density with glass fiber filler (blue) and
mineral filler (red). The input information includes not only the filler type but also
the filler amount (weight in %). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)



Table 9
A list of three ProspectorPlastics entries (source) for polymer flexural modulus/strength in MPa that were identified by the ANN as being potentially erroneous and then
subsequently confirmed to be incorrect by a primary source databases (actual). The final five entries had missing filler type and amount in % that imputed by the ANN and then
confirmed against a primary data source.

Polymer Property Source ANN Actual

4PROP25C21120 Modulus 2,300,000 2 186 2300 [25]
AZDELU400-B01N Modulus 8,000,000 8 189 8000 [25]
Hyundai HT340 Strength 469 46.1 46.9 [25]
Borealis NJ201AI Mineral filler – 20� 4 20 [25]
Daplen EE168AIB Mineral filler – 11� 3 10 [25]
Maxxam NM-818 Glass filler – 18� 4 20 [25]
FORMULA P 5220 Mineral filler – 19� 3 20 [25]
4PROP 9C13100 Mineral filler – 13� 3 10 [25]
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5. Conclusions

We developed an artificial intelligence algorithm and extended
it to handle incomplete data, functional data, and to quantify the
accuracy of data. We validated its performance for model data to
confirm that the framework delivers the expected results in tests
on the error-prediction, incomplete data, and graphing capabilities.
Finally, we applied the framework to the real-life MaterialUniverse
and Prospector Plastics databases, and were able to showcase the
immense utility of the approach.

In particular, we were able to propose and verify erroneous
entries, provide improvements in extrapolations to give estimates
for unknowns, impute missing data on materials composition and
fabrication, and also help the characterization of materials by iden-
tifying non-obvious descriptors across a broad range of different
applications. Therefore, we were able to show how artificial intel-
ligence algorithms can contribute significantly to innovation in
researching, designing, and selecting materials for industrial
applications.
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