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a b s t r a c t

Overheads, especially site overhead costs, constitute a significant component of a contrac-

tor's budget in a construction project. The estimation of site overhead costs based on

traditional approach is either accurate but time consuming (in case of the use of detailed

analytical methods) or fast but inaccurate (in case of the use of index methods). The aim of

the research presented in this paper was to develop an alternative model which allows fast

and reliable estimation of site overhead costs. The paper presents the results of the authors'

work on development of a regression model, based on artificial neural networks, that

enables prediction of the site overhead cost index, which used in conjunction with other

cost data, allows to estimate site overhead costs. To develop the model, a database including

143 cases of completed construction projects was used. The modelling involved a number of

artificial neural networks of the multilayer perceptrons type, each with varying structures,

activation functions and training algorithms. The neural network selected to be the core of

developed model allows the prediction of the costs' index and aids in the estimation of the

site overhead costs in the early stages of a construction project with satisfactory precision.

© 2018 Politechnika Wrocławska. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The issue of a sufficiently reliable overheads estimation is vital
for the potential contractor. According to the research
presented in one of the previous works by Plebankiewicz
and Leśniak [33] the influence of improper calculation of the
overhead costs can be significant for the financial situation of
the contracting company.

Generally, the building contractor's overhead costs are
divided into two categories: site (project) overhead costs and
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company's (general) overhead costs [32]. Site (project) over-
head costs include items that can be identified with a
particular job, but not materials, labour, or production
equipment. Company's overhead costs are items that repre-
sent the cost of doing business and often are considered as
fixed expenses that must be paid by the contractor. In
literature one can find different definitions of overhead costs
[1,5,26,33,36]. On the other hand, an overhead cost of a
construction project can be defined as a cost that cannot be
identified with or charged to a construction project or to a unit
of construction production [21]. Cilensek [19] describes
. All rights reserved.
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overhead costs as those that are not a component of the actual
construction work but are incurred by the contractor to
support the work. The overheads include expenses that
cannot be charged directly to a particular branch of work
but are required to construct the project [23]. According to
Polish standards of cost estimating [38], site overhead costs
can be defined as all the costs incurred by the contractor on the
building site in connection with the works realization,
excluding the direct costs.

Overhead costs are widely discussed in literature. Relevant
research on overhead costs can be divided into four main
research trends [36]. Some of the researchers focus on the
analysis of situation and statistical research on the under-
standing of the overhead costs concept, analysis of construc-
tion delays vs. overhead costs, analysis of the construction
company's overhead costs distribution, and allocation and
analysis of fixed expenses recovering. Assaf et al. [6]
investigated the overhead costs practices and showed how
the unstable construction market makes it difficult for
construction companies to decide on the optimum level of
overhead costs. The practices of estimating overhead costs are
investigated in various countries (e.g. Great Britain [14], the
USA and Canada [30], Lithuania [36], Saudi Arabia [6], Poland
[33]). Particular attention is paid to a detailed computation of
site overheads. A number of empirical studies relate to the
determination of the project overhead cost. Factors that
influence project overhead cost are widely discussed in
literature in various aspects [5,17,40]. Some of them emphasize
that project time is an important factor affecting project
overheads [11,27]. Cooke [20] highlighted that the location of
the site could affect a number of project overhead items. Brook
[11] indicated that the method of work was a critical factor
affecting the amount spent on project overheads. A detailed
overhead costs categorization and the selection of the
principal parameters of the company's activity, on which
the value of overhead costs depends, was presented by Šiškina
et al. [36]. Apanavičienė and Daugėlienė [2] proposed a new
classification of construction companies into competitiveness
classes according to the relative value of overhead costs. In
other work [34], it was commented that a contractor's
overhead costs, though varying from trade to trade, were
dependent on annual volume of work, job type, job size, local
economic conditions, support staff and equipment require-
ments. El Sawy et al. [25] after having conducted a series of
surveys, proposed a list of factors that contribute to site
overhead cost in the Egyptian construction market. The
researchers in their investigations on overhead costs or its
elements use different tools for instance: case-based reason-
ing [17], neural networks [25], exploratory factor analysis [12].
Some of the authors analyze the issue taking into account
principal parameters of the construction company's activity,
on which the value of overhead costs depends [36]. In other
work a new classification of construction companies into
competitiveness classes according to the relative value of
overhead costs was proposed [2].

Artificial neural networks (ANN) refer to mathematical
structures and their software-or hardware-based models
which compute or process signals. The structure of the
network and its mode of action is based on the brain and
learning phenomena; however neural networks constitute a
strongly simplified model [39]. The theory of neural networks
is widely presented in literature (e.g. [9,28,31,39]). The main
application of artificial neural networks includes the following
[28,31]: prediction, approximation, control, association, clas-
sification and pattern recognition, associating data, data
analysis, signal filtering and optimization.

Artificial neural networks began to be used in the
management of construction projects in the early nineties
of the last century [37]. Until today there have been a number
of attempts to use artificial neural networks in engineering
construction processes regarding such issues as implementa-
tion time analysis, efficiency and productivity in construction
projects [24,35], predicting the maintenance cost of construc-
tion equipment [45], predicting the adoption potential or
acceptability of a new construction technology [37], construc-
tion company management [13,16,18] and facilitating decision
making processes in construction projects [4,42].

Apart from the issues mentioned above, there have been
other attempts to apply artificial neural networks to the
management of the costs involved in construction projects.
One of the first publications on this topic, by Hegazy and Amr
[29], aimed at the creation of a ANN-based cost-estimating
model which would allow to estimate the costs of constructing
motorways. A similar problem was described in [43,44]. In [41]
authors described a new multi-stage framework based on ANN
for cost-optimal analysis to support the deep renovation of
buildings. The cost formulas for estimate sheet metal parts
composed by applying neural networks was proposed in [3]. The
application of ANN, in the field of construction cost manage-
ment concerned also predicting cash flows [10], predicting cost
deviations in high-risk projects including reconstruction,
alteration, rebuilding projects [7], evaluating of project budget
implementation [22] estimation of overheads in dam projects
[25] or analysis of construction claims outcomes [15].

The aim of this paper is to present the results of the
research on the development a regression model based on
artificial neural networks which supports the prediction of the
site overhead cost index and thus allows quick estimation of
site overheads costs within an acceptable error range. The
solution to the problem involves finding such a form of the
model that will enable a specification of the site overhead cost
index for construction projects. The authors' basic assumption
was the application of artificial neural networks in the model,
since their key feature and main advantage is their ability to
generalize knowledge. This generalization allows the genera-
tion of appropriate solutions for data that did not appear in the
training data set.

2. Concept of model and research phases

The authors' assumption was the development of a model that
would allow the specification a site overhead cost index for a
construction project. Such an index, on the basis of a
computational formula, could enable a quick assessment of
site overhead cost for a certain construction project. In their
research, the authors intention was to develop a regression
model implementing an artificial neural network. The term
‘‘regression’’ refers to a modelling function mapping a set of
values of describing variables on the set of values of the



Fig. 1 – The block diagram of the research methodology.
Source: Own study.
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variable described. (The regression models, as it is widely
accepted, can involve a mathematical equation, a set of
equations or an algorithm. Here, the authors proposed
implementation of neural network as an algorithm that
constitutes the model.) The research comprised four phases
– methodology is depicted concisely in Fig. 1.

Phases 1–3 are presented in the sections below. The
fundamental research part, namely phase 4, is described in
Section 3 of this paper.

2.1. Phase 1 – problem analysis, establishing an
introductory set of describing variables

The general form of the model is illustrated by Eq. (1), while
Eq. (2) depicts the general function form of the regressive
model:

Y ¼ FðXj; eÞ (1)

Ŷ ¼ FðXjÞ (2)

where:

- Y – described variable of the model – site overhead cost
index,

- Ŷ – predicted value of the described variable – site
overhead cost index predicted by the model,

- Xj – describing variables of the model,
- F – functional dependency connecting the describing
variables with the described variable,

- e – model error.
The fundamental assumption was an implementation of

the functional dependency F implicitly by the artificial neural
network. The prediction of the site overhead cost index (the
value of the variable described of the model), as represented by
Eq. (3):

Ŷ
i ¼ F xij

� �
(3)

where:

- ŷi – function F value (predicted value of the site overhead
cost index) for the i-th vector of describing variables,

- F – as in Eqs. (1) and (2),
- xij – i-th vector of describing variables Xj.
The authors of this paper proposed to establish the value of

the site overhead cost index, denoted hereinafter by SOCind, on
the basis of three different Eqs. (4)–(6):

SOCind1 ¼ SOC
LC þ EC

(4)

SOCind2 ¼ SOC
LC þ MC þ EC

(5)
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SOCind3 ¼ SOC
LC þ MC þ EC þ SC

(6)

where:

- SOCind – site overhead costs index (to make a distinction
based on the type of calculation, the indices were additionally
marked with numbers 1, 2 or 3),

- SOC –site overhead costs observed in reality,
- LC – labour costs observed in reality,
- MC – material costs observed in reality,
- EC – equipment work costs observed in reality,
- SC – subcontractors' costs observed in reality.
In order to prepare a method of determining the site

overhead costs index based on artificial neural networks, an
appropriate database needed to be developed. To collect a
database, a survey was conducted among Polish contractors
concerning the implementation of building works 400 ques-
tionnaires were sent, out of which 151 (38%) returned. After
screening, 8 questionnaires were rejected. The research
included quantitative studies of the factors proposed, influ-
encing site overhead costs in relation to the construction
works under analysis. The factors that were considered
involved the following: the complexity of the scope of
construction, localization conditions of the construction site,
works implementation times, difficulties related to the
implementation of works in winter, the amount of works
performed by contractors themselves and the amount of
works done by subcontractors. Subsequently, the real site
costs that contractors carried due to the implementation of the
analyzed constructions were compiled. Having included
literature study and desk-research, a set of potential variables
was established, describing the prediction of costs proposed
for the model.
Table 1 – Coding the input variables for the neural model (sou

Variable
Xj

Variable description

X1 Works type – general construction works 

X2 Works type – installation works 

X3 Works type – engineering works 

X4 Construction site location – in city centre 

X5 Construction site location – outside the city centre
X6 Construction site location – non-urban spaces
X7 Distance between the construction site

and the company's office
X8 Works implementation time 

X9 Relations between the amount of works performed
in winter to the total amount of works

X10 Relations of the amount of works performed by
subcontractors to the total amount of works
2.2. Phase 2 – establishing a final set of describing
variables, construction of a database

An analysis of the dependencies between potential describing
variables was conducted, using elements of a multi-criteria
comparative analysis. The aims of the analysis were: to
complement the model with descriptive variables, ensuring
the form of the model as simple as possible and to reduce data
redundancy, which belong to unwanted phenomena in neural
modelling. All initially established potential describing vari-
ables underwent an analysis concerning the following: the
relevance of the information introduced, information load,
interdependencies between variables, information availability
for a practical application of the model. As a result, a final set of
describing variables was established and a collation of training
data for the neural modelling. The variables included in the
model, as well as the method of coding and their possible
values, are presented in Table 1.

The database of information used in the training process of
several neural networks included the known values of the
described variable – Y, which could be observed in reality, as
well as the related vectors of the values of the describing
variables – Xj. Exemplary records are presented in Table 2.

The records of the database included coded values of
describing variables and described variables in the three
variants (as presented in Table 2). During the research, data for
143 construction projects under implementation in Poland in
the Malopolska region were collected. For the proposed
formulas of the general construction costs index SOCind
(formulas (4)–(6)), on the basis of the construction works costs
observed in reality, the values of the indices were computed.
The values of the indices (three variants of the described
variable) are depicted in the last three columns of Table 2.
rce: own study).

Method of coding Possible values

Binary 0 or 1
Binary 0 or 1
Binary 0 or 1
1 of n 1, 0, 0 or

0, 1, 0 or
0, 0, 1

Pseudo-fuzzy scaling Up to 20 km – 0.1
More than 20 km – 0.9

Pseudo-fuzzy scaling Up to 6 months – 0.1
Between 6 and 12 months – 0.5
More than 12 months – 0.9

Pseudo-fuzzy scaling Up to 10%–0
Between 10% and 20%–0.1
Between 20% and 40%–0.3
Between 40% and 60%–0.5
Between 60% and 80%–0.7
Between 80% and 90%–0.9
More than 90%–1

Pseudo-fuzzy scaling Up to 20% – 0.1
Between 20% and 50%–0.5
Between 50% and 100%–0.9



Table 2 – The exemplary records of training data with the values of describing variables and described variables in three
variants (source: own study).

i X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y

SOCind1 SOCind2 SOCind3

11 1 1 1 0 1 0 0.1 0.9 0.1 0.5 0.29 0.15 0.09
24 1 1 1 0 0 1 0.9 0.1 0 0.1 0.43 0.17 0.13
31 1 1 1 0 1 0 0.9 0.9 0.5 0.5 0.21 0.11 0.05
61 1 1 1 1 0 0 0.1 0.9 0.3 0.5 0.21 0.12 0.07
89 1 1 1 0 1 0 0.1 0.9 0.3 0.5 0.79 0.51 0.21
104 0 1 1 1 0 0 0.1 0.5 0.5 0.5 0.93 0.15 0.08
139 1 0 1 0 0 1 0.9 0.1 0 0.1 0.41 0.19 0.12

Fig. 2 – The general form of the neural network structure.
Source: Own study.

a r c h i v e s o f c i v i l a n d m e c h a n i c a l e n g i n e e r i n g 1 8 ( 2 0 1 8 ) 9 7 3 – 9 8 2 977
2.3. Phase 3 – compiling assumptions for neural modelling

In the process of neural modelling the authors took into
account several multilayer perceptrons, as a type of neural
networks, which are believed to be the best solution to the
regression analysis problem [39]. The general form of the
network is presented in Fig. 2. The input layer was
composed of 10 neurons denoting the describing variables
of the model Xj (as in Table 1). The network structure
included one hidden layer in which the number of neurons
ranged from two to five. The output layer consisted of one
neuron indicating the described variable Y of the model (site
overhead costs indexes).

A two-step procedure was assumed to establish a neural
network implementing dependency F (as in Eqs. (1)–(3)).

The first step of a procedure involved training several
neural networks for 10 draws of the learning subset, the
validating subset and the testing subset (later referred to as
L, V, T subsets consequently). Various network architec-
tures, distinct activation functions, and different training
algorithms were investigated. The neurons in the hidden
layer employed the following activation functions: sigmoid
function (7), hyperbolic tangent (8). On the other hand, the
neurons in the output layer the employed: sigmoid function
(7), hyperbolic tangent (8), linear function (9). These
activation functions are described by the following equa-
tions, respectively:

gðvÞ ¼ 1
1 þ expð�bvÞ (7)

gðvÞ ¼ tanhðbnÞ (8)

gðvÞ ¼ bn (9)

where:

- g(n) – neuron activation function,
- n – neuron potential,
- b – activation function factor influencing its steepness.
During the neural modelling process various training

algorithms were used [31,39]: conjugent gradients (CG),
Levenberg–Marquardt algorithm (LM), Broyden–Fletcher–Gold-
farb–Shanno algorithm (BFGS). Altogether 54 neural networks
different from each other in structure, activation functions
employed or training algorithms were taken into account and
analyzed in the first step.
For further investigation and the second step of
modelling the authors selected the neural network which
yielded the most stable training results. The quality of the
network performance was established on the basis of the
specified values of errors: root mean square error, RMSE (10)
and mean average percentage error MAPE (11), as well as the
maximum percentage error PEmax (12). The criteria of
selection, assumed by the authors, was the acceptable
performance in terms of errors range and low errors
dispersion for the mentioned 10 draws of L, V and T subsets.
The reason for this assumption was to ensure that the
performance of the network is not biased by the drawing of
L, V and T subsets.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
P

XP
p¼1

XM
i¼1

ðyðpÞi �ŷðpÞi Þ2
vuut (10)

MAPE ¼ 1
P

XP
p¼1

XM
i¼1

yðpÞi �ŷðpÞi

yðpÞi

�����
������100% (11)

PEmax ¼ max
yðpÞi �ŷðpÞi

yðpÞi

�����
������100%

 !
(12)

where:



Table 3 – Results after the 1st step of modelling (source: own study).

ANN ERRORS RMSE L RMSE V RMSE T

MLP 10–4–1 sigmoid-linear (the chosen ANN after the 1st step of modelling) Max 0.03895 0.04258 0.03926
Average 0.02750 0.03526 0.03260
Min 0.01904 0.02422 0.02422

MLP 10–4–1 sigmoid-hyperbolic tangent Max 0.04720 0.05167 0.04926
Average 0.03016 0.03705 0.03514
Min 0.01970 0.02171 0.02578

MLP 10–5–1 sigmoid-sigmoid Max 0.03391 0.04883 0.03996
Average 0.03206 0.03854 0.03441
Min 0.01542 0.02015 0.02750

MLP 10–5–1 hyperbolic tangent-linear Max 0.04195 0.04521 0.04211
Average 0.03105 0.03726 0.03903
Min 0.01604 0.01916 0.02133

MLP 10–3–1 hyperbolic tangent-sigmoid Max 0.03967 0.04321 0.04102
Average 0.02860 0.03671 0.03341
Min 0.02078 0.02712 0.02598
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- p – number of the sample;
- i – number of the output layer neuron;
- yi – known values of the costs indices being tested;
- ŷi – calculated values of the costs indices being tested.

3. Research results

The analysis conducted in the first step of neural modelling
involved selection of a network that obtained the most stable
training results. The choice depended on the acceptable
performance of the network and the dispersion of learning,
testing and validation errors. The authors sought for the
network, for which the differences between maximum and
minimum of the errors were the smallest, in relation to the
average values of the errors. The network, multilayer
perceptron with a 10–4–1 structure (4 neurons in the hidden
layer), was selected, with the activation functions: logistic
function employed in the hidden layer and linear function
employed in the output layer. Later in the paper the selected
network is referred to as MLP 10–4–1. Moreover the best results
in the first step of the procedure were obtained for the values of
described variable Y of the model calculated with using Eq. (6).
Consequently, in the further part of the paper the authors
presented the results for the model where Y values were
calculated with the equation mentioned above.

Table 3 presents the results of the 1st step of the modelling
for five best networks. The chosen network MLP 10–4–1 is
compared with four other networks in terms of RMSE errors.
Maximum, average and minimum RMSE errors for learning,
validation and testing (L, V, T – accordingly) that has been
obtained in the training of networks in ten consecutive draws
of L, V and T subsets. Information about the structure of each
network (10-h-1) is given, as well as the employed activation
functions for each of the networks (hidden layer activation
function – output layer activation function) in the column
ANN.

According to Table 3, one can see that for some of the
investigated networks, minimum values of the RMSE errors
were lower than in the case of the chosen network, however,
the dispersion of the errors was greater in these cases. The
criterion for the choice of the MLP 10–4–1 was the stability of
the networks' training for the ten draws of o L, V and T subsets.
Firstly, in case of the chosen network the differences between
the minimum and maximum RMSE values were the smallest.
Secondly, the differences between RMSE for learning, valida-
tion and testing were at an acceptable range.

The review of all of the networks investigated in the 1st step
of modelling allowed the conclusion that in general better
results were obtained for the networks with a greater number of
neurons in the hidden layer, namely 10–4–1 and 10–5–1
networks (which is not surprising because more complex
structures can offer a better approximation in case of nonlinear
problems – compare for example [9,28]). On the other hand,
neither regularity nor dependence of networks performance on
the employed activation functions has been observed.

The second step of the chosen network involved further
training of chosen network. In accordance with the assumed
procedure of the studies for the chosen network, in the second
step of neural modelling the training of selected networks, MLP
10–4–1 was performed for the subsequent 40 draws of the L, V
and T subsets. Table 4 depicts the values of RMSE errors (max,
average, min) of learning, validation and testing obtained both
after the first and second step of modelling for the selected
network MLP 10–4–1.

The final choice of the network which, was supposed to
become the core of the regression model, and implement the
mapping function F (as in Eqs. (1)–(3)), involved the type of MLP
10–4–1 network that had been trained on the draw number 32.
For this particular network the results of RMSE errors for
learning, validation and testing were the closest to the average
values from all the draws of the L, V and T subsets (out of all 50
draws in both steps of modelling). The error values for the
finally chosen network, namely MLP 10–4–1 trained for the
32nd draw, are illustrated in Table 5 which presents RMSE
errors and also the MAPE errors in learning, validation and
testing for the network. Later the final chosen network is
referred to as MLP(smpl32) 10–4–1.

Fig. 3 presents the training results obtained for the final
chosen network, MLP(smpl 32) 10–4–1, a core of the developed
regression model. Learning, testing and validating results for
the final chosen network are shown in the form of a scatter
plot. The horizontal axis represents known and expected
output values of the model Y. The vertical axis shows output



Table 4 – RMSE errors summary for chosen network (MLP 10–4-1) after step three (source: own study).

Sampling 1–10 (1st step of modelling) Sampling 1–50 (both 1st and 2nd step of
modelling)

RMSE L RMSE V RMSE T RMSE L RMSE V RMSE T

Max 0.03895 0.04258 0.03926 0.03895 0.04258 0.03926
Average 0.02750 0.03526 0.03260 0.02648 0.03200 0.03239
Min 0.01904 0.02422 0.02422 0.01822 0.02239 0.02422

Table 5 – RMSE errors summary for chosen network –
MLP(smpl32) 10–4–1 after step three (source: own study).

RMSE L RMSE V RMSE T MAPE L MAPE V MAPE T

0.02888 0.03252 0.03500 20.6% 17.7% 19.0%

a r c h i v e s o f c i v i l a n d m e c h a n i c a l e n g i n e e r i n g 1 8 ( 2 0 1 8 ) 9 7 3 – 9 8 2 979
values predicted by the model Ŷ. In the graph the points
corresponding to the testing T and validating V (on the left
side), and the learning L (on the right side) of the network are
located mostly in the cone of error decomposing along a
straight perfect fit.

4. Verification and discussion of the proposed
approach

To verify the practical application of the model, it was given a
task of evaluating the amount of the indirect costs on the basis
of the data that was not used at the modelling stage. Thus, 5
contractors from southern Poland were asked to provide
information about construction projects completed and
accounted for in 2015 or 2016. The data obtained is presented
in Table 6. The information includes the following: values for
10 descriptive variables Xj (as presented in Table 1), model's
input data, values of the real site overhead cost indexes Y,
established on the basis of Eq. (6), values of the site overhead
cost indexes predicted by the model Ŷ.

For each of the cases presented in Table 5, basic errors were
calculated and set together in Table 7.

The results of the prediction of the site overhead cost
indexes for the new cases were satisfactory. The smallest error
of the model, amounting to 3.07%, appeared in project no. 3.
The highest error was obtained in case of project no. 2. The
results generated by the model were presented to the
contractors who provided the data. Their opinions about the
index assessment for the preliminary estimation of site
overhead cost were as follows: projects 1, 3 and 5 were
considered highly satisfactory; project 4 was thought satisfac-
tory; project 2 was acceptable. Therefore, it may be concluded
that the application of the model gave satisfactory results.

For the purposes of assessment and verification, the
authors compared the proposed neural network based model
with a model built on the classical multivariate regression
analysis and least squares method [8]. The linear multivariate
regression model was built using of the same data that was
used to train the neural networks. The classical linear model
including estimates of the parameters of the model and
standard errors of the parameters' estimates is given by the
following formula (13):
YÃ¼ 0:0702
ð0:0338Þ

þ 0:0308�X1
ð0:0891Þ

� 0:2202�X2
ð0:1080Þ

þ 0:1024�X3
ð0:1220Þ

þ 0:2989�X4
ð0:1477Þ

þ 0:4472�X5
ð0:1680Þ

þ
þ 0:4719�X6

ð0:1353Þ
� 0:1367�X7

ð0:0696Þ
� 0:1543�X8

ð0:0720Þ
þ 0:6766�X9

ð0:0779Þ
� 0:3253�X10

ð0:0683Þ

(13)

where:

- Ŷ – predicted value of the described variable – site
overhead cost index predicted by the model,

- Xj – describing variables of the model for j = 1, . . ., 10, as
presented in Table 1.

The performance comparison of the both the classical
statistical model and the proposed neural network based
model was made with the use of root mean square error –

RMSE, as in Eq. (10) and chosen measures of descriptive
statistics, the correlation coefficient R, given by Eq. (14),
coefficient of determination R2, given by Eq. (15) and coefficient
of convergence w2, given by Eq. (16).

R ¼ covðY; ŶÞ
sYsŶ

(14)

R2 ¼ covðY; ŶÞ
sYsŶ

 !2

(15)

’2 ¼ 1� covðY; ŶÞ
sYsŶ

 !2

(16)

where:

- cov(Y; Ŷ) – covariance of real life values and predicted
values of the described variable,

- sY, sŶ – standard deviation of Y and Ŷ respectively.
All the mentioned measures of performance have been

calculated for all of the 143 cases together and compiled in
Table 8.

As presented in Table 8, all calculated measures reveal that
the neural network based model performance is better than
the model built on the classical approach. A comparison of the
two models allows one to conclude that prediction of the site
overhead cost index, based on the final chosen neural network,
namely MLP(smpl32) 10–4–1, is more reliable than in the case of
employment of the classical linear model built on the
multivariate regression analysis.

5. Summary and conclusions

This research resulted in development of a novel estimation
method of site overhead cost index. The approach proposed by



Fig. 3 – Scatter plots of training results for MLP(smpl32) 10–4–1 – ‘‘T’’ – testing, ‘‘V’’ – validating, ‘‘L’’ – learning.
Source: Own study.

Table 6 – New cases introduced to the model (source: own study).

i X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y Ŷ

Project 1 1 1 1 0 1 0 0.9 0.9 0.5 0.5 5.43% 5.74%
Project 2 1 0 0 1 0 0 0.1 0.9 0.3 0.9 13.63% 10.89%
Project 3 1 1 1 0 1 0 0.1 0.9 0.3 0.5 15.81% 16.29%
Project 4 1 0 0 0 1 0 0.1 0.5 0.1 0.9 4.16% 3.74%
Project 5 1 0 0 1 0 0 0.1 0.1 0.9 0.5 31.68% 29.79%

Table 7 – Basic error measures of the model predictions for the five new cases (source: own study).

i Y � Ŷ jY � Ŷj (Y � Ŷ)2 (Y � Ŷ) � 100%/Y

Project 1 �0.003080 0.003080 0.000009 5.67%
Project 2 0.027469 0.027469 0.000754 20.15%
Project 3 �0.004858 0.004858 0.000023 3.07%
Project 4 0.004248 0.004248 0.000018 10.21%
Project 5 0.018922 0.018922 0.000358 5.97%

Table 8 – Comparison of the ANN based model and linear multivariate regression model.

Chosen measures of models' performance Symbol Calculated values

Classical linear model ANN based model

Root mean square error RMSE 0.05359 0.03086
Correlation coeefficient R 0.73580 0.91725
Coefficient of determination R2 0.54140 0.84135
Coefficient of convergence w2 0.45860 0.15865

Source: Own study.
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the authors of the paper is based on artificial intelligence tools
namely neural networks. A regressive model which employs
artificial neural network chosen from a number of investigated
networks has been proposed. The model is capable of mapping
nonlinear relationships between a set of values of describing
variables (which are features that characterize the construc-
tion site overheads for a project) onto a set of values of
described variable which constituted the site overhead cost
index. The describing variables of the model included
characteristics of a construction project in relation to the type
of works, the location of the construction site, the time of
works completion, as well as the organizational assumptions
for the construction process. The advantage of using neural
networks approach instead of a classical multivariate regres-
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sion approach is that there is no need to assume a priori
functional relationships. The ANN, chosen to be the core of the
proposed model, was fitted to the data (values of ten describing
variables and one described variable) during the training
process. The proposed neural networks based approach
revealed its superiority over a classical multivariate linear
regression approach. On the other hand, when compared to
the traditional method of site overhead cost estimation, which
is a preliminary detailed analysis of all the cost components,
the use of the developed novel model is significantly faster and
offers variant analysis of several sets of values of describing
variables at a glance.

This research included the training of several types of
artificial neural networks, namely multilayer perceptrons, in
which various combinations of activation functions and
different training algorithms were used. The networks under
consideration possessed structures differentiated by the
number of neurons in the hidden layer. In the first step of
modelling 54 network types were considered. The results
obtained in the first step helped to select the network which
supported regression in the model. Then the chosen network
underwent the second step of modelling. The final chosen
network was the MLP(smpl 32) 10–4–1 (multilayer perceptron,
with 10 neurons in the input layer, 4 neurons in the hidden
layer and 1 neuron in the output layer, trained with the use of
BFGS algorithm) selected after analysis of training results
obtained for 50 draws of the learning, validating and testing
subsets.

The analysis presented in this paper led to the following
conclusions: the method proposed can allow to assess
overhead construction costs at the early stage of the
construction investment process with satisfactory precision;
the results of the research confirmed the validity of using
artificial neural networks in the assessment of overhead
construction costs, on the basis of the proposed set of
parameters characterizing the construction; the results
obtained validate the application of the proposed model; the
application of the model gave satisfying results.

Further research will involve the implementation of the
proposed model in the form of a computer program which will
allow the use of the model in practice and the exploration of
possibilities of applying artificial neural networks to the
problem presented with the aim of improving the model,
including the use of committee machines.
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