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Phase Field Modeling of Ductile Fracture in Soil Mechanics
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This work outlines a rigorous framework for the ductile failure of frictional materials in elastic-plastic soil mechanics under-
going large strains. Describing soil crack formation can be achieved in a convenient way by recently developed continuum
phase field approaches to fracture, which are based on the regularization of sharp crack discontinuities [1]. This avoids the
use of complex discretization methods for crack discontinuities, and can account for complex crack patterns. For frictional
materials, a non–associative Drucker–Prager-type elastic-plastic constitutive model suitable for a wide range of applications
in soil mechanics is developed. It is linked to a failure criterion in terms of the elastic-plastic work density that drives the
fracture phase field. We demonstrate the modeling capabilities and algorithmic performance of the proposed formulation by
a representative numerical example that describes soil crack formation using elastic-plastic fracture mechanics.

c© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Constitutive formulation of the multi-field problem

The ductile failure response of frictional materials is described by the deformation map ϕ and the crack phase field d as global
primary fields. The plastic strain εp and the equivalent plastic strain α are the local internal variables. The free energy density
function of the coupled problem reads

Ψ̂(εe, α; d) = Ψ̂e(ε
e; d) + Ψ̂p(α; d) with εe := ε− εp and ε :=

1

2
ln[(∇ϕ)T (∇ϕ)] , (1)

in terms of the logarithmic elastic strain measure εe. The quadratic elastic part of the free energy function takes the form

Ψ̂e(ε
e; d) = (1− d)2ψ+

e (ε
e) + ψ−

e (ε
e) with ψ±

e (ε
e) =

κ

2
〈tr[εe]〉2± + µ tr[dev(εe±)

2] (2)

with the bulk modulus κ > 0 and the shear modulus µ > 0. The positive and negative elastic strain tensors are defined as
εe+ :=

∑3
a=1〈εea〉+ na⊗na and εe− := εe−εe+ with the ramp functions 〈x〉± := (x±|x|)/2 of R±. The plastic contribution

represents an isotropic hardening behavior and takes the form

Ψ̂p = (1− d)2ψp(α) with ψp =

∫ α

0

ŷ(α̃) dα̃ and ŷ(α) = y0 + hα (3)

in terms of the material parameters y0 > 0 and h ≥ 0, where the initial yield stress y0 determines the threshold of the effective
elastic response. Following Miehe et al. [2], the crack phase field d ∈ [0, 1] enters the energy function as a generalized internal
variable. It governs the regularized crack surface functional Γl in terms of the crack surface density function γl

d

dt
Γl(d) =

∫

B
δdγl(d,∇d) ḋ dV :=

1

lf

∫

B
[(1−d)H−η ḋ] · ḋ dV ≥ 0 with γl(d,∇d) =

1

2l
d2+

l

2
||∇d||2 . (4)

Next, we define the non–associated Drucker–Prager-type yield criterion function for frictional materials in line with [3]

φ̂(σ, βp) =
√

3
2

√
||s||2 + α̂2

φ(βp)−β̂φ(p, βp) with σ = p1+s and βp = (Mφ∞−Mφ 0)[1−exp(−α/η̄)] (5)

governed by the logarithmic stress σ and the additional term α̂φ which provides a smoothing-out of the peak of the cone

α̂φ(βp) = M̂φ(βp) ω with M̂φ(βp) =Mφ + βp and Mφ =
6sinΦ

3± sinΦ
(6)

with the pressure-dependent material function in terms of the slope Mφ and the perturbation parameter ω defined as

β̂φ(p, βp) = M̂φ(βp) (pmax − p) with p∗max := pmax −
√

3
2 ω and pmax = c cotΦ (7)

where Φ is the friction angle and c is the cohesion of the Mohr–Coulomb criterion |τ | ≤ c − p tanΦ. In order to define the
flow direction of the non–associated model, we introduce the plastic potential function

χ̂ =
√

3
2

√
||s||2 + α̂2

χ− β̂χ(p) with α̂χ =Mχ ω ; β̂χ(p) =Mχ (pmax− p) and Mχ =
6sinν

3± sinν
(8)

in terms of the constant slope of the plastic potential hypersurface Mχ and the angle of dilatancy ν.
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384 Section 6: Material modelling in solid mechanics

2 Balance equations of finite elasto-plasticity coupled with phase field fracture

The strong form of the balance and evolution equations describing the multi-field approach to phase-field-type crack propaga-
tion in inelastic soil mechanics are: Balance of linear momentum and evolution of the crack phase field corresponding to the
global fields {ϕ, d}, the evolution equation of α and evolution of the plastic strain εp corresponding to the local fields

Div [∂∇ϕΨ̂] = 0 , ηḋ− (1− d)H+ [ d− l2∆d ] = 0

ε̇p − λ∂σχ̂(σ) = 0 , α̇− λ
√

2
3 ||∂σχ̂(σ)|| = 0 ,

(9)

based on the history field H defined as the maximum of the crack driving state function D proposed in [1, 4]

H = max D(X, s) and D = ζ

〈
ψ+
e + ψp

ψc
− 1

〉
(10)

in terms of the critical fracture energy per unit volume ψc and the fracture length scale parameter l. The fracture parameter ζ
controls the post-critical range after crack initialization.

3 Numerical examples

We point out the capabilities of the model by investigating the pullout behavior of an anchor plate in soil as shown in the
experimental results [5]. The geometric setup and boundary conditions are illustrated in Figure 1 (a). Due to the symmetry of
the BVP only half of the specimen is discretized using the modified enhanced assumed strain element CG4 in the simulation,
which is proven to be a locking-free element and overcomes hourglass modes [6]. Figure 1 (b,c) demonstrate the distribution
of the crack phase field d and the hydrostatic pressure p at the final deformation state. Tensile stresses are observed under the
lower side of the anchor plate when the plate is pulled upwards. The crack starts to initiate in this tensile area when the elastic
and plastic energies reach a critical value ψc and propagates from the anchor corners to the boundaries at about 60◦ from the
loading direction. For visualization of the crack surface, deformed regions with d ≈ 1 are not plotted in Figure 1 (c).
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Fig. 1: Pullout behavior of anchor plate in soil. a) Geometry and boundary conditions, b) crack phase field d and c) hydrostatic pressure
distribution p at the final stage of deformation.
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