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Abstract
Sensitivity analysis establishes priorities for research and allows to identify and rank the most 

important factors which lead to great improvements in output factors. The aim of this study is 

to examine sensitivity analysis of inputs in grape production. We are proposing to perform 

sensitivity analysis using partial rank correlation coefficient (PRCC) which is the most reliable 

and efficient method, and we apply this for the first time in crop production. This research 

investigates the use of energy in the vineyard of a semi-arid zone of Iran. Energy use efficiency, 

energy productivity, specific energy and net energy were calculated. Various artificial neural 

network (ANN) models were developed to predict grape yield with respect to input energies. 

ANN models consist of a multilayer perceptron (MLP) with seven neurons in the input layer, 

one and two hidden layer(s) with different number of neurons, and an output layer with one 

neuron. Input energies were labor, machinery, chemicals, farmyard manure (FYM), diesel, 

electricity and water for irrigation. Sensitivity analysis was performed on over 100 samples of 

parameter space generated by Latin hypercube sampling method, which was then fed to the 

ANN model to predict the yield for each sample. The PRCC between the predicted yield and 

each parameter value (input) was used to calculate the sensitivity of the model to each input. 

Results of sensitivity analysis showed that machinery had the greatest impact on grape yield 

followed by diesel fuel and labor. 
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1. Introduction

Agriculture and energy are closely related since efficient use of energy is a key factor in 

sustainable agricultural production. Increasing requirement of higher food production 

has led to intensive use of agricultural and natural resources (Khoshroo, 2014). 

However, bio-energy has placed agriculture in the position of energy consumer and 

energy supplier (Esengun et al., 2007). Efficient energy use in agriculture is a pathway 

toward decreasing environmental hazards and improving agricultural sustainability 

(Izadikhah and Khoshroo, 2018). 

Energy demand in agriculture can be classified into direct and indirect energies or 

renewable and non-renewable energies (Ozkan et al., 2004a). Direct energy consists of 

human labor, diesel fuel, electricity and water for irrigation, while farmyard manure 

(FYM), chemicals and machinery are considered indirect energy. Renewable energy 

includes human labor, FYM and water for irrigation whereas machinery, diesel fuel and 

chemicals are considered non-renewable forms of energy (Demircan et al., 2006; Ozkan 

et al., 2004a).

The established method to determine energy efficiency of production systems is the 

input-output analysis. Using this type of analysis, researchers have studied energy 

consumption in the production of fruits such as citrus (Ozkan et al., 2004), grape (Ozkan 

et al., 2007), apple (Gokdogan and Baran, 2017; Taghavifar and Mardani, 2015), prune 
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(Tabatabaie et al., 2013), walnut (Khoshroo and Mulwa, 2014) and pomegranate 

(Houshyar et al., 2017). 

Modeling crop yield based on energy consumption is an interesting issue for 

researchers. Prediction of agricultural production is useful for farmers, governments, 

and agribusiness industries. It helps farmers to make marketing decision. Government 

requires forecasts of the crop yield to implement policies that provide technical and 

market support for the agricultural sector. Processors of food, and others in the 

marketing chain, need forecasts for their purchasing and storing decisions. 

Various approaches and methods have been used to model energy consumption (Arabi 

et al., 2017; Jebaraj and Iniyan, 2006; Laha and Chakraborty, 2017; Say and Yücel, 2006; 

Tso and Yau, 2007). Traditionally, econometric models, based on Cobb-Douglass 

production function were the most popular modeling technique for investigating 

functional relations between input energy and various crop yield (Hamedani et al., 

2011; Hatirli et al., 2006; Houshyar et al., 2015).

Artificial neural networks (ANNs) have received great interest in various research fields 

such as engineering (Ahmadi, 2011, 2012; Ahmadi, M.H. et al., 2015; Jani et al., 2017; 

Rafiq et al., 2001; Shafiei et al., 2014), energy (Kalogirou, 2001; Olatomiwa et al., 2016), 

petroleum and gas (Ahmadi and Ebadi, 2014; Ahmadi et al., 2014a; Ahmadi et al., 2014b; 

Ahmadi et al., 2014c; Ahmadi, M.A. et al., 2015) and agriculture (Jayas et al., 2000; 

Moldes et al., 2017; Soltanali et al., 2017). ANNs provide a powerful and flexible tool for 
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modeling complex systems (Catalão et al., 2011). ANNs are data driven and distribution 

free; therefore, they can approximate non-linear functions and solve the problems 

where input-output relationship is not easily computable (Sözen, 2009). 

Several researches have used ANN to predict crop yield or output energy in various 

crops such as wheat (Safa and Samarasinghe, 2011), basil (Pahlavan et al., 2012), 

kiwifruit (Soltanali et al., 2017) and paddy (Taheri-Rad et al., 2017). 

Sensitivity analysis is performed in crop production to determine the most important 

inputs which lead to the highest increase in yield. Marginal Physical Productivity (MPP) 

is perhaps one of the most common methods for sensitivity analysis in the econometric 

models (Mobtaker et al., 2010; Mohammadshirazi et al., 2012; Singh et al., 2004). Some 

researchers have studied sensitivity analysis of energy input in ANN models using 

NeuroSolution software (Khoshnevisan et al., 2013; Pahlavan et al., 2012). The current 

paper applies Partial Rank Correlation Coefficient (PRCC) to study the priority of 

energy inputs on crop yield improvement. PRCC searches the whole parameter space 

of a model with the fewest number of simulations. PRCC is the most efficient and 

reliable method of sensitivity analysis among the sampling-based indices (Marino et al., 

2008; Saltelli and Marivoet, 1990). To the best of our knowledge, PRCC has not been 

used for sensitivity analysis in crop production. 
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The main objective of this study is to find the most important factors influencing the 

grape yield; hence, farmers and policy makers can focus on these factors to increase the 

energy efficiency.

The remaining part of this paper is organized as follows: Section 2 describes the data 

collection and the method used for this analysis including the development of artificial 

neural networks. Section 3 discusses the results. Sensitivity analysis of grape 

production is also discussed in this section. Section 4 makes conclusions and provides 

direction for future research.

2. Methods

2.1. Artificial neural networks

ANNs are networks of interconnected processing units which were inspired by the 

biological structures in the human brain (Haykin, 1999). Each of the processing units is 

called neuron. Neurons are organized in a way that defines network architecture. Multi-

Layer Perceptron (MLP) is the most common type of feed forward neural networks. In 

a MLP, neurons are often arranged as an input layer, one or more hidden layer, and an 

output layer (Catalão et al., 2011). The neuron output is produced by processing the 

weighted inputs through linear or non-linear transfer functions (Basheer and Hajmeer, 

2000). The error calculated during training step is distributed through the network and 

adjust connection weights between neurons (Haykin, 1999). In the feed forward 
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networks, the most common method for obtaining minimum error is back propagation 

(BP) algorithm. BP uses a gradient descent technique and tends to converge slowly. 

Adding a momentum term is an efficient way to speed up the algorithm. Gradient 

descent with momentum (GDM) algorithm increases the performance of standard BP 

algorithm. The momentum term helps to avoid local minima, improve learning speed, 

and stabilize convergence (Omid et al., 2009; Ramedani, 2013). 

The process of weight update in the nth iteration of GDM algorithm is performed by the 

following equation (Omid et al., 2009; Ramedani et al., 2013):

          wnji = wn ‒ 1
ji        + ∆wn

ji                                                                                                         (1)      

and weights are adapted by:

                ∆wn
ji =  ηδn

j o
n
i + α∆wn ‒ 1

ji                                                                                                (2)

Where  denotes the weight between th neuron of the following layer and the th wj 𝑗 𝑖

neuron of the previous layer. The error signal of th neuron is shown by .   represents 𝑗 δj Oi

output of the th neuron of the previous layer. Also,  is the gradient vector associated 𝑖 ∆wn
ji

with the weights and η and α are the learning rate and momentum. Figure 1 presents 

the steps of implementing an ANN with back-propagation algorithm. 
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Figure 1. Flowchart of BP-ANN

In order to estimate grape production yield, several feed forward neural networks have 

been designed and trained to find the one that has the best accuracy. Data were shuffled 

and divided into two sets: training set (seventy percent of data) and test set (thirty 

percent of data). Artificial neural networks a learning machine technique is used to 

dealing with nonlinear and complex relationships between inputs and output for 

model, as an example Figure 2 illustrates the topology of a case with three-layer MLP 

network with seven neurons in the input layer and one neuron in the output layer.
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Figure 2. Topology of a simple artificial neural network

2.2. Statistical Analysis

To evaluate the performance of developed ANN models, correlation coefficient (r) was 

calculated using the following equation (Mayer and Butler, 1993; Wallach and Jones, 

2006):

r =

N

∑
i = 1

(Yi ‒ Y)(Yi ‒ Y)

N

∑
i = 1

[(Yi ‒ Y)2]
N

∑
i = 1

[(Yi ‒ Y)2
]

                                                                       (3)

Where  is the number of samples,  is the observed output for sample ,  is the N Yi i Yi

estimated output for sample ,  is the average value for , and   is the average value i Y Yi Y

for . Correlation coefficient measures the statistical relationship between the predicted Yi

values and observed (actual) data.
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2.3. Sensitivity analysis

Sensitivity analysis establishes priorities for research (Cariboni et al., 2007) and allows 

to identify and rank the most important factors which lead to great improvements in 

the output factor (Marino et al., 2008). Sensitivity analysis was performed using partial 

rank correlation coefficient (PRCC) (Helton et al., 2006; Rummel, 1976) over 100 samples 

of parameter space generated by Latin hypercube sampling method (LHS) (McKay et 

al., 1979). LHS divides each parameter distribution to N equal probability intervals, 

where N is the number of needed samples. Each interval is then sampled randomly, but 

exactly once, to generate N values. A sample can be created by selecting a value from 

each parameter set. Once a value is selected from a parameter set, it is removed from 

the set (sampling without replacement). 

After generating samples, the trained ANN model from the previous section is used to 

predict the output of each sample. The PRCC between the predicted output and each 

parameter value can then be used to calculate the sensitivity of our model to each input.

3. A real application: Modeling and sensitivity analysis of input energies in grape 

production

Grape (Vitis vinifera L.) has an important position in horticultural and beverage 

industries. Fruits are composed of water, sugars, amino acids, minerals and 

micronutrients. Grape is a commercial source of tartaric acid and is also rich in malic 
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acid (Kole, 2007). World grape production in 2016 was approximately 75.8 Mt, with 

leading grape-producing countries being China, Italy, USA, France, Spain, Turkey, 

India and Iran (OIV, 2017). Grape production exceeded 3.16 Mt in Iran, ranking second 

in fruit production table (MAJ, 2015).

3.1. Data collection and energy analysis

In this study, data were collected from grape vineyards in Fars province, Iran. The 

research was carried out in the form of interviews, during which questionnaires were 

filled. Fars province had the highest share of grape production in Iran (16%) with 

506,000 tons production (MAJ, 2015).

Table 1. Energy equivalents for agricultural input resources and yield output 

Variables    Unit
Energy equivalent 
(MJ Unit-1)              References

Inputs
  Human labor hr 1.96 (Khoshroo and Izadikhah, 2018; Ozkan et al., 2004b); 
  Machinery hr 62.7 (Ozkan et al., 2004a; Ozkan et al., 2004b) 
  Chemicals Kg

- Insecticides 101.2 (Mohammadi et al., 2010a; Rafiee et al., 2010)
- Fungicides 216 (Mohammadi et al., 2010a; Rafiee et al., 2010)
- Herbicides 238 (Mohammadi et al., 2010a; Rafiee et al., 2010)

  Farmyard manure Kg 0.3 (Beheshti Tabar et al., 2010; Ozkan et al., 2004a)
  Diesel fuel L 56.31 (Kitani, 1999; Ozkan et al., 2004a)
  Electricity kWh 11.93 (Mousavi-Avval et al., 2011; Pahlavan et al., 2012)
  Water for irrigation m3 1.02 (Erdal et al., 2007; Khoshroo et al., 2018)  

Outputs
  Grape Kg 11.8 (Ozkan et al., 2007)

Data were obtained using face-to-face interviews with 41 selected grape farmers and 

responses were filled in an interview schedule. The inputs used in grape production in 

the surveyed area were specified for the calculation of energy equivalences in the study. 
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The input energy sources for grape production were human labor, machinery, diesel 

fuel, chemicals, farmyard manure (FYM), water for irrigation and electricity, while 

output energy source was the grape yield. Table 1 demonstrates energy equivalents for 

the different input and output sources.

To determine pattern of energy use in grape production, the following energy indicators 

were computed (Demircan et al., 2006): 

 

out

in

in

EEUE                                                                     (4)
E

GYEP=                                     
E



in

out in         

    (5)     

ESE=                                                                          (6)
GY

NE= E  - E (7) 

Where EUE is Energy Use Efficiency; EP is Energy Productivity; SE is Specific Energy and 

NE is Net Energy. Also, Ein is energy input (MJ ha-1), Eout is energy output (MJ ha-1) and 

GY is grape yield (kg ha-1). 

3.2. Results and discussion

3.2.1. Analysis of energy consumption in grape production

Table 2 presents average values and variation of input energies and crop yield in grape 

production. Average human labor used was 2465.68 MJ ha-1. The source of human labor 

in the surveyed vineyards was mainly from hired workers. The highest contribution of 



ACCEPTED MANUSCRIPT

12

human labor was found in farmyard manure application (25.17%), followed by 

harvesting (24.02%), land preparation (21.45%) and pruning (14.17%) operations. The 

results showed that the required machinery power in grape production was 1630.2 MJ 

ha-1. This power was applied for chemical spraying. Most of the required machinery in 

the studied region was rented machinery. The total energy consumption of grape 

production was about 45003 MJ ha-1 and the total output energy reached 184096 MJ ha-1. 

Table 2.  Statistical measures for energy inputs and output in grape production

Variables    Average Std. Dev. Min Max
Inputs (MJ ha-1)
Human labor 2465.68 628.65 1364.16 4029.11

Machinery 805.86 442.58 282.15 2142.25

Chemicals 1856.30 1497.87 0 4814

Farmyard manure 4568.26 2090.89 2000 12000

Diesel fuel 2597.54 2414.51 406.24 14734.45

Electricity 23415.86 9798.44 6282.68 43193.42

Water for irrigation 9593.64 5822.39 1615.68 26928

Output(kg ha-1)
Grape 15344.56 8272.86 2500 36666.67

The percentage distribution of energy related to the inputs is illustrated in Figure 3. 

Among different energy sources, electricity energy had the highest share of energy 

consumption (48.5%) in grape production. Water for irrigation ranked second with 

21.5% in the total energy input. These results are consistent with the finding that 
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irrigation energy consumes the greatest part of total energy inputs in Iranian agriculture 

(Beheshti Tabar et al., 2010). 

Figure 3. Percentage distribution of energy consumption in grape production

Table 3 presents the energy indicators in grape production. Energy use efficiency was 

achieved 4.09, indicating that output energy is higher than input energy. Meanwhile, 

energy productivity, specific energy, and net energy were calculated 0.35 kg MJ-1, 2.88 

MJ kg-1, and 139093.16 MJ ha-1, respectively. 

The distribution of input energy in grape production, based on Direct Energy (DE), 

Indirect Energy (IDE), Renewable Energy (RE), and Non-Renewable Energy (NRE) forms 

is shown in Table 3. Results revealed that direct energy had higher share (81.39%) in the 

total energy consumption compared to the indirect energy (18.61%).
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Results also showed the higher rate of non-renewable energy (63%) in comparison with 

renewable energy (37%). The high share of non-renewable energy in the total energy 

consumption leads to a decreased sustainability in grape production.

Table 3. Energy indicators in grape production

Items Unit Quantity
EUE 4.09
EP kg MJ-1 0.35
SE MJ kg-1 2.88
NE MJ ha-1 139093.16
DE a MJ ha-1 36628.09 
IDE b MJ ha-1 8374.92 
RE c MJ ha-1 16682.73 
NRE d MJ ha-1 28320.28 
Total energy input MJ ha-1 45003.01 

3.2.2. ANN models: Development and evaluation

In order to model grape yield based on input energies, several ANN models were 

developed. Labor, machinery, chemicals, FYM, diesel, electricity and irrigation water 

energies are included as input to ANN models while the grape yield has been chosen 

as the desired output variable. To come up with a proper architecture for our ANN 

model (i.e., the number of hidden layers and the number of neurons comprising each 

layer), we designed multiple networks were designed and trained to compare their 

prediction performance. As mentioned in Section 2.3, the correlation coefficient was 

used to evaluate the performance of designed ANN models. Figure 4 shows the mean 

and standard deviation of correlation coefficient between the observed (actual) data and 
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the predicted values by ANN models for 17 different network architectures each trained 

10 times independently. In this figure, [4 , 0] denotes a network with one hidden layer 

comprising of 4 neurons and [2 , 8] denotes a network with two hidden layers: first with 

2 neurons and the second with 8. Since the size of problem is small, as Figure 4 shows, 

most of architectures have similar performance. The 7-6-1 architecture was chosen, the 

one with the highest mean correlation coefficient and the least standard deviation. Low 

standard deviation indicates the robustness of the performance of this architecture, 

since it has consistently provided reasonable predictions. This architecture had an input 

layer with seven neurons, one hidden layer with six neurons, and an output layer with 

a single neuron. 
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 Figure 4. ANN performance of grape yield estimations for various network structures 
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Figures 5a and 5b demonstrate the performance of our ANN model over randomly 

sampled training and test sets. It is worth mentioning that there should be several 

uncontrolled factors that influence the yield (Safa and Samarasinghe, 2011), therefore, 

the results of this model seem plausible. 

Figure 5a. Relationships between the actual and 
ANN model predicted grape yield 

(Training data)

Figure 5b. Relationships between the actual 
and ANN model predicted grape yield 

(Test data)

3.3.3 Sensitivity analysis

After generating 100 samples of parameter space by using Latin hypercube sampling 

method, we use the trained ANN model to predict the output of each sample. Then, to 

determine the sensitivity of our developed model to each input, the PRCC between the 

predicted grape yield and each input is calculated. Figure 6 depicts the share of each 

input factor of developed ANN model on output factor (grape yield). According to the 

results (Figure 6), machinery showed the greatest impact on the grape yield followed 

by diesel and labor. Results showed the sign of PRCC was negative for chemicals, FYM, 
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irrigation water and electricity. It indicated the excessive use of these energy resources 

in the studied region with negative impact on grape yield.  
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Figure 6. Sensitivity analysis of various inputs on grape yield

4. Conclusion and direction for future research

Modern crop production requires significant amount of energy. Efficient energy use in 

agriculture is a necessary step towards decreasing environmental issues and increasing 

agricultural sustainability. Thus, finding the important factors contributing on crop 

yield is important.  Prediction of crop yield based on energy use is important for 

farmers, governments, and agribusiness industries. Artificial neural networks a 

learning machine technique is used to dealing with nonlinear and complex 

relationships between inputs and output. Therfore, to predict grape yield with respect 
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to input energies, various multi-layer perceptron ANN models were developed with 

one and two hidden layers. The best ANN model had 7-6-1 topology with high 

correlation coefficient between predicted values and observed data. Sensitivity analysis 

of input parameters was determined using partial rank correlation coefficient (PRCC). 

It showed that machinery had the greatest impact on yield. Therefore, agricultural 

mechanization is the first priority for increasing grape yield in the studied region. This 

study can be generalized for semi-arid regions with the same latitude, but the impact 

of climate change that may affect results, requires further investigation.

In many real applications data reported are not crisp data, hence, future research could 

focus on including the uncertainty and develop a fuzzy network for the proposed ANN. 
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