
Introduction
Crack initiation and propagation in solid under water pressure is called hydraulic fracturing.

Hydraulic fracturing technology has been extensively applied in engineering, including the measurement
of in situ stresses [1], stimulation of groundwater wells [2], and solid waste disposal [3]. The hydraulic
fracturing mechanism has been extensively studied to improve the hydraulic fracturing design for engi-
neering applications and avoid hydraulic fracturing for engineering safety. The literature shows that the
orientation of new fractures is influenced by several factors, such as local stress field [4], geometry of
existing fractures [5-6], anisotropy of the rock [7], and ratio between vertical load and hydraulic pres-
sure [8]. However, the propagation direction of newly created fractures and the failure mechanism
remain unclear. 

Numerous laboratory experiments under uniaxial and biaxial loading conditions [7, 9], have been
performed to gain insights into fracturing mechanisms. Numerical methods are generally suitable for the
examination of rock fracturing behaviors with general geometries and loading conditions. The finite ele-
ment method (FEM) [8, 10], XFEM [11, 12], RFPA [13], PFC [14, 15], DDA [16], NMM [17], BEM
[18], and other methods [19, 20] have been adopted to investigate the fracturing mechanisms in rocks.
However, systematic studies on vertical load and hydraulic pressure in existing flaws under different tec-
tonic stresses are limited. In the present article we carried out an in-depth investigation of the effects of
hydraulic pressure and tectonic stress on fracture initiation in rock flaws by numerical simulation. The
maximum principal stress and maximum shear stress along the flaw perimeter, which are related to frac-
ture initiation, were evaluated.

Methodology
The stress field is numerically investigated by elastic FEM in ABAQUS to systematically exam-

ine the effect of horizontal load and hydraulic pressure applied in existing flaws on the stress field along
the flaw perimeters, especially in the vicinity of the flaw tips. The material of the model is considered
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This study examines the effects of hydraulic pressure and tectonic stress on fracture ini-
tiation in rock flaws by using the finite element method. A square domain with double
flaws is analyzed under vertical load, different horizontal loads (modeling tectonic stress-
es), and various hydraulic pressures.
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continuous, homogeneous, and isotropic linear elastic. The material parameters are as follows: Young's
modulus  6 GPa and Poison's ratio 0.28 [9, 21]. 

Figure 1(a) shows the geometry of a double flaw. The lengths of two flaws are the same, and the
half flaw length a is 6.35 mm, L = 2a, and α = β = 30°. Figure 1(b) shows other parameters of a sin-
gle flaw.

A 20 cm wide square domain with double flaws (Fig. 1) is analyzed. Figure 2(a) presents the
boundary conditions and loads. Three different types of loads, namely, a vertical load (VL) applied at
the top boundary, a horizontal load (HL) applied at the right boundary of the numerical model, and a
water pressure (WP) applied along the surface of the flaws, are considered, as shown in Figs. 2(a) and
2(b). The vertical load is 10 MPa, the horizontal load varies from 0 to 40 MPa, and three water pres-
sures are selected, namely, 0 MPa (without water pressure), 15 MPa (relatively small water pressure),
and 30 MPa (relatively large water pressure). The ratio k = WP/VL and the lateral pressure coefficient
λ = HL/VL are defined. Table 1 shows the vertical load and horizontal load cases for each k. The λ
studied intends to a simulate tectonic stress field. The finite elements in the numerical analysis are
three-node linear plane stress triangles. The finite element mesh around the flaws is shown in Fig. 2(c).
The present study adopts two stress-based initiation criteria, namely, maximum principal stress and max-
imum shear stress [9].
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pressure (b), and of the finite element mesh near one of the flaw tips (c).



The left flaw will be analyzed in detail. The one-dimensional normalized position along the flaw
perimeter is defined as follows to conveniently express the results along the flaw face: (1) the origin is
located at the left flaw tip; (2) the ratio of the distance from the considered point to the origin and the
entire flaw circumference is defined as a normalized position; and (3) normalized positions along the flaw
perimeter are defined clockwise. The normalized position varies from 0 to 1, as shown in Fig. 1(b). This
path is similar to that shown in [22]. Goncalves da Silva [23] studied other paths around the flaw tip and
found that the variation in paths does not significantly affect the fracture initiation results obtained. 

Numerical results
The evolution of maximum principal stresses along the flaw perimeter for several typical λ with-

out water pressure is shown in Fig. 3(a). As λ increases from 0 to 1.0, the peak of maximum principal
stresses decreases, and the location of the peak moves from 0.47 to 0.42. Notably, maximum principal
stresses rapidly decrease when the peak location is closer to 0.5 for each λ. As λ increases from 1.0 to
3.0, compressive stresses appear on the small semicircular spot of the flaw tip and presents a gradually
increasing trend. The maximum principal stress is zero everywhere else around the flaw. As λ increases
from 3.0 to 4.0, the peak of maximum principal stresses gradually increases, and the peak location
moves from 0.54 to 0.53. This result indicates that the position of a tensile fracture not only relies on
the vertical load (constant load in this paper) but also on the horizontal load, especially when λ < 1.0
and λ > 3.0.

The following conclusions can also be drawn from Fig. 3(a): (1) the peak of the maximum prin-
cipal stresses with approximately 22.7 MPa for λ is higher than that with approximately 3.4 MPa for
λ = 0.6, but the peak of the maximum principal stresses with approximately 1.0 MPa for λ = 3.0 is
lower than that with approximately 9.7 MPa for λ = 4.0 In other λ cases, the maximum principal stress
is nearly equal to that of compressive stress or zero. Theoretically, initiation of new tensile fractures
may definitely be related to λ; (2) the maximum principal stress is nearly 0 MPa at the region from 0.58
to 0.64 and from 0.08 to 0.14 for all λ.

The evolution of maximum shear stresses along the flaw perimeter for several typical λ with
k = 0 is shown in Fig. 3(b). As λ increases from 0 to 1.0, the peak location moves from 0.51 to 0.50.
As λ increases from 1.6 to 4.0, the peak of maximum principal stresses presents a gradually increasing
trend, and the peak location is approximately 0.48. This result indicates that the position of a shear frac-
ture is divided into two main sections with increasing λ. The peak of the maximum shear stresses
remains approximately 31.5 MPa as λ increases from 0 to 1.0; the peak of the maximum shear stresses
varies from 46.7 MPa to 93.6 MPa as λ increases from 2.0 to 4.0; (2) the maximum shear stresses at
points 0.59 and 0.10 remain approximately 1.4 MPa under all λ (Fig. 3(b)).

The evolution of maximum principal stresses along the flaw perimeter for several typical λ with
k = 1.5 is shown in Fig. 3(c). As λ increases from 0 to 1.0, the peak of maximum principal stresses
rapidly decreases, and the peak location moves from 0.48 to 0.5. As λ increases from 1.0 to 4.0, the
peak of maximum principal stresses presents a gradually increasing trend, and the peak location moves
from 0.5 to 0.52. The peak of maximum principal stresses reaches the lowest value when λ = 1.0, and
the peak location is 0.5. This result indicates that the position of a tensile fracture probably begins at
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the middle flaw tip for HL = VL. The peak of the maximum principal stresses decreases from 60.7 to
19.8 MPa as λ increases from 0 to 1.0, and the peak of the maximum principal stresses increases from
19.8 to 45.7 MPa as λ increases from 1.0 to 4.0. Theoretically, initiation of new tensile fractures may
definitely be related to λ with k = 1.5; the maximum principal stresses at points 0.59 and 0.10 remain
approximately 13.6 MPa under all λ. 

12

0.0 0.1   0.2   0.3   0.4   0.5  0.6   0.7   0.8   0.9    1

25

20

15

10

5

0

-5

-10

-15

-20

a b
100

80

60

40

20

0

0.0 0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9    1

0.0 0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9    1

70

60

50

40

30

20

10

0

-10

-20

-30

60

40

20

0

c d

0.0 0.1   0.2   0.3   0.4   0.5  0.6   0.7   0.8   0.9    1

0.0 0.1   0.2   0.3    0.4   0.5  0.6    0.7  0.8   0.9    1

140

120

100

80

60

40

20

0

-20

-40

80

60

40

20

0

e f

0.0 0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9    1

σ1, MPa τ, MPa

σ1, MPa
τ, MPa

σ1, MPa τ, MPa

1

2

3

4

6
5

7

7

6

5

1

2

3

4

3
4

2

1
7

6

5

7

6

5

3
4

2
1 7

6

5 3
4

2
1 7

6

5

Fig. 3. Variations of (a) maximum principal stresses and (b) maximum shear stresses along the flaw 
perimeter for several typical λ: a) k = 0, b) k = 1.5, c) k = 3, 1) λ = 0, 2) λ = 0,28, 3) λ = 0,6,
4) λ = 1, 5) λ = 2, 6) λ = 3, 7) λ = 4.



The evolution of maximum shear stresses along the flaw perimeter for several typical λ with k = 1.5
is shown in Fig. 3(d). As λ increases from 0 to 1.0, the peak of the maximum shear stresses decreases, and
the peak location moves from 0.48 to 0.5. As λ increases from 1.0 to 2.0, the peak of the maximum shear
stresses slightly changes, but the peak location moves from 0.5 to 0.52. As λ increases from 2.0 to 4.0, the
peak of the maximum shear stresses presents a gradually increasing trend, the peak location moves from
0.52 to 0.47, and the location of the maximum shear stresses is symmetrical at the position of 0.5. 

Figure 3(d) shows the results of further analysis of the evolution of maximum shear stresses
along the flaw perimeter. The peak of the maximum shear stresses changes from 38.4 to 21.2 MPa as λ
increases from 0 to 1.0, and the peak of the maximum shear stresses changes from 19.8 to 65.3 MPa as
λ increases from 2.0 to 4.0; (2) the maximum shear stresses at points 0.59 and 0.10 are approximately
0.7 MPa for all λ.

The evolution of maximum principal stresses along the flaw perimeter for several typical λ with
k = 3.0 is shown in Fig. 3(e). As λ increases from 0 to 1.0, the peak of maximum principal stresses
decreases, and the peak location moves from 0.49 to 0.5. As λ increases from 1.0 to 2.0, the peak of
maximum principal stresses  remains nearly constant, but the peak location moves from 0.5 to 0.51. As
λ increases from 2.0 to 4.0, the peak of maximum principal stresses presents a gradually increasing
trend, and the peak location moves from 0.5 to 0.52. The peak of the maximum principal stresses
decreases from 131.7 MPa to 109.3 MPa as λ increases from 0 to 1.0, and the peak of the maximum prin-
cipal stresses increases from 108.2 MPa to 126.8 MPa as λ increases from 2.0 to 4.0. This result indicates
that under a relatively large water pressure, the horizontal load has minimal influence on the position of
tensile crack initiation, and the maximum principal stresses at points 0.59 and 0.10 remain approximately
24.4 MPa for all λ.

The evolution of maximum shear stresses along the flaw perimeter for several typical λ with k = 3.0
is shown in Fig. 3(f). As λ increases from 0 to 1.0, the peak of maximum shear stresses decreases from
74.0 to 66.5 MPa, and the peak location moves from 0.49 to 0.50. As λ increases from 1.0 to 4.0, the
peak of the maximum shear stresses increases from 63.8 to 72.4 MPa, and the corresponding location
remains approximately 0.5. This result indicates that under a relatively large water pressure, the hori-
zontal load has minimal influence on the position of shear crack initiation. The maximum shear stress-
es at points 0.59 and 0.10 remain approximately 2.8 MPa under all λ.

Notably, the tensile or shear crack initiation position is dependent on which material first reach-
es microscale strength [8]. Tables 2 to 5 summarize the positions of the fracture initiation that are only
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TABLE 3TABLE 2

TABLE 5TABLE 4

λ
k = 0 k = 1.50 k = 3.0

position τmax, MPa position τmax, MPa position τmax, MPa

0
0.28
0.6
1.0
2.0
3.0
4.0

0.512 
0.508 
0.508 
0.500 
0.484 
0.480 
0.480 

33.7 
32.3 
31.5 
31.9 
46.7 
69.6 
93.6 

0.480 
0.484 
0.488 
0.500 
0.516 
0.471 
0.475

34.8 
28.1 
21.2 
16.0 
19.8 
40.8 
65.3

0.492 
0.492 
0.496 
0.500 
0.508 
0.512 
0.512

74.0 
70.0 
66.5 
63.8 
63.5 
67.4 
72.4

λ
k = 0 k = 1.50 k = 3.0

position τmax, MPa position τmax,MPa position τmax, MPa

0
0.28
0.6
1.0
2.0
3.0
4.0

0.012 
0.012 
0.008 
1.000 
0.984 
0.980 
0.980 

32.5 
31.0 
29.8 
29.9 
45.7 
68.6 
92.2

0.980 
0.980 
0.984 
1.000 
0.016 
0.971 
0.975 

34.3 
27.7 
20.7 
15.0 
19.7 
39.6 
63.8

0.988 
0.992 
0.996 
1.000 
0.008 
0.012 
0.016 

71.4 
66.9 
62.8 
59.9 
60.1 
65.0 
71.6 

λ
k = 0 k = 1.50 k = 3.0

position σ1, MPa position σ1, MPa position σ1, MPa

0
0.28
0.6
1.0
2.0
3.0
4.0

0.467 
0.459 
0.422 

-
-

0.541 
0.533

22.7 
11.0 
3.4 
-
-

1.0 
9.7 

0.480 
0.484 
0.488 
0.500 
0.516 
0.520 
0.529

60.7 
46.3 
31.3 
19.8 
27.7 
42.0 
45.7

0.492 
0.492 
0.496 
0.500 
0.508 
0.512 
0.516

131.7 
122.9 
115.3 
109.4 
108.2 
116.2 
126.8

λ
k = 0 k = 1.50 k = 3.0

position σ1, MPa position σ1, MPa position σ1, MPa

0
0.28
0.6
1.0
2.0
3.0
4.0

0.967 
0.959 
0.927 

-
-

0.041 
0.033

20.2 
9.1 
2.7 
-
-

1.5
12.9 

0.980 
0.980 
0.984 
0.000 
0.016 
0.021 
0.021 

59.6 
45.2 
30.2 
17.7 
27.5 
43.8 
61.0

0.988 
0.992 
0.996 
0.000 
0.008 
0.012 
0.016 

125.9 
116.3 
107.5 
100.8 
100.8 
111.2 
125.0



applicable to maximum principal stresses or maximum shear stresses. Note that "-" denotes no tensile
stress.

Conclusions 
This study examined the effects of hydraulic pressure and tectonic stress on fracture initiation in

rock flaws by using the elastic FEM in ABAQUS. Numerical results show the following:
1. As the lateral pressure coefficient λ increases without water pressure (k = 0), the initiation

location of new tensile fractures moves from the position directly ahead of the flaw tip (0.47) to the
upper face of the flaw (0.42), then from the lower face (0.54) to the position directly ahead of the flaw
tip (0.53). Simultaneously, the initiation location of new shear fractures moves from the position direct-
ly ahead of the flaw tip (0.51) to the upper face (0.48). The positions of tensile and shearing fracture
initiations depend on the horizontal load, especially when λ < 1.0 and λ > 3.0. 

2. As λ increases with a relatively small water pressure (k = 1.5), the initiation location of new
tensile fractures moves from the upper face of the flaw (0.48) to the lower face of the flaw (0.53). Simul-
taneously, the initiation location of new shear fractures moves from the upper face (0.48) to the lower
face (0.52), then from the lower face (0.52) to the upper face (0.48). The positions of tensile and shear-
ing fracture initiations depend on the horizontal load with a relatively small water pressure (k = 1.5).

3. Under a relatively large water pressure (k = 3.0), λ has minimal effect on the positions of ten-
sile and shear fracture initiations but exhibit the same trend, and the positions of tensile and shear frac-
ture initiations are directly ahead of the flaw tip (0.5). 

4. Two interesting points exist, specifically at the lower face (0.59) and the upper face (0.10),
where the maximum principal (shear) stress remains approximately constant for λ. Notably, the constant
only relies on the water pressure. 

The effects of hydraulic pressure and tectonic stress on propagation and coalescence of fractures
warrant further study.
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