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Abstract 

In order to improve the computation speed of matching pursuit decomposition of seismic data, a 

matching pursuit parallel algorithm is designed in this paper. We pick a fixed number of envelope 

peaks from the current signal in every iteration according to the number of compute nodes and 

assign them to the compute nodes on average to search the optimal Morlet wavelets in parallel. 

With the help of parallel computer systems and Message Passing Interface, the parallel algorithm 

gives full play to the advantages of parallel computing to significantly improve the computation 

speed of the matching pursuit decomposition and also has good expandability. Besides, searching 

only one optimal Morlet wavelet by every compute node in every iteration is the most efficient 

implementation.  
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1. Introduction 

Matching pursuit is an algorithm for sparse representation of signals. It adaptively 

decomposes a signal into a series of time-frequency atoms that match the 
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time-frequency characteristics of the signal (Mallat and Zhang, 1993). The matching 

pursuit decomposition of seismic signals has been widely used in seismic data 

processing and interpretation, such as migration (Wang and Pann, 1996; Li et al, 

1998), filtering (Nguyen and Castagna, 2000), interpolation (Øzbek, 2009), inversion 

(Yang et al, 2011; Zhou et al, 2013), and spectral analysis for hydrocarbon recognition 

(Castagna et al, 2003; Wang, 2007) and channel detection (Liu and Marfurt, 2007). 

The Gabor wavelet is used as the time-frequency atoms in a conventional 

matching pursuit algorithm. Considering the characteristics of seismic signals, Liu et 

al (2004) applies the Ricker wavelet as the time-frequency atoms to decompose 

seismic data. Liu and Marfurt (2005), and Wang (2007) implement matching pursuit 

decomposition of seismic signals based on the Morlet wavelet. A conventional 

matching pursuit algorithm costs a huge amount of computation, because it searches 

the optimal time-frequency atoms from an abundant dictionary (Mallat and Zhang, 

1993). Liu and Marfurt (2005) introduce complex-trace analysis into the algorithm to 

avoid the blind search of time-frequency atoms, greatly improving its computation 

speed. Based on this, Wang (2007) summarizes “three-stage procedure” for matching 

pursuit decomposition of seismic signals where the decomposition is more precise by 

executing local search around the complex-trace attributes. In order to improve the 

spatial continuity of the decomposition, Wang (2010) further proposes multichannel 

matching pursuit.  

Although matching pursuit decomposition of seismic signals has been greatly 

improved, the local search of time-frequency atoms and iterative implementation of 

the algorithm still cost lots of time. To further enhance its execution speed, in addition 

to the algorithm itself, with the help of high-performance computers to accelerate the 

decomposition could also be considered. Liu and Marfurt (2007) perform matching 

pursuit to seismic data by searching a suite of optimal time-frequency atoms at one 
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iteration rather than one at a time as in a conventional algorithm. Because the search 

of optimal time-frequency atoms has the same implementation and is independent of 

each other, Liu and Marfurt (2007) inspire us to execute matching pursuit 

decomposition in parallel by parallel computer systems. Hence, in this paper, we 

design a parallel decomposition algorithm of matching pursuit to effectively improve 

the computation speed of the matching pursuit decomposition of seismic signals. It 

gives full play to the advantages of parallel computing and has good expandability. 

We believe that the realization of matching pursuit parallel decomposition for seismic 

data will benefit the application of matching pursuit in the processing and 

interpretation of large-scale 3D seismic data.  

2. Matching pursuit decomposition of seismic signals 

The Morlet wavelet (Morlet et al., 1982a, 1982b) is preferred to be used as 

time-frequency atoms in the matching pursuit decomposition of seismic signals. The 

energy normalized Morlet wavelet ( )w t  is given by: 
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where t  refers to the time,   is the mean frequency, u  is the time delay,   is the 

phase shift, and   is the scale that controls the width of wavelet in time and 

frequency domain. Every Morlet wavelet can be characterized by a set of these four 

parameters:  , , ,u    . The spectrum of ( )w t  is given as follows: 
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where f  is the frequency. By matching pursuit decomposition, a seismic signal 

( )s t  can be represented by a linear combination of the Morlet wavelets: 
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 ( )
jj

j

s t a w t noise                         (3) 

where ja  is the amplitude of the jth Morlet wavelet 
j

w . In complex domain, Eq.(3) 

becomes (Liu and Marfurt, 2007):  

 ( )
jj

j

S t A W t noise                        (4) 

where ( )S t  is the analytic complex seismic signal formed by Hilbert transform, jA  

is the complex amplitude consisting of the amplitude and phase of the jth analytic 

complex Morlet wavelet  
j

W t  that is also formed by Hilbert transform. Since the 

phase of the Morlet wavelet is included in the complex amplitude, the controlling 

parameters of the Morlet wavelet are changed into  , ,u   . 

Matching pursuit decomposition is implemented iteratively. According to Liu and 

Marfurt (2007), in one iteration of the decomposition, a suite of envelope peaks that 

fall above a user-specified percentage of the largest peak in the current (residual) trace 

are picked. The optimal Morlet wavelets are matched at these envelope peaks. At each 

envelope peak, the time delay ju  of the optimal Morlet wavelet is the time position 

of the envelope peak and the mean frequency j  is the instantaneous frequency of 

the current trace at the envelope peak by complex-trace analysis. The scale j  can 

be searched over a group of preselected, uniformly distributed j  values by 

maximizing the inner product of the current trace and the Morlet wavelet with fixed 

ju  and j  values (Wang, 2007). For each matched Morlet wavelet, once we obtain 

the preliminary estimates of  , ,j j j ju   , we optimize these three parameters by 

local search in a small range around the preliminary estimates. The complex 
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amplitude jA  of all the matched Morlet wavelets in one iteration can be calculated 

using a least-squares algorithm by minimizing the energy of the difference between 

the complex seismic trace and the complex matched wavelets.  

 
2

( ) ( )
j

J

j

j

E t S t A W t

 
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where J  refers to the number of the matched wavelets in one iteration. The matched 

Morlet wavelets are subtracted from the seismic trace at every iteration. The iteration 

continues until the energy of residues is below a user defined threshold value. 

 Figure 1 is a synthetic signal designed to show the implementation of the above 

matching pursuit algorithm. The synthetic signal (left-most in Figure 1) is composed 

of 7 Morlet wavelets with different controlling parameters as shown in Table 1. 

 

Figure 1 A synthetic signal 

 

Table 1 Controlling parameters of the Morlet wavelets 
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 In each iteration of the decomposition, we design to pick the envelope peaks that 

fall above 70% of the largest peak in the current trace to search the optimal Morlet 

wavelets. At the first iteration, 2 envelope peaks are picked and the corresponding 

optimal Morlet wavelets are matched as shown in Figure 2a. In the second and third 

iteration, 4 and 1 optimal Morlet wavelets are matched, respectively. As we can see, 

these 7 matched Morlet wavelets are in good agreement with the consisting wavelets 

in Table 1. When we reconstruct the synthetic signal with these 7 matched wavelets, 

the residues between the input and reconstructed synthetic signal are quite small, as 

shown in Figure 2b.  

No.  (Hz) u (s)  (°)   a  

1 10 0.25 0 3 1.5 

2 10 0.9 0 3 1.5 

3 30 0.45 0 1 1 

4 30 0.9 0 1 1 

5 30 1.3 0 1 1 

6 50 0.6 135 2 1 

7 50 1.2 135 2 1 
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(a)                               (b) 

Figure 2 Matching pursuit decomposition of the synthetic signal 

 

To further validate the noise tolerance of the algorithm, white noise (Figure 3a) 

with 20% of effective signal energy is added to the above synthetic signal (left-most 

in Figure 3b). Then we repeat the above decomposition test. After 3 iterations, 7 

matched wavelets are obtained and then used to reconstruct the synthetic signal. The 

residues between the input and reconstructed synthetic signal are shown in Figure 3b. 

As we can see, the effective signal is well reconstructed and the residues are almost 

noise. This well indicates that the matching pursuit algorithm has a good noise 

tolerance. Another decomposition test to the synthetic signal with colored noise are 

also conducted, as shown in Figure 4. The same conclusion can be drawn from the 

results. 
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(a)                                     (b) 

Figure 3(a) Amplitude spectrum of white noise; (b) Matching pursuit decomposition of 

the synthetic signal with white noise 

 

 

(a)                                     (b) 

Figure 4(a) Amplitude spectrum of colored noise; (b) Matching pursuit decomposition of 

the synthetic signal with colored noise 

3. Matching pursuit parallel decomposition 

3.1 Algorithm 
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In Liu and Marfurt’s algorithm, a suite of envelope peaks are picked from the 

current signal where the optimal Morlet wavelets are matched in one iteration of the 

decomposition. Because the search of the optimal wavelets has the same 

implementation and is independent of each other, they can be assigned to several 

compute nodes to execute in parallel. Nevertheless, picking envelope peaks by a 

user-specified percentage of the largest peak in the current trace probably differs the 

number of the picked envelope peaks at every iteration (just like our example in the 

above section), leading to uneven jobs for a fixed number of compute nodes. This 

easily causes idling for parts of the compute nodes during the parallel computing, 

decreasing the overall efficiency of the parallel decomposition.  

To give full play to the advantages of parallel computing, we fix the number of 

the envelope peaks where the optimal Morlet wavelets are matched in every iteration 

according to the number of compute nodes. Assume that the number of compute 

nodes is N, in every iteration the number of the envelope peaks we pick is set as M 

that is equal to or an integer multiple of N. These M envelope peaks are the top M 

largest peaks in the current trace. They are assigned to the compute nodes on average 

by the host process. The optimal Morlet wavelets are searched by every compute node 

at the received envelope peaks and returned to the host process. This procedure is 

implemented in parallel. The complex amplitudes of all the M matched wavelets are 

calculated by the host process. After the matched wavelets are subtracted from the 

current trace, the parallel decomposition for one iteration is completed. The whole 

procedure is described more intuitively as shown in the flow chart in Figure 5. 
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Figure 5 Matching pursuit parallel decomposition for one iteration 

The gray shaded area in Figure 5 is the parallel computing part we design for 

matching pursuit decomposition. It is the core part of the parallel algorithm. By 

executing the search of optimal Morlet wavelets in parallel at every iteration with the 

help of multiple compute nodes, the computational speed of matching pursuit 
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decomposition is significantly improved. The whole procedure involves the 

communication between the host process and every compute node. Hence, its 

program can be achieved by means of Message Passing Interface (MPI). 

3.2 Validity analysis 

 Figure 6 is a real seismic signal we use to verify the above parallel algorithm of 

matching pursuit decomposition. The operating environment of the MPI parallel 

program is an Intel multiprocessor computer whose main frequency of processors is 

2.40GHz.  

 

 

Figure 6 A real seismic signal 

 

We first enter the environment of MPI, executing all the initializations and 

generating communication domain. We set 4 processors for parallel computing. Then 

we design to pick 4 envelope peaks from the current signal to search the optimal 

Morlet wavelet in every iteration of our parallel program, so the number of the 

processes in the communication domain is specified as 4. After 44 iterations, the 

program ends when the energy of the residues falls below a threshold value we 

defined. Hence, we obtain a total of 176 optimal Morlet wavelets. Figure 7 illustrates 
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some residual and reconstructed signals at different iterations during the parallel 

decomposition. The reconstructed signals are modeled by all the matched Morlet 

wavelets we have obtained after a certain iteration. As we can see from the figure, the 

signal is decomposed gradually along with the increasing iterations and the 

reconstructed signal is getting close to the input signal. This indicates that the 

matching pursuit decomposition of seismic signals can still be successfully 

implemented by picking a fixed number of envelope peaks from the current signal to 

search the optimal wavelets in every iteration. 

 

 

(a) Residual signals 
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(b) Reconstructed signals 

Figure 7 Residual and reconstructed signals at different iterations 

 

Figure 8 is another test for the MPI parallel program by the same seismic signal. 

In this test, we still set 4 processors for parallel computing but we design to pick 8 

envelope peaks in every iteration of the program. Thus, in every iteration two 

envelope peaks are assigned to every processor to search the optimal Morlet wavelets. 

As we can see from the figure, after 25 iterations, the seismic signal is decomposed 

thoroughly and the residual signal can be considered as at the random noise level.  
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(a) Residual signals 

 

(b) Reconstructed signals 

Figure 8 Residual and reconstructed signals at different iterations 

 

3.3 Speedup and efficiency analysis 
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 The above two tests well prove the validity of our parallel algorithm of matching 

pursuit decomposition. Next we further analyze its computation speed that we are 

more concerned about. Assume that to search one optimal Morlet wavelet at a certain 

peak by compute node is defined as one process. Hence, the number of processes 

refers to the number of the matched wavelets in one iteration. To analyze the speedup 

and the computational efficiency of the matching pursuit parallel decomposition, in 

the MPI parallel program we set different numbers of compute nodes and processes to 

decompose the seismic signal in Figure 6, respectively. The detailed implementations 

are shown in Table 2. The operating environment of the MPI parallel program is still 

an Intel multiprocessor computer whose main frequency of processors is 2.40GHz. 

 

Table 2 Test for the speedup and efficiency 

Trial 

No. of 

processors 

No. of 

processes 

Iteration 

No. of matched 

wavelets 

Computing time

（s） 

Speedup 

Overall 

efficiency 

① 1 1 80 80 5.361713 ／ ／ 

② 2 2 40 80 2.737699 1.9585 0.97925 

③ 2 4 20 80 2.740146 1.9567 0.97823 

④ 2 8 10 80 2.744404 1.9537 0.97685 

⑤ 2 16 5 80 2.750807 1.9491 0.97455 
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⑥ 4 4 20 80 1.397733 3.836 0.959 

⑦ 4 8 10 80 1.423375 3.7669 0.9417 

⑧ 4 16 5 80 1.459963 3.6725 0.9181 

⑨ 8 8 10 80 0.753981 7.1112 0.8889 

⑩ 8 16 5 80 0.789904 6.7878 0.8485 

 

 As shown in Table 2, there are 10 trials of matching pursuit parallel 

decomposition. Although the numbers of processors and processes are different in 

every trial, the number of the matched Morlet wavelets we obtain is the same by 

controlling the iteration to ensure the fairness of the comparisons. In Trial ①, we set 

1 processor and 1 process, so this is a conventional matching pursuit implementation 

used as a reference. From Trial ②, the numbers of processors and processes are 

increasing for parallel computing.  

Compared Trial ①, Trial ②, Trial ⑥ and Trial ⑨, when the number of 

processes is equal to the number of processors, which means only one process is 

assigned to every processor in every iteration, the computation speed of the matching 

pursuit parallel decomposition is improved significantly with the increasing number 

of processors. When the number of processors is set as 8, the speedup of the parallel 

computing is greater than 7. This also indicates good expandability of the parallel 

algorithm. Nevertheless, the overall efficiency of the parallel decomposition that is 
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calculated by dividing the speedup by the number of processors is decreased with the 

increasing number of the processors, because the absolute traffic among the 

processors is increased. 

In Trial ②, Trial ③, Trial ④, and Trial ⑤, the number of processors is set as 2, 

while the number of processes is different. As we can see, with the increasing number 

of processes, the speedup and overall efficiency is decreased. That’s because when the 

number of processes is greater than 2, the number of processes assigned to every 

processor is more than 1. The communication among the processes in every processor 

decreases the overall efficiency of parallel decomposition. Hence, searching only one 

optimal Morlet wavelet by every processor in every iteration is the most efficient 

implementation for the matching pursuit parallel decomposition of seismic signals. 

The same conclusion can be draw from the comparison of Trial ⑥, Trial ⑦ and 

Trial ⑧, also from the comparison of Trial ⑨ and Trial ⑩. 

 

4. Comparisons 

The matching pursuit decomposition of seismic data is performed trace by trace. 

Actually, for a seismic profile or a 3D seismic data volume, the traces can be directly 

assigned to the compute nodes of parallel computer systems on average to implement 

decompositions in parallel. We use a seismic profile as shown in Figure 9 to compare 

this coarse-grained parallel strategy and our parallel algorithm of matching pursuit. 

The operating environment of these two parallel programs is still an Intel 

multiprocessor computer whose main frequency of processors is 2.40GHz.  

First, those 800 traces are assigned to 1, 2, 4, 8, 16 and 32 processors on average 

to decompose in parallel, respectively. Then we implement our parallel algorithm to 
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the traces by setting 1, 2, 4, 8, 16, 32 processors, respectively, and searching only one 

optimal wavelet by every processor. In these two parallel methods, we define the 

same threshold value to end the decompositions for fair comparisons.  

 

Figure 9 Seismic profile 

After all the implementations are completed, we calculate the speedup and 

efficiency of these two methods for different numbers of processors, respectively, as 

shown in Figure 10. The speedup of the coarse-grained parallel strategy is apparently 

lower than that of our parallel algorithm of matching pursuit, and the difference 

between these two is increased with the increasing number of processors. Meanwhile, 

the overall efficiency of the coarse-grained parallel strategy is also much lower than 

that of our parallel algorithm. That’s because the number of iterations and optimal 

Morlet wavelets of seismic traces are unknown before the decomposition according to 

the matching pursuit algorithm. The coarse-grained parallel strategy easily leads to 

uneven jobs for compute nodes even though we assign the same number of traces to 

every compute node, affecting the overall efficiency of the parallel computing. By 
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contract, our parallel algorithm of matching pursuit ensures even jobs for every 

processor, so it can give full play to the advantages of parallel computing. 

 

  

(a) Speedup                             (b) Efficiency 

Figure 10 Comparisons of two parallel methods 

Conclusions 

With the help of parallel computer systems and Message Passing Interface, the 

matching pursuit decomposition of seismic signals can be achieved in parallel by 

picking a fixed number of envelope peaks form the current signal in every iteration 

according to the number of compute nodes and assigning them to every compute node 

on average to search the optimal Morlet wavelets in parallel. The parallel algorithm 

gives full play to the advantages of parallel computing to significantly improve the 

computation speed of the matching pursuit decomposition and also has good 

expandability. Besides, searching only one optimal Morlet wavelet by every processor 

in every iteration is the most efficient implementation. We believe that the realization 
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of matching pursuit parallel decomposition for seismic data will benefit the 

application of matching pursuit in the processing and interpretation of large-scale 3D 

seismic data.  
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Highlights 

 We design a parallel decomposition algorithm of matching pursuit 

 The method effectively improve the computation speed of the matching pursuit 

decomposition of seismic signals 

 The method gives full play to the advantages of parallel computing and has good 

expandability. 




