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Abstract

To address the sequential changes of images including poses, in this paper we

propose a recurrent regression neural network (RRNN) framework to unify two

classic tasks of cross-pose face recognition on still images and videos. To imi-

tate the changes of images, we explicitly construct the potential dependencies of

sequential images so as to regularizing the final learning model. By performing

progressive transforms for sequentially adjacent images, RRNN can adaptively

memorize and forget the information that benefits for the final classification.

For face recognition of still images, given any one image with any one pose,

we recurrently predict the images with its sequential poses to expect to cap-

ture some useful information of other poses. For video-based face recognition,

the recurrent regression takes one entire sequence rather than one image as its

input. We verify RRNN in still face image dataset MultiPIE and face video

dataset YouTube Celebrities (YTC). The comprehensive experimental results

demonstrate the effectiveness of the proposed RRNN method.
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1. Introduction

Face recognition is a classic topic in past decades and now still attracts much

attention in the field of computer vision and pattern recognition. Face recog-

nition has a great potential in multimedia applications, e.g. video surveillance,

personal identification, digital entertainment and so on [1, 2, 3, 4, 5]. With5

the rapid development of electric equipment techniques, more and more face

images can be easily captured in the wild, especially videos from cameras of

surveillance or cell phones. Therefore, video or image set based face recognition

becomes more important in most of real-world applications and also becomes

a popular topic in face analysis more recently. As face images captured from10

the unconstrained conditions are usually with complex appearance variations in

poses, expressions, illuminations, etc., the existing face recognition algorithms

still suffer from a severe challenge in fulfilling real applications to large-scale

data scenes, although the current deep learning techniques have made a great

progress on the unconstrained small face dataset, e.g., the recent success of deep15

learning methods on Labeled Faces in the Wild (LFW) [6].

In the task of face recognition, however, we cannot bypass this question of

pose variations, which has been extensively studied and explored in past decades,

and has not been well-solved yet. The involved methods may be divided into

3D [7, 8, 9] and 2D methods [10, 11, 12, 13, 14, 15, 16]. Since pose variations20

are basically caused by 3D rigid motions of face, 3D methods are more intuitive

for pose generation. But 3D methods usually need some 3D data or recovery

of 3D model from 2D data which is not a trivial thing. Moreover, the inverse

transform from 3D model to 2D space is sensitive to facial appearance varia-

tions. In contrast to 3D model, due to decreasing one degree of freedom, 2D25

methods usually attempt to learn some transforms across poses, including linear

models [17] or non-linear models [10, 18]. Because of its simplicity, 2D model

has been widely used to deal with cross-pose face recognition with a comparable

performance with 3D model. However, in many real scenes of face image sets,

e.g., face video sequences, the changes of poses may be regarded as a nearly-30
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continuous stream of motions, while the existing methods usually neglect or do

not make full use of this prior. Moreover, the pose variation is not the only

factor between different images even for the same subject, which involves other

complex factors.

In this paper, we propose a recurrent regression neural network (RRNN)35

framework to explicitly construct the potential dependencies of sequential images

and unify two classic tasks of face recognition, i.e., face recognition based on

still images and videos, respectively. For face recognition of still images, given

any one image with any one pose, we recurrently predict the images with its

sequential poses to capture some useful information of other poses, under the40

supervision of known pose sequences. For video-based face recognition, we deal

with the recognition problem from entire sequence rather than one image used

in still images based face recognition. In detail, by repetitively regularizing the

relationship of adjacent frames, we can obtain more robust representation of

face video sequences under the supervised case. RRNN can adaptively memo-45

rize and forget the information that benefits for the final classification through

continuously transferring information from sequentially adjacent images.

The major contributions of this paper can be summarized as follows:

• We construct potential dependencies of sequential images. Benefit from

that, the proposed recurrent regression neural network (RRNN) captures50

the different poses information adaptively for face recognition;

• By constructing a virtual sequence, RRNN makes sense with two different

face recognition tasks, i.e., still image and video-based face recognition.

The rest of the paper is organized as follows. We introduce preliminary

works in the Section 2 including some fundamental knowledge about face recog-55

nition across poses, video-based face recognition and recurrent neural networks

(RNNs). In Section 3, we present the proposed Recurrent Regression Neural

Network (RRNN) model and its applications to classify still images and video

sequences. Section 4 depicts the experiments and discussion. At last, we make

a conclusion of this paper.60
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2. Preliminaries

2.1. Face Recognition across Poses

With the development of 3D camera technology, several researches try to

solve face recognition problem with 3D face images. 3D face images can solve

the problem that the distance between two certain parts of face varying in65

different poses, and 3D face images contain more information about the face

such as the depth of the facial features. The current 3D technologies include

3D images processing (captured by 3D camera) and 3D recovery (transformed

from 2D to 3D images (2D→3D)). For example, Drira et al. [8] proposed a

novel geometric framework for analyzing 3D faces. It represents facial surfaces70

by radial curves emanating from the nose tips and uses elastic shape analysis

of these curves to develop a Riemannian framework for analyzing shapes of full

facial surfaces. Asthana et al. [9] proposed a 3D pose normalization method

that is completely automatic and leverages the accurate 2D facial feature points

found by the system. Li et al. [19] proposed a novel method, named Morphable75

Displacement Field (MDF), using a virtual view to match the pose image.

3D technology has been confirmed to own a good performance in face recog-

nition [8, 9]. However, 3D data is hard to get in some unconstrained scenes,

and the 2D to 3D algorithms are still needed to be explored.

Meanwhile, there have been existed a lot of algorithms for traditional 2D80

face image recognition. For pose variation face recognition, Sharma et al. [20]

linearly mapped images in different modalities to a common linear subspace

in which they are highly correlated. And then they presented a general multi-

view feature extraction by learning a common discriminative subspace, in which

pose variation is minimized [21]. Kan et al. [10] proposed a stacked progressive85

auto-encoders network, which changes the larger poses to frontal pose.

2.2. Video-based Face Recognition

Video-based face recognition is generally studied for three scenes, namely

Still-Video, Video-Still and Video-Video [22]. Still-Video face recognition searches
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the still image in a video. It is always used to find a man in a video when given90

only a face image of him. On the contrary, Video-Still face recognition matches

a video of a man in a lot of images. Video-Video inquires the clip of a man’s

video given in a lot of videos. Video-based face recognition is different from face

recognition of still image. Under normal circumstances, the faces captured by a

camera are always affected by the environment around seriously and sometimes95

have low quality, e.g., large angle pose, blur, low resolution and complex illu-

mination. Consequently, video-based face recognition is more challenging than

still image face recognition. Especially, we noticed that face poses are different

in each frame of a video because head in videos usually swings around.

Benefiting from the good performance of 2D face recognition technology,100

video-based face recognition causes several researchers’ attention. Hadid et

al. [23] proposed a novel approach based on manifold learning to solve the prob-

lem of video-based face recognition in which both training and testing sets are

video sequences. Chen et al. [24] introduced the concept of video-dictionaries

for face recognition, which generalizes the work in sparse representation and105

dictionaries for faces in still images.

2.3. Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are popular models, which have shown

great performance in many tasks [25, 26]. The idea behind RNNs is to make use

of the sequential information by mapping input sequence to a sequence of hidden110

states, which can learn the complex dynamics of sequence. The recurrence

equations from the hidden states to outputs is as follows:

ht = σ(Wxhxt + Whhht−1 + bh), (1)

ot = σ(Whoht + bo), (2)

where xt is the t-th input of the sequence {x1,x2, · · · ,xt, · · · ,xT } with

length T . The corresponding hidden states and outputs are {h1,h2, · · · ,ht, · · · ,hT }
(h0 = 0) and {o1,o2, · · · ,ot, · · · ,oT } respectively. σ is an element-wise non-115

linear activation function. Wxh,Whh and Who are transform matrices, and bh
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and bo is the biases [27]. By using these recurrent operations, RNNs capture

the sequential and time dependencies via cycles in the network of nodes [28].

3. Recurrent Regression Neural Network

In this section, we first provide an overview introduction on the proposed120

recurrent regression neural network (RRNN) framework, then two cases of face

recognition based on cross-pose and video are further modeled.

3.1. The Model of RRNN

The overall framework of RRNN is shown in Fig. 1. To make full use of

various appearance models for still image or video-based face recognition, we125

explicitly build a recurrent regression model to transform the current input into

other appearance spaces, in which we seek for some effective components to com-

pensate mismatching appearance variations of face images. Given an input xi,

we encode it into a latent state Si and then decode it to one virtual output x̃i,

which may come from the other space spanned by some other appearance char-130

acteristics we expect. The encoder-decoder models a dynamic changing process

between the input and the expected output, and may be further stacked layer

by layer to represent a sequence, i.e., a process of recurrent encoding-decoding.

In the task of face recognition, in order to enhance the model discriminabil-

ity, the identification of subjects can be combined into this model as a joint135

learning. Besides, to reduce error-drifting of all decodings, we impose a total

error constraint on the sum of all outputs to explicitly smooth the entire out-

put sequence. Concretely, we formulate recurrent regression on a sequence of

appearance variations from three aspects:

(1) Recurrent encoding-decoding. Let {x0,x1, · · · ,xt−1,xt, · · · } denote the140

input sequence states, then the corresponding hidden states {S0, · · · ,St, · · · }
after encoding can be written as

St = σ(Ug(xt) + WSt−1 + b1), (3)

6
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Figure 1: An illustration of our idea. Given one pose-specified face image x1, we use a

regularized recurrent neural network (RNN) to progressively regress the pose-stream images

(x̂1, . . . , x̂M ) so that pose mismatching in face recognition can be reduced. In the general case

of still image (as shown in this figure), the only one input image is simply replicated as a virtual

sequence for the input of RNN. The sequential hidden states of different poses are adaptively

weighted to form the final face representation. To increase the feature discriminability, the

CNN network is used to extract more abstract high-level features. Here the rhombuses are

the operations between x̂t and x̃t, i.e., Eq. (5).
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where U, V and W are linear transform matrices, b1 is the bias term,

and σ is a nonlinear transform activation function, e.g., the Hyperbolic

Tangent (tanh) function used in this paper. g is the nonlinear transform145

by CNN while g(xt) is the representation of xt. Note that, the encoding

also depends on the previous hidden state St−1 partly besides the current

input because previous historic information may bring external beneficial

information for the next representation. Further, we decode each hidden

state St into its specified output x̃t we expected, i.e.,150

x̃t = σ(VSt + b2), t = 1, 2, · · · , (4)

where V is the decoding matrix and b2 is the bias. Consequently, this

objective function is to minimizing all reconstruction errors, i.e.,

f1 =
∑

t=1,2,···
‖x̂t − x̃t‖2F , (5)

where x̂t is the ground-truth of the next state in the sequence.

(2) Sequence reconstruction. Let {xo
1,x

o
2, · · · ,xo

t , · · · } denotes the original se-

quence with all poses. To further characterize the globality of the decoding155

on a sequence, we force some statistic properties of all outputs to close to

be an expected state, i.e., minimizing the following objective function,

f2 =
∑

t=1,2,···
‖f(x̃t)− f(g(xo

t ))‖2F , (6)

where f is the statistic function on a sequence, such as first-order statistics,

i.e., mean value, etc.

The major differences between f1 and f2 can be summarized as follows:160

• From the functions’ point of view, f1 is used to force the decoded

unit to the next pose image and finally it changes the decoded unit

to the frontal pose, which is easier to be classified in face recognition.

But f2 forces the statistics of input to an expected state which comes

from the original sequence with all poses.165
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• From the properties’ point of view, f1 aims at pose transformation

separately. But f2 is designed to utilize the global information of

all poses, and collaborate all reconstruction units to reduce error-

propagation, which can further improve the performance according

to our observation from the following experiments.170

(3) Discriminative prediction. Like most supervised models, we may add a

supervision term into the network so as to enhance the model discrim-

inability. Concretely, we use softmax function on the transformed hidden

states, i.e.,

Ot = GSt + b3 = [Ot,1, Ot,2, · · · , Ot,i, · · · ], (7)

Pt(y= i|St,G,b3)=
exp(Ot,i)∑

c=1,2,··· ,i,··· exp(Ot,c)
, (8)

f3 = −
∑

t

log(Pt(y = i|St,G,b3)), (9)

where the variables G and b3 are respectively the transform matrix and175

the bias. i is the i-th class. Note that here the supervision information

is directly imposed on the hidden states rather than the decoding output

x̃t. The reasons are two folds: i) the reconstruction in each decoding unit

is not perfect, where the errors might reduce the discriminative capability

especially when accumulatively propagated along the sequential network;180

ii) it can implicitly transit some identification information to the recon-

struction stage and thus reduce the direct influence on decoding targets

due to the large semantic gap between reconstruction targets and labels.

Furthermore, to further characterize the globality of hidden states, we

adaptively weight each hidden state by introducing a subnetwork called185

hidden state alignment. This subnetwork globally balance all hidden states

9
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to decide the label of sequence. The concrete process can be written as

h =
∑

t

atSt, (10)

O = Gh + b3 = [O1, O2, · · · , Oi, · · · ], (11)

P (y= i|h,G,b3)=
exp(Oi)∑

c=1,2,··· ,i,··· exp(Oc)
, (12)

f3 = − log(P (y = i|h,G,b3)), (13)

where at is a weight vector to alignment the hidden state St.

Finally, the overall objective function can be defined as

min f1 + αf2 + βf3, (14)

where α and β are the balance parameters corresponding to the sequence recon-190

struction term and the supervision term. To make it easier to be understand,

we mark the three loss function in Fig. 1 at their calculation position.

3.2. RRNN for Still Images across Poses

For still images with different poses, the poses can be sorted in a sequence

according to the continuity of pose changing. In the training stage, the image195

sequence along pose changes may be easily captured from cameras, and thus

can be used in the proposed recurrent regression network. However, in the

classic task of cross-pose face recognition based on still images, only one image

is usually provided for testing. So we have to flatter this model by converting

one image into a virtual sequence.200

Given any one image xo
1 with one pose, we augment it into a sequence stream

by using repeatedly copy, i.e., {x1,x2, · · · ,xt, · · · } = {xo
1,x

o
1, ...,x

o
1, · · · }, which

is pretended to be the input sequence. For the decoding outputs, we expect

to predict those images of other poses. In order to utilize gradual changes of

poses, we construct the decoding output sequence as the adjacent pose stream205

{x̂1, x̂2, · · · , x̂t, · · · } = {g(xo
2), g(xo

3), ..., g(xo
t+1), · · · }, i.e., the next adjacent

pose is its decoding output, where g is the CNN operations. In this way, recur-

rent encoding-decoding can realize the function that transforms the input pose

10
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to the target pose we expect. For the sequence reconstruction term, we use the

mean values of predicted state as first-order statistics, and then make it close to210

the mean of pose streams. This term could collaborate all reconstruction poses

to reduce error-propagation and also take advantage of the global information.

3.3. RRNN for Video Sequences

Different from the case above in Section 3.2, for video-based face recognition,

the input sequence is explicitly known in the testing stage. For RRNN, thus the215

input sequence consists of all frames of a video sequence, i.e., {xo
1,x

o
2, ...,x

o
t , · · · },

where xo
t is the t-th frame of the sequence. Instead of the use of next frames,

we use the mean value of all frames as the decoding outputs we expect, i.e.,

{g(x), g(x), · · · , g(x), · · · }, where x = 1
n

∑n
t=1 x

o
t . The main reason is that our

aim is to classify each sequence rather than predict next frames. If we use next220

frames as the decoding outputs, we could capture more motion information in

the encoding-decoding process, which does not refine the subject information

yet. Under this constraint of mean prediction, the sequence reconstruction term

will play an unimportant role in the final performance also as observed from our

experiments, due to the nearly-common optimization target.225

4. Experiments

4.1. Experimental Set-up

In this section, we evaluate our proposed RRNN on two widely used face

datasets, one is the cross-pose face dataset MultiPIE [29], and the other is the

video dataset YouTube celebreties (YTC) [30]. As Convolutional Neural Net-230

work (CNN) can extract more robust features according to the recent researches,

so in this experiment we employ CNN features to represent the images to feed

into RRNN as inputs. Concretely, we directly employ the released training

model of VGGFACE [31] network to extract face features, where images are

first up-scaled into 256*256 and the output of 2622 dimension on the layer ‘fc8’235

are used as the feature of each image. VGGFACE comprises 11 blocks and each

11



ACCEPTED MANUSCRIPT

block contains a linear operator followed by one or more non-linearities such as

ReLU and max pooling. There are totally 16 convolution layers in VGGFACE.

Of course, the CNN model can be concatenated with our RRNN for an end-

to-end neural network. Considering small scale training samples, we only use240

it to extract features to verify our idea. Without fine tuning on the network

parameters, we simply set the number of hidden units to 5000 as default value in

the following experiments. In the training process of our experiments, we stop

training at the time of the model scans the training data 100 times without

repetition. RRNN is implemented with the popular Theano.245

4.2. Experiment of Face Recognition across Poses on MultiPIE Database

MultiPIE dataset contains 337 people with face images of different poses,

illumination and expressions. Each person has 7 poses from 45◦ to −45◦ with

15◦ interval, where 0◦ means the frontal pose. Following the same experiment

configuration of [10], we choose the first 200 subjects (subject ID from 1 to 200)250

as the training set, totally 4207 face images. The rest 137 subjects are used

as the testing set, totally 1879 face images. Inside the testing set, we take one

frontal pose face image from each subject, totally 137 frontal pose face images

as the gallery set. The rest 1742 face images are used as probe set.

In MultiPIE dataset, each individual ID and poses are known in the training255

set. Thus, in the training process, we can train our RRNN model to make it the

ability to force the input facial image to the frontal pose facial image by using ob-

jective function f1 in Eq. (5), which is better to be recognized in face recognition

task. But in the testing process, we don’t know the pose and ID of all individuals

in the test set. And in face recognition for still image, only one image with an260

unknown pose is given to be recognized. Hence, we augment this image into a

sequence by repeating copy, e.g., {x1;x2; · · · ;xt; · · · } = {45◦; 45◦; · · · ; 45◦; · · · },
so that we construct a virtual sequence as the input sequence for still image face

recognition and thus make sure the input of the model has the same formulation

in training and testing process.265

As face images with 0◦ pose are easier to be recognized according to human

12
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cognition, we convert each pose to the frontal pose by using the gradual changing

strategy. For example, given an image of −45◦ pose, we expect the decoding

sequence to be faces with {−30◦,−15◦, 0◦} poses. However, images of different

poses will have a regression sequence with different lengths. To handle this270

problem, we pad the frontal pose into those short sequences so as to generate

the encoding sequences with equal length. In order to identify the end of front

pose in the testing stage, we externally extend the sequence by adding the frontal

pose at the end of each sequence, where we expect the front pose will not be

changed in the looped regression model as the terminate state.275

As the subject labels contain weak discriminative information in face recog-

nition, thus, although training set and the gallery set do not share the same

label information, we also use the discriminative term in RRNN, which in fact

directly verifies our idea of recurrent regression itself. Given a testing sample,

we take the values of each hidden state as the regressed features to construct a280

similar matrix, and employ idea of Nearest Neighbor (NN) algorithm to classify

it. For RRNN, we set the balance parameter α = 1 and β = 10 in Eq. (14).

Table 1 shows the results.

In order to test the performance of our RRNN, we compare it with the state-

of-the-art methods, consisting of 3D and 2D technologies. For 3D technologies,285

we compare the two methods of Asthana11 [9] and MDF [19]. For 2D technolo-

gies, we compare those classic models including PLS [20], CCA [32], GMA [21],

DAE [33], SPAE [10], LDA-SID and DFD-SID [34], where LDA-SID achieves

the current best performance on this protocol. To verify the effectiveness of the

regression model in principle, we also conduct the experiment VGG+KNN. The290

comparison results are reported in Table 1, we can have two main observations

from it:

1) From the eighth line of this table, VGG [31]+KNN achieves a competi-

tively performance compared with the existing methods, even the recently

proposed deep learning method SPAE. It again indicates that CNN can295

benefit face recognition more than those raw/hand-crafted features.

13
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Table 1: The classification results on MultiPIE dataset.

Methods
Probe Pose

−45◦ −30◦ −15◦ +15◦ +30◦ +45◦ Average

Asthana11 [9] 74.1% 91.0% 95.7% 95.7% 89.5% 74.8% 86.8%

MDF [19] 78.7% 94.0% 99.0% 98.7% 92.2% 81.8% 90.7%

PLS [20] 51.1% 76.9% 88.3 % 88.3% 78.5 % 56.5% 73.3%

CCA [32] 53.3% 74.2% 90.0% 90.0% 85.5% 48.2% 73.5%

GMA [21] 75.0% 74.5% 82.7% 92.6% 87.5% 65.2% 79.6%

DAE [33] 69.9% 81.2% 91.0% 91.9% 86.5% 74.3% 82.5%

SPAE [10] 84.9% 92.6% 96.3% 95.7% 94.3% 84.4% 91.4%

VGG+KNN 83.0% 94.9% 98.6% 97.9% 94.6% 85.8% 92.5%

LDA-SID [34] 92.3% 96.0% 98.0% 96.7% 94.7% 91.0% 94.8%

DFD-SID [34] 91.3% 95.3% 97.7% 96.3% 94.3% 90.0% 94.2%

RRNN 91.1% 97.7% 98.3% 98.3% 97.6% 91.3% 95.6%

2) Although CNN features are robust enough, RRNN can further improve the

performance by using the prior of pose changing. Our RRNN performs

best in poses of −30◦, 15◦, 30◦ and 45◦. Compared to LDA-SID, of which

results are recently released, the average improvement is about 0.8 percent.300

4.3. Experiment of Video-Video Face Recognition on YTC Database

YouTube celebreties (YTC) [30] dataset contains 1910 face videos of 47 peo-

ple. These videos are with large variation of pose, illumination and expression.

As compression ratio of most videos is very high, the quality of faces in video

are usually very poor, especially including some factors of blur, low-resolution,305

fast motion, etc. Furthermore, the number of video frames ranges from 7 to 400.

14
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As described in [22], we detect the faces in YTC videos and align them into

20 × 20. Following the protocol in [22] strictly, we randomly choose a video

of each session of each subject for training, and choose 2 videos from the rest

videos for each session for testing. There are total 3 sessions, thus 3 samples310

of each subject are used for training and 6 samples for testing. Ten trials are

randomly conducted so as to cover all samples. The average accuracy of ten

trials is used as the final result. In this training, to reduce the computation

cost of each sequence and increase the training sequences, we cut each video

to several clips of 10 frames. And for a testing sequence, we vote the label of315

all clips of a sequence as the final label. Due to the shared labels of training

set and testing set, we use the discriminative model (i.e., logistic regression) to

predict the classification score.

Different from the case of still face image dataset MultiPIE, poses are un-

known in YTC dataset. But in face recognition task, our aim is to classify320

the sequence rather than to predict the next frame. Because the above two

reasons, we treat the original video sequence as the input sequence, which can

also utilize the information of all the poses, and use the mean value of all

frames repeated as the decoding sequence in objective function f1 in Eq. (5),

i.e., {x̂1; x̂2; · · · ; x̂t; · · · } = {xo
1,x

o
2, ...,x

o
t , · · · }, where xo

t is the t-th frame of325

the data sequence, and discard objective function f2 due to the nearly-common

optimization target. By doing the above, we don’t need to modify the model

and perform face pose alignment additionally but the experimental results show

good performance of our model.

Here we set β = 1 and compare RRNN with several state-of-the-art algo-330

rithms, including MSM [35], DCC [36], MMD [37], MDA [38], AHISD [39],

CHISD [39], SANP [40], CDL [41], DFRV [24], LMKML [42], SSDML [43],

SFDL [44] and MDML [22]. Their mean accuracies are reported in Table 2.

These methods fall into the category of subspace based or metric based meth-

ods. It is apparent RRNN gets the best performance compared with all the335

other algorithms. Furthermore, the improvement is up to 6.1%. This huge

improvement indicates RRNN can well model video sequence.

15



ACCEPTED MANUSCRIPT

Table 2: Average classification result and standard deviation on YTC dataset.

Methods MSM[35] DCC[36] MMD[37] MDA[38]

YTC 61.7±4.3 65.8±4.5 67.7±3.8 68.1±4.3

Year 1989 2006 2008 2009

Methods AHISD[39] CHISD[39] SANP[40] CDL[41]

YTC 66.5±4.5 67.4±4.7 68.3±5.2 69.7±4.5

Year 2010 2010 2011 2012

Methods DFRV[24] LMKML[42] SSDML[43] SFDL[44]

YTC 74.5±4.5 75.2±3.9 74.3±4.5 75.7±3.4

Year 2012 2013 2013 2014

Methods MDML[22] VGG+DARG-KLD [45] VGG+DARG-MD+LED[45] RRNN

YTC 78.5±2.8 79.9 ±1.7 83.4±1.4 84.6±2.1

Year 2015 2015 2015

For Multi-PIE, we provide a standard baseline (VGG features) to verify the

effectiveness of our idea. Similarly, we conduct an extra experiment on YTC

based on the VGG features. We choose the current best conventional method340

on YTC, called DARG-KLD and DARG-MD+LED [45], and use their released

code. The same VGG features are fed into DARG-KLD and DARG-MD+LED.

Its performance is 79.9% and 83.4% (vs. ours 84.6%). Moreover, we also conduct

t-test statistical analysis with the significant level α = 0.05 for the experimental

result to see whether RRNN has an improvement of recognition rate compare345

with the baseline methods. We assume that the mean classification result of

RRNN is same with DARG-KLD and DARG-MD+LED, and the rejection re-

gion is t≥ t0.05(10 + 10 − 2) = t0.05(18) = 1.734. It means that RRNN can

achieve a better result than the corresponding compared algorithms when the

t-value falls into this region. Table 4.3 shows the t-test statistical analysis re-350

sults. From Table 4.3, we can see RRNN is significantly better than the baseline

methods. Furthermore, our RRNN is more simplified but effective.
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Table 3: The statistics analysis of RRNN and the baseline methods.

Method t-value

RRNN vs. VGG+DARG-KLD 4.336∗

RRNN vs. VGG+DARG-MD+LED 1.802∗

∗ RRNN is significantly better than the compared al-

gorithm

Table 4: The performance of three objective functions on MultiPIE dataset.

Objective function f1 f2 f3 f1 + f2 f1 + f3 f2 + f3 f1 + f2 + 10f3

Accuracy 94.7% 94.6% 91.5% 95.2% 95.0% 94.9% 95.6%

4.4. Discussion

4.4.1. The effectiveness of terms in the objective function

As described in the objective function Eq. (14), there are two related pa-355

rameters α and β, which respectively constrain the sequence reconstruction and

label prediction.

As Table. 4 shows, according to the above analysis, in the task of face recogni-

tion across poses, with recurrent encoding-decoding f1, the recognition accuracy

is up to 94.7%. By adding sequence reconstruction f2, the performance is fur-360

ther improved up to 95.2% when α = 1. Furthermore, by adding discriminative

prediction f3, the performance is further improved up to 95.6% when β equals

10. Meanwhile, we treat the still image recognition settings as video-based face

recognition, i.e., only use f1 and f3. The performance is improved about 0.3%

compared with only use f1. This indicate the ID information in training set can365

brings some discrimination in still image face recognition. But the result of using

f3 as the objective function only gets a worse performance compared with that

of using f1 and f2 separately only and the gap is about 3%. This shows image

features, i.e., the recurrent encoding-decoding f1 and sequence reconstruction

item f2, are more useful than the ID information, i.e., discriminative prediction370

f3 in still image face recognition task.
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In the task of video-based face recognition, we discard the sequence recon-

struction term f2 due to the common target with the encoding-decoding process

as analyzed above. By adding the label loss term f3, we can promote the per-

formance about 1 percent when β = 1.375

For α and β, we only tune them in the range {1, 10} without finer tun-

ing. Even though, we find they benefit the final classification performance by

introducing the learning of appearance variations.

4.4.2. Cross-pose analysis

Although in the above experiments on MultiPIE the frontal pose is specified380

as the terminate state of the proposed recurrent regression model, we can di-

rectly obtain all cross-pose results based on this frontal pose model by selecting

a pose as the gallery set and the rest poses as the probe set. Table 5 shows the

results of different poses as gallery sets for face recognition across poses on Mul-

tiPIE. It is interesting to observe that the recognition result doesn’t reach the385

best when images of frontal pose (0◦) are used as the gallery set, which seems

not to match with our intuition. The reasons should come from two aspects: 1)

Frontal faces in the gallery set are currently decoded along the time stream, and

reconstruction errors are propagated with the evolution of states, which leads

to a derivation from the ground-truth frontal faces for the decoding states. 2)390

According to the symmetry of faces, non-frontal faces can induce frontal faces

to some extends as non-frontal faces contain more contour information than

frontal faces.

4.4.3. The effectiveness of hidden states alignment

In Eq.(14), there are two computation methods, i.e., Eq.(9) and Eq.(13), for395

f3. To evaluate the effectiveness that the hidden states alignment can find out

a deep relationship among different hidden states, we get two results of 84.3%

and 84.6% on YTC dataset using Eq.(9) and Eq.(13) respectively. It is a slight

promotion with hidden states alignment due to that the hidden states in RRNN

have been trained fine to get a better feature of each input. But it is necessary400
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Table 5: Cross-pose results of our proposed RRNN on MultiPIE.

Probe Pose

−45◦ −30◦ −15◦ 0◦ +15◦ +30◦ +45◦ Average

Gallery

Pose

−45◦ - 0.9825 0.9790 0.9694 0.9651 0.9755 0.9818 0.9756

−30◦ 1.0000 - 1.0000 0.9926 0.9966 0.9932 0.9746 0.9929

−15◦ 0.9889 1.0000 - 1.0000 1.0000 1.0000 0.9746 0.9939

0◦ 0.9118 0.9732 0.9833 - 0.9833 0.9764 0.9130 0.9568

+15◦ 0.9705 1.0000 1.0000 1.0000 - 1.0000 0.9782 0.9915

+30◦ 0.9705 0.9966 1.0000 1.0000 1.0000 - 0.9963 0.9939

+45◦ 0.9738 0.9752 0.9717 0.9615 0.9717 0.9893 - 0.9739

to find out a deep relationship among all the hidden states.

4.4.4. Parameter analysis

Here, we analyze the performance of different parameters α and β in the

experiment on MultiPIE dataset. For deep learning methods, the choice of

parameters is an unsolved problem and is not a topic in this paper. Thus, in405

our experiment, first we set α = 1 simply and induce Fig. 2 that shows the

performance of different β when α = 1. In Fig. 2, we can see that the best

accuracy is 95.6% when β = 10. Then, the performance of different α when

β = 10 is shown in Fig. 3. From Fig. 2 and Fig. 3, we can see that the best

performance appears when α = 1 and β = 10.410

4.4.5. Convergence analysis

The convergence of deep learning methods is still unsolved and beyond our

topic. Here we simply depict the curves of objective function value and classifica-

tion rate to show the convergence of RRNN. Fig. 4 shows the objective function

loss (Eq.(14)) versus different number of iterations on MultiPIE dataset. It is415

easy to see our RRNN fast converges a local minimum after a few iterations.

Fig. 5 shows the classification rate versus different number of iterations on Mul-

tiPIE dataset. We can see that our RRNN converges in 30 iterations and the
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Figure 2: The performance of different β according to α = 1.

Figure 3: The performance of different α according to β = 10.
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Figure 4: Convergence curve of RRNN on MultiPIE dataset. Here one iteration means the

training data input into RRNN once.

classification comes to a stable value after 30 iterations.

5. Conclusion420

In this paper, we proposed a Recurrent Regression Neural Network (RRNN)

to unify two classic face recognition tasks including cross-pose face recognition

and video-based face recognition. In RRNN, three basic units are considered to

model a potential sequence data. The first unit is the encoder-decoder, which

is used to model sequential reconstruction. The second unit is to constrain425

the globality of the sequence. The final one is to utilize the discriminative

label information. By properly choosing the configuration for different tasks,

we can benefit from these units. Experimental results strongly indicate our

RRNN achieves the best recognition results compared with those state-of-the-

art methods.430
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Figure 5: Classification rate versus different number of iterations of RRNN on MultiPIE

dataset. Here one iteration means the training data input into RRNN once.
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[23] A. Hadid, M. Pietikäinen, Manifold learning for video-to-video face recog-

nition, in: Biometric ID Management and Multimodal Communication,

Springer, 2009, pp. 9–16.

[24] Y.-C. Chen, V. M. Patel, P. J. Phillips, R. Chellappa, Dictionary-based

face recognition from video, in: Proceedings of the European Conference510

on Computer Vision (ECCV), Springer, 2012, pp. 766–779.

[25] A. Graves, A.-r. Mohamed, G. Hinton, Speech recognition with deep recur-

rent neural networks, in: Proceedings of the IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2013,

pp. 6645–6649.515

[26] A. Graves, J. Schmidhuber, Offline handwriting recognition with multidi-

mensional recurrent neural networks, in: Proceedings of the Advances in

Neural Information Processing Systems (NIPS), 2009, pp. 545–552.

[27] Z. Cui, S. Xiao, J. Feng, S. Yan, Recurrently target-attending tracking,

in: Proceedings of the IEEE Conference on Computer Vision and Pattern520

Recognition (CVPR), IEEE, 2016, pp. 1449–1458.

[28] Z. C. Lipton, J. Berkowitz, C. Elkan, A critical review of recurrent neural

networks for sequence learning, arXiv preprint arXiv:1506.00019.

[29] R. Gross, I. Matthews, J. Cohn, T. Kanade, S. Baker, Multi-pie, Image

and Vision Computing 28 (5) (2010) 807–813.525

25



ACCEPTED MANUSCRIPT

[30] M. Kim, S. Kumar, V. Pavlovic, H. Rowley, Face tracking and recognition

with visual constraints in real-world videos, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), IEEE,

2008, pp. 1–8.

[31] O. M. Parkhi, A. Vedaldi, A. Zisserman, et al., Deep face recognition., in:530

Proceedings of the British Machine Vision Conference (BMVC), Vol. 1,

2015, p. 6.

[32] H. Hotelling, Relations between two sets of variates, Biometrika 28 (3/4)

(1936) 321–377.

[33] Y. Bengio, Learning deep architectures for ai, Foundations and trends R© in535

Machine Learning 2 (1) (2009) 1–127.

[34] Z. Lei, D. Yi, S. Z. Li, Learning stacked image descriptor for face recog-

nition, IEEE Transactions on Circuits and Systems for Video Technology

26 (9) (2016) 1685–1696.

[35] O. Yamaguchi, K. Fukui, K.-i. Maeda, Face recognition using temporal540

image sequence, in: Proceedings of the IEEE International Conference on

Automatic Face and Gesture Recognition, IEEE, 1998, pp. 318–323.

[36] T.-K. Kim, J. Kittler, R. Cipolla, Learning discriminative canonical cor-

relations for object recognition with image sets, in: Proceedings of the

European Conference on Computer Vision (ECCV), Springer, 2006, pp.545

251–262.

[37] R. Wang, S. Shan, X. Chen, W. Gao, Manifold-manifold distance with

application to face recognition based on image set, in: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

IEEE, 2008, pp. 1–8.550

[38] R. Wang, X. Chen, Manifold discriminant analysis, in: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

IEEE, 2009, pp. 429–436.

26



ACCEPTED MANUSCRIPT

[39] H. Cevikalp, B. Triggs, Face recognition based on image sets, in: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition555

(CVPR), IEEE, 2010, pp. 2567–2573.

[40] Y. Hu, A. S. Mian, R. Owens, Sparse approximated nearest points for image

set classification, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), IEEE, 2011, pp. 121–128.

[41] R. Wang, H. Guo, L. S. Davis, Q. Dai, Covariance discriminative learning:560

A natural and efficient approach to image set classification, in: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), IEEE, 2012, pp. 2496–2503.

[42] J. Lu, G. Wang, P. Moulin, Image set classification using holistic mul-

tiple order statistics features and localized multi-kernel metric learning,565

in: Proceedings of the IEEE International Conference on Computer Vision

(ICCV), 2013, pp. 329–336.

[43] P. Zhu, L. Zhang, W. Zuo, D. Zhang, From point to set: Extend the learning

of distance metrics, in: Proceedings of the IEEE International Conference

on Computer Vision (ICCV), 2013, pp. 2664–2671.570

[44] J. Lu, G. Wang, W. Deng, P. Moulin, Simultaneous feature and dictio-

nary learning for image set based face recognition, in: Proceedings of the

European Conference on Computer Vision (ECCV), Springer, 2014, pp.

265–280.

[45] W. Wang, R. Wang, Z. Huang, S. Shan, X. Chen, Discriminant analysis575

on riemannian manifold of gaussian distributions for face recognition with

image sets, in: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), IEEE, 2015, pp. 2048–2057.

27



ACCEPTED MANUSCRIPT

Biography

580

Yang Li received the B.S. degree in electronic information and science tech-

nology from School of Physics and Electronics, Shandong Normal University,

China, in 2012, the M.S. degree in electronic and communication engineer-

ing from School of Electronic Engineering, Xidian University, China, in 2015.

Currently, he is pursuing the Ph.D. degree in information and communication585

engineering in Southeast University, China. His researches focus on Pattern

Recognition and Machine Learning.

28



ACCEPTED MANUSCRIPT

Wenming Zheng received the B.S. degree in computer science from Fuzhou

University, Fujian, China, in 1997, the MS degree in computer science from590

Huaqiao University, Quanzhou, Fujian, in 2001, and the Ph.D. degree in signal

processing from Southeast University, Nanjing, Jiangsu, China, in 2004. Since

2004, he has been with the Research Center for Learning Science, Southeast Uni-

versity, Nanjing. He is currently a professor in the Key Laboratory of Child De-

velopment and Learning Science of the Ministry of Education, Research Center595

for Learning Science, Southeast University. His research interests include neural

computation, pattern recognition, machine learning, and computer vision. He

is a member of the IEEE.

29



ACCEPTED MANUSCRIPT

Zhen Cui received Ph.D. degrees from Institute of Computing Technology600

(ICT), Chinese Academy of Sciences in 2014. He was a Research Fellow in the

Department of Electrical and Computer Engineering at National University of

Singapore (NUS) from 2014 to 2015. He also spent half a year as a Research

Assistant on Nanyang Technological University (NTU) from Jun. 2012 to Dec.

2012. Currently he is a Professor of Nanjing University of Science and Technol-605

ogy, China. His research interests cover computer vision, pattern recognition

and machine learning, especially focusing on deep learning, manifold learning,

sparse coding, face detection/alignment/recognition, object tracking, image su-

per resolution, emotion analysis, etc. He has published several papers in the

top conferences NIPS/CVPR/ECCV and some journals of IEEE Transactions.610

More details can be found in http://aip.seu.edu.cn/zcui/.

30



ACCEPTED MANUSCRIPT

Tong Zhang received the B.S. degree in Department of Information Sci-

ence and Technology, Southeast University, China, in 2011, the M.S. degree

in Research Center for Learning Science, Southeast University, China, in 2014.615

Currently, he is pursuing the Ph.D. degree in information and communication

engineering in Southeast University, China. His interests include pattern recog-

nition, machine learning and computer vision.

31


