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Abstract

Economists often use matched samples, especially when dealing with earn-
ings data where a number of missing observations need to be imputed. In this
paper, we demonstrate that the ordinary least squares estimator of the linear
regression model using matched samples is inconsistent and has a non-standard
convergence rate to its probability limit. If only a few variables are used to im-
pute the missing data, then it is possible to correct for the bias. We propose two
semiparametric bias-corrected estimators and explore their asymptotic proper-
ties. The estimators have an indirect-inference interpretation, and they attain
the parametric convergence rate when the number of matching variables is no
greater than four. Monte Carlo simulations confirm that the bias correction
works very well in such cases.
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1 Introduction

Suppose that we are interested in estimating a linear regression model

Y = β0 +X ′1β1 +X ′2β2 + Z ′γ + u := W ′θ + u, E (u|W ) = 0, (1)

using a random sample, where X1 ∈ Rd1 , X2 ∈ Rd2 and Z ∈ Rd3 . The reason for

distinguishing between the regressors X1, X2 and Z will become clear shortly. In

addition, while d1 = 0 is allowed, d2, d3 > 0 must be the case in our setup. When

W = (1, X ′1, X
′
2, Z

′)′ ∈ Rd+1, where d := d1 + d2 + d3, is exogenous and a single

random sample of (Y,X1, X2, Z) can be obtained, the ordinary least squares (OLS)

estimator of θ = (β0, β
′
1, β

′
2, γ
′)′ is consistent.

In reality, however, we often face the problem that (Y,X1, X2, Z) cannot be taken

from a single data source. It is not uncommon that economists who use survey data

for empirical analysis must collect all necessary variables from more than one source.

Examples include Lusardi (1996), Björklund and Jäntti (1997), Currie and Yelowitz

(2000), Dee and Evans (2003), Borjas (2004), Bover (2005), Fujii (2008), Bostic et

al. (2009), and Murtazashvili et al. (2015), to name a few. Ridder and Moffitt (2007)

provide an excellent survey. This is the setting in which we are interested. Specifically,

suppose that instead of observing a complete data set (Y,X1, X2, Z), we have the

following two overlapping subsets of data, (Y,X1, Z) and (X2, Z), i.e., some of the

regressors are not available in the initial data set, where the initial data set is the one

containing observations on the dependent variable along with a few other regressors.

In such a setting, it is natural to construct a matched data set via exploiting the

proximity of the common regressor(s) Z across the two samples. This is often called

“probabilistic record linkage”. Here are two examples of the setting.

Example 1. (Earnings data) Matching is currently used for imputing missing

records of earnings in important economic data sets. For example, the U.S. Cur-
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rent Population Survey (CPS) files use the so-called “hot deck imputation” proce-

dure of the Census (see, e.g., Little and Rubin, 2002; Hirsch and Schumacher, 2004;

Bollinger and Hirsch, 2006), which allocates to nonrespondents the reported earnings

of a matched respondent who has similar recorded attributes.1 The share of imputed

values is as high as 30%. The resulting earnings data have been used to uncover much

of what is known about the labor market dynamics and outcomes.

Example 2. (Returns to schooling) Let Y denote (the logarithm of) earnings,

X1 individual characteristics, X2 ability measured by test scores, and Z education.

Although (Y,X1, Z) is available in the Panel Study of Income Dynamics (PSID), for

instance, it is often the case that (X2, Z) can be found only in a different, psychometric

data set. Utilizing the proximity of the common variable Z, we must construct a

matched data set of (Y,X1, X2, Z).

There are many algorithms that can be used to construct matched data sets

(see, e.g., Smith and Todd, 2005; Ridder and Moffitt, 2007). We focus on the nearest

neighbor matching (NNM) because of its simplicity and wide use. Abadie and Imbens

(2006, 2012) use it in the context of the average treatment effect (ATE) estimation.

Chen and Shao (2001) and Shao and Wang (2008) study the problem of variance

estimation after a nearest neighbor-based imputation. The NNM can be used as a

building block in construction of more complicated matching algorithms, most notably

the single index or propensity score matching, but we do not pursue these extensions

here.

We demonstrate that the OLS estimator from the regression (1) using NNM-based

matched samples is inconsistent. The source of the inconsistency is a non-vanishing

1The distinction between hot and cold deck imputation seems to primarily refer to which sample
(of punch cards) to use for matching, a current sample (hot) or an earlier sample (cold). Hence,
hot deck imputation often means imputation of missing values of an existing variable, whereas cold
deck imputation means imputation of entire missing variables. In this respect, this paper may be
closer to cold rather than hot deck imputation.

2



bias term, which can be viewed as a measurement error bias stemming from replacing

unobservable X2 with a proxy in the matched data. In this sense, the paper is

related to the literature on the classical problem of generated regressors and missing

data (see, e.g., Pagan, 1984; Prokhorov and Schmidt, 2009). Moreover, we show that

the rate of convergence to the probability limit of OLS depends on the number of

common, matching variables and the divergence patterns of two sample sizes.

In line with these findings, we propose two semiparametric bias-corrected estima-

tors. The first, one-step estimator is shown to attain the parametric convergence rate

for the cases with at most two matching variables. The second estimator attempts to

remedy the curse of dimensionality with respect to the number of matching variables.

It is a two-step estimator, and in the second step it eliminates the second-order bias

due to the so-called matching discrepancy (Abadie and Imbens, 2006) asymptotically

in a similar manner to the one studied by Abadie and Imbens (2011). It is demon-

strated that the estimator can achieve parametric convergence when the number of

matching variables is four or less. Both estimators can be also interpreted as indirect

inference estimators (Gouriéroux, Monfort and Renault, 1993; Smith, 1993) in the

sense that they can be obtained by taking the probability limit of the OLS estimator

from the regression (1) as the “binding” function.

The paper contributes to three important areas. First, we provide new asymp-

totic results for regression analysis using matched data. In particular, we explicitly

handle the issue of biases due to matching errors, which has been often ignored in the

literature as if there were no mismatches; see Ridder and Moffitt (2007, p.5480) for

a discussion and Bover (2005) and Bostic et al. (2009) for regression analysis using

matched data. Available results are limited to the case of matching in the ATE

estimation. For example, Abadie and Imbens (2006) show that when there is only

one matching covariate, the bias in NNM-based matching estimators of the ATE may

be asymptotically ignored; they attain the parametric convergence rate in that case.
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To the best of our knowledge, bias-corrected estimation using matched data and the

convergence properties of estimators within the framework of regression analysis have

not been explored in the literature before.

Second, the estimation theory we develop provides guidance on repeated survey

sampling when some covariates are found to be completely or partially missing after

the initial survey. Our theory suggests (approximately) how many observations

should be collected in a follow-up survey and how to estimate the linear regression

model of interest consistently using the matched data from two surveys.

Finally, the paper offers an alternative to some well-known estimation methods

based on two samples. A number of such methods have been designed within the

framework of instrumental variables (IV) or generalized method of moments (GMM)

estimation, where we can construct required moments from the two samples individu-

ally so that no matching is required (e.g., Angrist and Krueger, 1992, 1995; Arellano

and Meghir, 1992; Inoue and Solon, 2010; Murtazashvili et al., 2015). These ap-

proaches are not applicable to the setting of a linear regression where some regressors

are missing and two-sample moment based estimation is infeasible.

Throughout we assume that the two samples jointly identify the regression models.

There are other two-sample estimators that cover the cases where the first sample

alone identifies the models and the second sample is used for efficiency gains (see,

e.g., Imbens and Lancaster, 1994; Hellerstein and Imbens, 1999). These are not the

settings we consider.

The remainder of this paper is organized as follows. Section 2 shows inconsistency

of the OLS estimation from the regression (1) using matched samples. Section 3

proposes two bias-corrected estimators and explores their convergence properties. We

also discuss consistent estimation of their asymptotic covariance matrices. Section 4

contains selected Monte Carlo simulations, examining how the bias correction works

in finite samples. As an empirical example, in Section 5, we apply the bias-corrected
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two-sample estimation to a version of Mincer’s (1974) wage regression. Section 6

concludes with a few questions for future research. All proofs are given in the

Appendix.2

The paper adopts the following notational conventions: ‖A‖ = {tr (A′A)}1/2 is

the Euclidean norm of matrix A; 1 {·} denotes an indicator function; 0p×q signifies

the p×q zero matrix, where the subscript may be suppressed if q = 1; and the symbol

> applied to matrices means positive definiteness.

2 Inconsistency of OLS Estimation Using Matched

Samples

2.1 Setup

In order to explain how a matched sample is constructed, we need more notations.

Denote the two random samples by S1 and S2. Also let n and m be sample sizes

of S1 and S2, respectively. Then, the two samples can be expressed as S1 = S1n =

{(Yi, X1i, Zi)}ni=1 and S2 = S2m = {(X2j, Zj)}mj=1. A natural way of matching based

on Z is to use the NNM based on some metric. For a vector x and some sym-

metric matrix A > 0, a vector norm is denoted by ‖x‖A = (x′Ax)1/2. While there

may be numerous choices of A, following Abadie and Imbens (2011), we adopt the

Mahalanobis metric AM =
{

(1/N)
∑N

i=1

(
Zi − Z̄

) (
Zi − Z̄

)′}−1

and the normalized

Euclidean metric ANE = diag
(
A−1
M

)−1
, where N := n+m and Z̄ = (1/N)

∑N
i=1 Zi.

Furthermore, let jk (i) be the index of the kth match in S2 to the unit i in S1, i.e.,

for each i ∈ {1, . . . , n}, jk (i) satisfies

m∑

j=1

1
{
‖Zj − Zi‖A ≤

∥∥Zjk(i) − Zi
∥∥
A

}
= k.

Also let JK (i) = {j1 (i) , . . . , jK (i)} denote the set of indices for the first K matches

2An online Supplement contains some lengthy derivations and comprehensive simulation results.
GAUSS codes implementing the estimators are also available from the authors upon request.
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for the unit i. The NNM constructs the matched data set

S = Sn =
{(
Yi, X1i, X2j1(i), . . . , X2jK(i), Zi, Zj1(i), . . . , ZjK(i)

)}n
i=1

.

We also define X2j(i) := (1/K)
∑

j∈JK(i) X2j and Zj(i) := (1/K)
∑

j∈JK(i) Zj.

It is worth noting that X2 is missing entirely but only from the first sample. When

the problem is considered in the context of the imputed sample, only the values

corresponding to the first sample are missing. Thus formally, the problem can be

viewed as both value imputation and variable imputation. However, in what follows

we view the problem as missing variable (rather than missing values) imputation.

In our NNM, the number of matches K remains fixed, as in Abadie and Imbens

(2006). While it is possible to achieve consistency as in the K-nearest neighbor (K-

NN) method by letting K diverge at a slower rate than n and m, there are two reasons

why we keep K fixed. First, this is what is done in practice. In many applications,

the NNM is implemented with small values of K, and K = 1 (i.e., NNM with a single

match) is often chosen even for large n and m. Second, it can be argued that the

analysis with fixed K provides a better approximation to the finite sample behavior

of the estimator than under K →∞.

A few additional remarks on NNM are in order. First, matching is made with

replacement, and each element of the matching vector Z is assumed to be continuous.

Hence, our setting can be viewed as a foundation for more complicated methods of

kernel-based matching (see, e.g., Busso, DiNardo and McCrary, 2014). Second,

matching with replacement, allowing each unit to be used as a match more than

once, seems to be standard in the econometric literature. Third, inclusion of dis-

crete matching variables with a finite number of support points does not affect the

subsequent asymptotic results but raises the question of how to treat ties. For sim-

plicity, we ignore ties in the NNM, which happen with probability zero as long as Z

is continuous.

Throughout it is assumed that we estimate θ by regressing Yi on Wi,j(i) :=
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(
1, X ′1i, X

′
2j(i), Z

′
i

)′
. It is possible to use Zj(i) in place of Zi and run the regres-

sion of Yi on W †
i,j(i) :=

(
1, X ′1i, X

′
2j(i), Z

′
j(i)

)′
. However, we focus exclusively on

the former scenario because of the following two reasons. First, the two scenar-

ios yield first-order asymptotically equivalent results. To see this, observe that

W †
i,j(i) = Wi,j(i) +

[
01×(d1+d2+1)

(
Zj(i) − Zi

)′ ]′
= Wi,j(i) + Op

(
m−1/d3

)
by Lemma

A1, i.e., the second term serves merely as an extra second-order bias term. It is note-

worthy that the identification condition is derived from the latter scenario. Second,

as illustrated in Section 4, bias-corrected estimators based on Wi,j(i) exhibits better

finite-sample properties.

We start our analysis from running OLS for the regression of Yi on Wi,j(i). The

OLS estimator

θ̂OLS := Q̂−1
W R̂W :=

(
1

n

n∑

i=1

Wi,j(i)W
′
i,j(i)

)−1
1

n

n∑

i=1

Wi,j(i)Yi

is referred to as the matched-sample OLS (MSOLS) estimator hereinafter.

2.2 Regularity Conditions

In what follows, we develop the asymptotic theory of estimation of θ in the regression

(1) as n and m diverge while K is fixed. All of the estimation theory, including the

bias-corrected estimation methods and their convergence properties, is new to the

literature.

All of the results in the paper, including the inconsistency proof of the MSOLS

estimator and the consistency proof of the new bias-corrected estimators of θ, require

the following conditions.

Assumption 1. Two random samples (S1,S2) = (S1n,S2m) are drawn indepen-

dently from the joint distribution of (Y,X1, X2, Z) with finite fourth-order moments.
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Assumption 2. The matching variable Z is continuously distributed with a convex

and compact support Z, and its density is bounded and bounded away from zero on

Z.

Assumption 3.

(i) The regression error u satisfies E (u|W ) = 0 and σ2
u (W ) := E (u2|W ) ∈ (0,∞).

(ii) Let g (Z) :=
[
g1 (Z)′ g2 (Z)′

]′
:=
[
E (X1|Z)′ E (X2|Z)′

]′
and let η :=

[
η′1 η′2

]′
:=
[
X ′1 − g1 (Z)′ X ′2 − g2 (Z)′

]′
. Then, Σ1 := E (η1η

′
1) > 0,

Σ2 := E (η2η
′
2) > 0, E (η1η

′
2) = 0d1×d2 , and g2 (·) is a first-order Lipschitz

continuous, strictly nonlinear function on Z.

These regularity conditions are largely inspired by those in the literature on semi-

parametric, partial linear regression models (e.g., Robinson, 1988; Yatchew, 1997),

matching estimators for the ATE (e.g., Abadie and Imbens, 2006), and regression

estimation based on two samples (e.g., Angrist and Krueger, 1992; Inoue and Solon,

2010). In particular, equivalents to Assumption 1 (the common distribution as-

sumption) are often imposed in the literature (e.g., Assumption 3 of Abadie and

Imbens, 2006; Assumption a of Inoue and Solon, 2010). This is a strong assumption

which simplifies the subsequent derivations considerably. It implies that the matched

sample S behaves as a pseudo-population, from which the two samples are drawn.

Assumption 2 plays a key role in controlling the order of magnitude in the matching

discrepancy. Nonlinearity of g2 (·) in Assumption 3(ii) will be discussed in Remark 1

below in relation to identification. Zero correlation between η1 and η2 in Assumption

3(ii) is also a key assumption. Because we observe X1 and X2 in two independent

samples, there seems to be no way to estimate E (η1η
′
2) consistently. Therefore we

assume uncorrelatedness between η1 and η2.
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2.3 Inconsistency of MSOLS

Our asymptotic analysis is built on reformulating the regression (1) in a ‘partial

linear’-like format. A straightforward calculation yields

Yi := W ′
i,j(i)θ + λi,j(i) + εi,j(i), i = 1, . . . , n, (2)

where

λi,j(i) = λ
(
Zi, Zj(i)

)
=



g2 (Zi)−

1

K

∑

j∈JK(i)

g2 (Zj)





′

β2, and

εi,j(i) = ui +


η2i −

1

K

∑

j∈JK(i)

η2j



′

β2 := ui +
(
η2i − η2j(i)

)′
β2.

The reason why this is not exactly a partial linear model is that there is a common

regressor Zj(i) included in Wi,j(i) and λi,j(i). In this formulation, Wi,j(i) is employed

as the regressor of the fully parametric part W ′
i,j(i)θ. On the other hand, the semi-

parametric part λi,j(i) generates the second-order bias that will be discussed shortly,

and thus it could be viewed as an analogue to the conditional bias discussed in Abadie

and Imbens (2006). A key difference from the partial linear regression models stud-

ied in Robinson (1988) and Yatchew (1997) is that the matched regressor X2j(i) is

endogenous, i.e., X2j(i) and the composite error εi,j(i) are correlated. The theorem

below is established for the model in (2); it provides the probability limit of θ̂OLS and

its associated rate of convergence.

Theorem 1. If Assumptions 1-3 hold, then θ̂OLS = Q−1
W PW θ+O

(
m−1/d3

)
+Op

(
n−1/2

)

as n,m → ∞, where QW := E
(
Wi,j(i)W

′
i,j(i)

)
, PW := QW − (1/K) Σ, and Σ is a

(d+ 1)×(d+ 1) block-diagonal matrix of the form Σ := diag
{

0(d1+1)×(d1+1),Σ2, 0d3×d3
}

.

Remark 1. Basic identification assumptions for MSOLS follow from those of the

standard OLS. Fundamentally, they require that η1 and η2 are not in the linear span

of each other and that X1 and X2 are not in the linear span of Z. As in the standard
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OLS, we need E(WW ′) to be of full rank. In our setting, the additional issue is

whether Q̂W and QW are invertible. While we implicitly assume non-singularity of

the former, the invertibility of the latter can be examined explicitly.

The invertibility of QW can be analyzed from the regression of Yi on W †
i,j(i) =

(
1, X1i, X2j(i), Zj(i)

)′
. The result below turns out to be valid for the regression of Yi

on Wi,j(i) =
(
1, X1i, X2j(i), Zi

)′
, because Q̂W † := (1/n)

∑n
i=1 W

†
i,j(i)W

†′
i,j(i) and Q̂W are

first-order asymptotically equivalent in that Q̂W = Q̂W † + Op

(
m−1/d3

)
by Lemma

A1. Let QW † := E
(
W †
i,j(i)W

†′
i,j(i)

)
. Then, a straightforward calculation yields its

determinant as |QW †| = K−(d2+d3) |ΩX1,X1 | |ΩX2,X2|
∣∣ΩZ,Z − ΩZ,X2Ω

−1
X2,X2

ΩX2,Z

∣∣, where

Ωa,b := E (ab′) − E (a)E (b)′ is the covariance between two random vectors a and b.

Since |ΩX2,X2|
∣∣ΩZ,Z − ΩZ,X2Ω

−1
X2,X2

ΩX2,Z

∣∣ is the determinant of the covariance matrix

of (X ′2, Z
′)′, |QW †| > 0 holds with no additional restrictions. Hence, QW † is invertible.

Furthermore, the identification of bias-corrected estimators that will be proposed in

the next section requires us to ensure non-singularity of PW † := QW † − (1/K) Σ,

where |PW †|, the determinant of PW † , can be obtained by replacing X2 in |QW †| with

g2 (Z). Considering the covariance matrix of
(
g2 (Z)′ , Z ′

)′
, we find that |PW †| > 0 if

and only if g2 (·) is strictly nonlinear, as assumed in Assumption 3(ii).

So far we have maintained the assumption that the vector of common variables Z is

employed for both matching and estimation. It is possible that at least one common

variable is used exclusively for matching (and thus not included in the regression

(1)).3 In this case the variable can be used to form yet another identification condition,

which would allow us to relax somewhat our identification restrictions and/or improve

efficiency. For example, in the presence of an outside matching variable, g2 (·) can be

allowed to be linear. But we do not pursue this point here.

Remark 2. Theorem 1 implies that MSOLS is inconsistent in general. The term

(1/K) Σ in PW , which is the source of inconsistency, is generated by misspecifying the

3We thank an anonymous referee for pointing out this possibility to us.

10



regression of Yi on Wi as the one of Yi on Wi,j(i), or equivalently, employing X2j(i) as

a proxy of the latent variable X2i. Therefore, the non-vanishing bias in MSOLS can

be thought of as a measurement error bias. The measurement error interpretation is

revisited in Section 2.4 below.

A straightforward calculation shows that the MSOLS estimator of β2 is biased

toward zero (an attenuation bias) in the limit and that all other parameter estimates

are also biased. Perhaps surprisingly, the entire set of MSOLS estimates is incon-

sistent. This is contrary to the textbook regression with proxy variables where only

a part of the OLS estimates is biased (see, e.g., Wooldridge, 2013, Ch.9). It is also

easy to demonstrate that the bias in θ̂OLS is a function of β2, Σ2 and K. Therefore,

the estimator would be consistent if either (i) β2 = 0, i.e., X2 were irrelevant in the

correctly specified model; or (ii) Σ2 = 0, i.e., X2 were a deterministic function of Z.

Remark 3. The convergence rate of θ̂OLS is affected by the Op

(
m−1/d3

)
term, which

corresponds to the second-order bias term λi,j(i) due to the matching discrepancy.

The rate can be determined by three different divergence patterns of (n,m), namely,

n/m → κ ∈ (0,∞), n/m → 0, and n/m → ∞ as n,m → ∞, and there exists a

curse of dimensionality with respect to the matching variable Z for each divergence

pattern.

When n/m → κ, θ̂OLS = Q−1
W PW θ + Op

(
n−min{1/2,1/d3}

)
. For d3 = 1, a central

limit theorem (CLT) implies that
√
n
(
θ̂OLS −Q−1

W PW θ
)

has a normal limit. For d3 =

2, θ̂OLS is still
√
n-convergent, but we can only demonstrate asymptotic normality of

θ̂OLS after subtracting the second-order bias term, i.e., the best we can do in this case

is to apply the CLT to
√
n
(
θ̂OLS −Q−1

W PW θ −BOLS2

)
, where

BOLS2 := Q̂−1
W BRW 2 := Q̂−1

W

1

n

n∑

i=1

Wi,j(i)λi,j(i).

These limiting distributions would reduce to the usual one of OLS if a complete data

set of (Y,X1, X2, Z) were available. For d3 ≥ 3, the convergence rate of θ̂OLS is slower
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than the parametric one, and it becomes slower as d3 increases.

When n/m → 0, m−1/d3 = o
(
n−1/2

)
for d3 ≤ 2. Hence, θ̂OLS = Q−1

W PW θ +

Op

(
n−1/2

)
, and

√
n
(
θ̂OLS −Q−1

W PW θ
)

has a normal limit in this case. However, for

d3 ≥ 3, the convergence rate of θ̂OLS can be determined only if an extra divergence

pattern of (n,m) is imposed. For instance, when d3 = 3, θ̂OLS is
√
n-convergent if

n3 = O (m2) and its convergence rate is a nonparametric one if n3/m2 →∞.

When n/m → ∞, a
√
n-convergent of θ̂OLS can be attained only if d3 = 1 and

n = O (m2). Moreover,
√
n
(
θ̂OLS −Q−1

W PW θ
)

has a normal limit when d3 = 1

and n/m2 → 0. On the other hand, if d3 = 1 and n/m2 → ∞ or if d3 ≥ 2, then

θ̂OLS = Q−1
W PW θ+Op

(
m−1/d3

)
, and the convergence bound m1/d3 is slower than

√
n,

regardless of whether or not the bound is sharp.

2.4 A Measurement Error Interpretation

Before moving to our proposal for bias-corrected estimation, it is helpful to consider

the problem of imputation as a measurement error problem arising from using a

proxy.4 Write the model in (1) as

Y = β0 +X ′1β1 + g2 (Z)′ β2 + Z ′γ + e,

where e := {X2 − g2 (Z)}′ β2 + u. Then, g2 (Z) can be viewed as a proxy for X2 and

if we could observe g2 (Z) then the model could be estimated by OLS as long as X1

is uncorrelated with {X2 − g2 (Z)} and g2 (Z) is not in the linear span of Z.

However, g2 (Z) is not observed and needs to be estimated. There are two com-

plications here. One is that we need to use an estimator ĝ2 (Z) based on another

sample. The other is that the estimator uses matched values of X2 obtained using

nearest-neighbors of Z from the other sample, not the Z itself. Suppose that ĝ2 (Z)

4We thank an anonymous referee for suggesting this interpretation to us.
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is the estimate via the K-NN method for the moment.5 Rewriting the model as

Y = β0 +X ′1β1 + ĝ2 (Z)′ β2 + Z ′γ + v,

where v := {X2 − ĝ2 (Z)}′ β2 + u, we attempt to estimate this regression by OLS. If

ĝ2 (Z) were estimated from the same sample, then the correlation between ĝ2 (Z) and

{X2 − ĝ2 (Z)} would be near zero because of orthogonality of g2 (Z) and {X2 − g2 (Z)}.

We actually employ a different sample to estimate (or impute) g2 (Z), and thus the

correlation does not equal zero, which causes a non-negligible bias in the OLS esti-

mator. This can be interpreted as a classical measurement error problem.

As is well known in the literature on measurement error problems, the bias of OLS

can be corrected if the variance of the measurement error can be obtained analytically,

given that the matching discrepancy from K-NN is bounded. Our bias correction

methods in the next section basically follow this idea, although the nearest-neighbor

algorithm that we use is intended only to find K closest matches to Z and not to

estimate g2 (Z).

3 Bias-Corrected Estimation

3.1 One-Step Bias-Corrected Estimator

This section develops bias-corrected estimation of θ. As suggested by the proof of

Theorem 1, inconsistency of MSOLS comes from the fact that Q̂W
p→ QW whereas

R̂W
p→ PW θ = {QW − (1/K) Σ} θ. Therefore, the non-vanishing bias in MSOLS can

be eliminated if either

(1a) the denominator Q̂W is replaced by a consistent estimator of PW with the

numerator R̂W left unchanged; or

(1b) an extra term consistent for (1/K) Σθ is added to R̂W with Q̂W held as it is.

5We adopt a power-series approximation to estimate g2 (Z); see Section 3.3 for details.
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Bias correction in each strategy is semiparametric in that a consistent estimate of

Σ2 (covariance matrix of the nonparametric regression error η2) is required. Moreover,

implementing (1b) inevitably leads to a two-step estimation with an initial consistent

estimate of θ plugged in. However, if the plug-in estimator is the one using strategy

(1a), then the two-step estimation will produce a numerically identical result. To

see why, let an initial estimator of θ using strategy (1a) be θ̂(1a) = P̂−1
W R̂W , where

P̂W
p→ PW . Given θ̂(1a), we obtain the second-step estimator as

θ̂(1b) := Q̂−1
W

(
R̂W +

1

K
Σ̂θ̂(1a)

)
= Q̂−1

W

(
Id+1 +

1

K
Σ̂P̂−1

W

)
R̂W , (3)

where Σ̂ is a consistent estimate of Σ. Post-multiplying both sides of P̂W +(1/K) Σ̂ =

Q̂W by P̂−1
W yields Id+1 + (1/K) Σ̂P̂−1

W = Q̂W P̂
−1
W . Substituting this into the right-

hand side of (3) immediately establishes that θ̂(1b) = θ̂(1a). Therefore, there is no point

in pursuing strategy (1b) separately; strategy (1b) is interesting only if an alternative

consistent estimator of θ (other than θ̂(1a)) is chosen.

Now we turn to the bias correction based on strategy (1a). The idea behind

the strategy comes from indirect inference (II) estimation by Gouriéroux, Monfort

and Renault (1993) and Smith (1993). Take the probability limit of θ̂OLS as the

binding function b (θ), i.e., b (θ) = Q−1
W PW θ.

6 Because P−1
W exists as discussed in

Remark 1, the II estimator can be built on the inverse mapping of θ̂OLS = b (θ),

i.e., θ = P−1
W QW θ̂OLS. The interpretation then follows from replacing PW with

its
√
n-consistent estimator P̂W and regarding R̂W as a ‘sample analog’ of QW θ̂OLS.

Accordingly, we call this estimation method the matched-sample indirect inference

(MSII) estimation. We formally define the MSII estimator as

θ̂II := P̂−1
W R̂W ,

6Typically the binding function is unknown, and it must be approximated via simulations. How-
ever, when the function has a closed form, there is no need for simulations; see Carrasco and Florens
(2002) for another example. As suggested by a referee, this also gives the estimator the interpretation

of a classical minimum distance estimation based on the distance b(θ)− θ̂OLS but we do not pursue
this point further.
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which has been called θ̂(1a) before.7

Our remaining task is to deliver a consistent estimator of PW . Obviously, Q̂W

is a natural estimator of QW . Furthermore, it turns out that when estimating

Σ = diag
{

0(d1+1)×(d1+1),Σ2, 0d3×d3
}

, we can do without a nonparametric estimation

of g2 (·). To do so, we first reorder S2 with respect to Z by the following recursion:

1. Define Z(1) as the observation that has the smallest first element, i.e., (1) =

arg min1≤j≤m Zj1.

2. For j = 2, . . . ,m, choose (j) = arg minj 6=(1),...,(j−1)

∥∥Zj − Z(j−1)

∥∥.8

Given the reordered sample S2 =
{
X2(j), Z(j)

}m
j=1

, Σ2 can be consistently esti-

mated by

Σ̂2 =
1

2 (m− 1)

m∑

j=2

∆X2(j)∆X
′
2(j), (4)

where ∆X2(j) := X2(j) − X2(j−1). This is known as the difference-based variance

estimator; see von Neumann (1941) and Rice (1984) for univariate and Yatchew

(1997) and Horowitz and Spokoiny (2001) for multivariate cases. In the end, the

estimator of PW is given by

P̂W := Q̂W −
1

K
Σ̂ = Q̂W −

1

K
diag

{
0(d1+1)×(d1+1), Σ̂2, 0d3×d3

}
.

3.2 Convergence Properties of the MSII Estimator

We first provide a consistency result for the MSII estimator θ̂II . The result holds

regardless of the number of matching variables d3 and of the divergence patterns of

(n,m).

7The estimator θ̂II also has a method-of-moment interpretation, where the moment is

E
(
Wi,j(i)εi,j(i)

)
= − 1

K
Σθ.

From the viewpoint of likelihood-based methods MSII may leave some information (or moment
restrictions) unused, and thus there may be room for efficiency improvement. But pursuing this
point is beyond the scope of this paper.

8If Z is a scalar, then the recursion reduces to rearranging {Zj}mj=1 in an ascending order Z(1) ≤
. . . ≤ Z(m).
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Theorem 2. If Assumptions 1-3 hold, then θ̂II
p→ θ as n,m→∞.

Next we establish asymptotic normality of θ̂II after correcting for the two bias

terms, namely, BMD (second-order bias term due to the matching discrepancy) and

BΣ (third-order bias term due to the nonparametric estimation of Σ). Before pro-

ceeding, we make an additional assumption. Like Assumption c of Inoue and Solon

(2010), Assumption 4 makes derivations of asymptotic variances in the limiting dis-

tributions of θ̂II easier.

Assumption 4. In the nonparametric regression X2 = g2 (Z) + η2, g2 (Z) and η2

are independent, and third-order moments of η2 are zeros.

The next theorem establishes the limiting distributions of θ̂II under a variety of

divergence patterns of (n,m). Again, these results hold regardless of the number of

matching variables d3.

Theorem 3. If Assumptions 1-4 hold, then, as n,m→∞,





√
n
(
θ̂II − θ −BMD −BΣ

)
d→ N (0, VI) := N

(
0, P−1

W ΩP−1
W

)
if n/m→ κ ∈ (0,∞)

√
n
(
θ̂II − θ −BMD −BΣ

)
d→ N (0, VII) := N

(
0, P−1

W Ω11AP
−1
W

)
if n/m→ 0

√
m
(
θ̂II − θ −BMD −BΣ

)
d→ N (0, VIII) := N

(
0, P−1

W Ω22P
−1
W

)
if n/m→∞

,

where BMD = 1
n
P̂−1
W

∑n
i=1Wi,j(i)λi,j(i) and

BΣ = P̂−1
W

1

K
diag

{
0(d1+1)×(d1+1),

1

2 (m− 1)

m∑

j=2

∆g2

(
Z(j)

)
∆g2

(
Z(j)

)′
, 0d3×d3

}
θ
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are the two bias terms,

Ω := Ω11 +
√
κ (Ω12 + Ω′12) + κΩ22 := (Ω11A + Ω11B) +

√
κ (Ω12 + Ω′12) + κΩ22,

Ω11A := E

{(
Wi,j(i)εi,j(i) +

1

K
Σθ

)(
Wi,j(i)εi,j(i) +

1

K
Σθ

)′}
,

Ω11B := κ

[
(β′2Σ2β2)E (W )E (W )′ +

1

K2
diag

{
0(d1+1)×(d1+1), (β

′
2Σ2β2)Vg2 + Ξ, 0d3×d3

}]
,

Ω12 := −
√
κ

K2
diag

{
0(d1+1)×(d1+1),Ξ, 0d3×d3

}
,

Ω22 :=
1

K2
diag

{
0(d1+1)×(d1+1),Ξ +

1

2
Ψ, 0d3×d3

}
,

Vg2 := V ar {g2 (Z)} , Ξ := E {(η2η
′
2 − Σ2) β2β

′
2 (η2η

′
2 − Σ2)} , and

Ψ := (β′2Σ2β2) Σ2 + Σ2β2β
′
2Σ2.

Observe that Ω in VI can be simplified as

Ω = E

{(
Wi,j(i)εi,j(i) +

1

K
Σθ

)(
Wi,j(i)εi,j(i) +

1

K
Σθ

)′}

+ κ

[
(β′2Σ2β2)E (W )E (W )′ +

1

K2
diag

{
0(d1+1)×(d1+1), (β

′
2Σ2β2)Vg2 +

1

2
Ψ, 0d3×d3

}]
.

This suggests that VI is greater than VII in the positive definite sense, i.e., amassing

more information in the form of a quicker growing m provides asymptotic efficiency

gains.

Another relative efficiency implication is that when we include an extra match-

ing variable, i.e., d3 increases, the additional variability captured by PW leads to a

smaller VIII (in the positive definite sense) since the non-zero elements of Ω22 remain

unchanged. This is similar to the effect of adding a regressor to a regression. The

effect of a larger d3 on VI and VII is unclear as Ω11A and Ω will be also inflated by

the inclusion.

More importantly, the limiting distributions of θ̂II vary across divergence patterns

of (n,m). The convergence rate of θ̂II is determined by the sample size of the smaller

sample. The rate is
√
n when n/m→ κ, where κ ∈ [0,∞), i.e., S2 is no smaller than

S1 in order of magnitude. In contrast, when n/m→∞ or S1 is much larger than S2,
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the best possible rate slows down to
√
m = o (

√
n). The slow rate can be thought

of as the price paid for estimating θ using a considerably smaller sample S2 via the

NNM. As a result of the bias correction, the order of magnitude in the estimation

error of Σ2 dominates.

While the MSII estimator is consistent, its convergence is affected by the asymp-

totic bias terms. For a large d3 the second-order bias term BMD dominates and the

convergence rate becomes inferior. This is the curse of dimensionality of NNM that

is commonly observed in other applications. With regards to the ATE estimation,

Abadie and Imbens (2006, Corollary 1), for instance, show that the matching discrep-

ancy bias can be safely ignored only when matching is made on a single variable.

A similar result applies in our setting for small values of d3. The next corollary

illustrates such cases.

Corollary 1. If Assumptions 1-4 hold, then, as n,m→∞,




√
n
(
θ̂II − θ

)
d→ N (0, VI) if n/m→ κ ∈ (0,∞) and d3 = 1

√
n
(
θ̂II − θ

)
d→ N (0, VII) if n/m→ 0 and d3 = 1, 2

√
m
(
θ̂II − θ

)
d→ N (0, VIII) if n/m→∞ and d3 = 1

,

where VI , VII and VIII are defined in Theorem 3.

In the cases covered by Corollary 1, the bias terms BMD as BΣ are already of

smaller order than n−1/2 or m−1/2, and thus we obtain parametric convergence rates

without bias correction.

3.3 Two-Step Bias-Corrected Estimator

If a parametric rate of convergence cannot be obtained without bias correction as in

Corollary 1, then we need to find a way of eliminating the second-order bias BMD,

or equivalently, the effect of λi,j(i) asymptotically from (2). There are two possible

strategies, namely:

Strategy 1: taking the first-order difference of (2); and
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Strategy 2: subtracting a consistent estimate of λi,j(i) from the dependent variable

Yi.

Yatchew (1997) advocates Strategy 1 in semiparametric regression estimation,

whereas Robinson (1988) and Abadie and Imbens (2011) adopt a similar strategy to

Strategy 2 in semiparametric regression and ATE estimations, respectively. In our

settings, we have found that Strategy 1 has a few disadvantages. First, differencing

(2) leaves β0 and γ unidentified. Second, our preliminary Monte Carlo study suggests

that MSII estimates from the differenced regression are numerically quite unstable.

For these reasons we focus on Strategy 2.

Estimating λi,j(i) requires consistent estimates of θ and g2 (·). For the former, it

suffices to employ the MSII estimate θ̂II . For the latter, as in Abadie and Imbens

(2011), we adopt a nonparametric power-series estimation. Let υ = (υ1, . . . , υd3)

be a multi-index of dimension d3, which is a d3-dimensional vector of nonnegative

integers with |υ| =
∑d3

l=1 υl. Also denote zυ =
∏d3

l=1z
υl
l , where zl is the lth element

of z. Consider a series {υ (K)}∞K=1 containing distinct vectors such that |υ (K)| is

non-decreasing. Let pK (z) = zυ(K) and pK (z) = (p1 (z) , . . . , pK (z))′. Then, a

nonparametric series estimator of the regression function g2r (z) , r = 1, . . . , d2, is

given by

ĝ2r (z) := pK(m) (z)′
{

m∑

j=1

pK(m) (Zj) p
K(m) (Zj)

′
}− m∑

j=1

pK(m) (Zj)X2r,j,

where X2r,j is the rth element of X2j in S2, (·)− denotes the generalized inverse, and

K = K (m) signifies the dependence of K on the sample size of S2.

The entire estimation procedure based on Strategy 2 can be summarized in the

following two steps:

1. Run MSII using the original matched sample S to obtain the initial estimate

θ̂
(1)
II =

(
β̂

(1)
II,0, β̂

(1)′
II,1, β̂

(1)′
II,2, γ̂

(1)′
II

)′
.
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2. Construct adjusted dependent variables
{
Y +
i

}n
i=1

:=
{
Yi − λ̂i,j(i)

}n
i=1

, where

λ̂i,j(i) =



ĝ2 (Zi)−

1

K

∑

j∈JK(i)

ĝ2 (Zj)





′

β̂
(1)
II,2

and ĝ2 (z) = (ĝ21 (z) , . . . , ĝ2d2 (z))′, and rerun MSII using the modified matched

sample S+ = S+
n :=

{(
Y +
i , X1i, X2j1(i), . . . , X2jK(i), Zi, Zj1(i), . . . , ZjK(i)

)}n
i=1

to

obtain the final estimator

θ̂II−FM := P̂−1
W R̂+

W := P̂−1
W

1

n

n∑

i=1

Wi,j(i)Y
+
i .

The idea behind the above procedure is as follows. The initial MSII estimate θ̂
(1)
II is

consistent but inefficient, because the slow convergence rate m1/d3 of the second-order

bias term BMD dominates. Then, in the second step, we (asymptotically) eliminate

the source of the inferior rate by subtracting λ̂i,j(i) from the dependent variable and

reestimate θ by MSII using the bias-adjusted data to ensure
√
n- or

√
m-consistency.

The entire procedure is reminiscent of the fully-modified least squares estimation for

cointegrating regressions by Phillips and Hansen (1990). In this sense, we call the

estimator the fully-modified MSII (MSII-FM) estimator hereinafter.

In order to deliver convergence results for θ̂II−FM , we must additionally impose

the following regularity conditions. These are analogous to conditions (i)-(iii) in

Theorem 2 of Abadie and Imbens (2011).

Assumption 5. Z is a Cartesian product of compact intervals.

Assumption 6. K (m) � mν for some constant ν ∈ (0,min {2/ (4d3 + 3) , 2/ (4d2
3 − d3)}).

Assumption 7. There is a constant C such that for each multi-index υ, the υth

partial derivative of g2 (z) exists and its norm is bounded by C |υ|.

The theorem below refers to the limiting distributions of θ̂II−FM under a variety

of divergence patterns of (n,m). It is worth emphasizing that asymptotic variances
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of the MSII-FM estimator take the same forms as in Theorem 3 and Corollary 1, i.e.,

the FM procedure asymptotically removes the second- and third-order bias terms

without inflating the variance.

Theorem 4. If Assumptions 1-7 hold, then, as n,m→∞,





√
n
(
θ̂II−FM − θ

)
d→ N (0, VI) if n/m→ κ ∈ (0,∞) and d3 = 2, 3

√
n
(
θ̂II−FM − θ

)
d→ N (0, VII) if n/m→ 0 and d3 = 3, 4

√
m
(
θ̂II−FM − θ

)
d→ N (0, VIII) if n/m→∞ and d3 = 2, 3

,

where VI , VII and VIII are defined in Theorem 3.

An important practical question when implementing MSII-FM is how to choose

K (m), the number of terms in the series approximation. We will address this issue

in Section 4 and in Supplement C.

3.4 Covariance Estimation

We conclude this section by discussing covariance estimation, which is essential for

inference. Our focus is on the MSII estimator of Corollary 1 and the MSII-FM

estimator of Theorem 4, which are first-order asymptotically equivalent. Because

P̂W is consistent for PW , the problem of estimating VI , VII and VIII consistently is

boiled down to proposing consistent estimators of Ω, Ω11A and Ω22.

The consistent estimators are presented in the proposition below. Notice that the

proposition is built on the assumption that θ̂II is employed as a consistent estimator

for θ; it is easy to see that the result equally holds after it is replaced by θ̂II−FM .
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Proposition 1. Let the estimators of Ω11A, Ω22 and Ω be

Ω̂11A =
1

n

n∑

i=1

(
Wi,j(i)ε̂i,j(i) +

1

K
Σ̂θ̂II

)(
Wi,j(i)ε̂i,j(i) +

1

K
Σ̂θ̂II

)′
,

Ω̂22 =
1

K2
diag

{
0(d1+1)×(d1+1), Γ̂ (−1) + Γ̂ (0) + Γ̂ (1) , 0d3×d3

}
, and

Ω̂ = Ω̂11A +
n

m

[(
β̂′2,IIΣ̂2β̂2,II

)
W̄W̄ ′

+
1

K2
diag

{
0(d1+1)×(d1+1),

(
β̂′2,IIΣ̂2β̂2,II

)
V̂g2 + Γ̂ (0)−

{
Γ̂ (−1) + Γ̂ (1)

}
, 0d3×d3

}]
,

where ε̂i,j(i) = Yi −W ′
i,j(i)θ̂II is the MSII residual, β̂2,II is the MSII estimator of β2,

Γ̂ (`) is the `th sample autocovariance of
{(

∆X2j∆X
′
2j/2

)
− Σ̂2

}
β̂2,II , i.e.,

Γ̂ (`) =
1

m− 1

min{m,m+`}∑

j=max{2,2+`}

(
∆X2j∆X

′
2j

2
− Σ̂2

)
β̂2,II β̂

′
2,II

(
∆X2j−`∆X ′2j−`

2
− Σ̂2

)
,

W̄ =




1
X̄1

X̄2

Z̄


 =




1
1
n

∑n
i=1X1i

1
m

∑m
j=1X2j

1
N

∑N
i=1 Zi


 , and

V̂g2 =
1

m− 1

m∑

j=1

(
X2j − X̄2

) (
X2j − X̄2

)′ − Σ̂2.

Then, under Assumptions 1-4, Ω̂11A
p→ Ω11A, Ω̂22

p→ Ω22 and Ω̂
p→ Ω as n,m→∞.

4 Finite-Sample Performance

4.1 Monte Carlo Setup

In this section we conduct Monte Carlo simulations to examine finite-sample prop-

erties of proposed bias-corrected estimators. The simulation study takes a unified

approach in the sense that the same regression model is employed regardless of the

number of matching variables d3. The model considered throughout is

Y = β0 +X ′1β1 +X ′2β2 + Z ′γ + u, (5)

where X1 = (X11, X12)′ , β1 = (β11, β12)′ ∈ R2, X2 = (X21, X22)′ , β2 = (β21, β22)′ ∈

R2, and Z = (Z1, . . . , Zd3)
′ , γ = (γ1, . . . , γd3)

′ ∈ Rd3 for d3 = 1, 2, 3. It is assumed
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that two samples, namely, S1 = {(Yi, X1i, Zi)}ni=1 and S2 = {(X2j, Zj)}mj=1, are only

observable. The complete sample S∗ = {(Yi, X1i, X2i, Zi)}ni=1 is the sample that

would not be observed in practice.

The data are generated in the following manner. First, Z∗ = (Z∗1 , Z
∗
2 , Z

∗
3)′ is

generated by

Z∗
iid∼ N






0
0
0


 ,




1 1/
√

2 1/
√

3

1/
√

2 1
√

2/
√

3

1/
√

3
√

2/
√

3 1




 .

Each Z∗p (p = 1, 2, 3) is transformed to Zp = 4Φ
(
Z∗p
)
− 2, where Φ (·) is the cdf of

N (0, 1). Observe that the Zp are mutually correlated U [−2, 2] random variables.

Then, for a given d3, the Zp (p ≤ d3) are used as matching variables.

Second, X1 = (X11, X12)′ is generated by X1q =
∑d3

p=1 Zp + η1q (q = 1, 2), where

η1 = (η11, η12)′
iid∼ N (02×1, I2). Third, X2 = (X21, X22)′ is generated by X2r =

∑d3
p=1 g2r (Zp)+η2r (r = 1, 2) for some nonlinear function g2r (·), where η2 = (η21, η22)′

iid∼

N (02×1, I2). While g21 (z) = z + (5/τ)φ (z/τ) , τ = 0.25 is employed throughout,

one of the following three functional forms is chosen as g22 (z):

g22 (z) =





z + (5/τ)φ (z/τ) , τ = 0.75 [Model A]
2 |z| [Model B]

4
√
|z/2| (1− |z/2|) sin{2π (1 + ε) / (|z/2|+ ε)}, ε = 0.05 [Model C]

.

Both g21 (·) and Model A, which are inspired by the Monte Carlo design of Horowitz

and Spokoiny (2001), can be viewed as a linear function with a bump. Model A is a

smooth function, whereas Models B and C have a kink at the origin. Strictly speak-

ing, these models violate the smoothness condition given in Assumption 7. Nonethe-

less we investigate them to see how the violation affects finite-sample properties of

MSII-FM. In addition, Model C is (a mirror image of) the Doppler function, which

is a rapidly oscillating, spatially inhomogeneous function, as illustrated in Figure 1 of

Donoho and Johnstone (1994). Therefore, the model may be thought of as the most

difficult case among the three. This is the model for which we report the results
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here.9

Finally, Y is generated by setting all coefficients in (5) equal to 1 with u
iid∼

N (0, 1).

The above procedure provides us with two observable samples S1 = {(Yi, X1i, Zi)}ni=1

and S2 = {(X2j, Zj)}mj=1, and one complete sample S∗. Finally, the matched sam-

ple S =
{(
Yi, X1i, X2j1(i), . . . , X2jK(i), Zi, Zj1(i), . . . , ZjK(i)

)}n
i=1

is constructed via the

NNM with respect to Z, where the NNM is based on the Mahalanobis metric. We

focus only on small numbers of matches and examine K ∈ {1, 2, 4, 8}.10

With regards to sample sizes, for each of n ∈ {1000, 2000}, m is chosen as one

of m ∈ {n/2, n, 2n} so that the values of κ are κ = 2, 1 and 1/2, respectively. For

each combination of sample sizes (n,m) and the functional form of g22 (z), we generate

1000 Monte Carlo samples. The following five estimators are examined: (i) the infea-

sible OLS estimator using the complete sample S∗ [OLS*]; (ii) the MSOLS estimator

using the matched sample S and Wi,j(i) [MSOLS-A]; (iii) the MSOLS estimator using

the matched sample S and W †
i,j(i) [MSOLS-B]; (iv) the MSII(-FM) estimator using

the matched sample S and Wi,j(i) [MSII(-FM)-A]; and (v) the MSII(-FM) estimator

using the matched sample S and W †
i,j(i) [MSII(-FM)-B]. Second-, third- and fourth-

order polynomials are investigated in the power-series approximation for MSII-FM,

and these specifications are denoted as “2nd”, “3rd” and “4th” in the row “Poly.”,

respectively. Results on the initial MSII are also available as “initial” for reference.

Moreover, the consistent estimator of the second-order bias term for MSII-FM-B is

λ̂†i,j(i) = λ̂i,j(i) +
{
Zi − (1/K)

∑
j∈JK(i) Zj

}′
γ̂

(1)′
II .

We focus on finite-sample properties of estimators of β22 and γ1. For each estima-

tor, the following performance measures are computed: (i) Mean (simulation average

of the parameter estimate); (ii) SD (simulation average of the parameter estimate);

9Comprehensive simulation results, available in the online Supplement, are even more favorable
for Models A and B.

10In our preliminary Monte Carlo study larger values of matches (e.g., K = 16, 32, 64, 128) have
been also investigated. However, the results are quite poor.
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(iii) RMSE (root mean-squared error of the parameter estimate); (iv) SE (simula-

tion average of the standard error); and (v) CR (coverage rate for the nominal 95%

confidence interval). Since MSOLS is inconsistent and limiting distributions of the

initial MSII for d3 = 2, 3 are not available, their standard errors are not well defined.

Accordingly, SE and CR are not computed for these estimators.

TABLE 1 ABOUT HERE

4.2 Results

Simulation results are summarized in Table 1. To save space, we present only

the results from the most difficult case (Model C) for (n,m) = (1000, 1000) and

(2000, 2000).

(a) For d3 = 1: Panel (a) reports the results for a single matching variable. Be-

cause of conditional homoskedasticity of the error term u, OLS* is the best linear

unbiased estimator. The results indicate that it is unbiased and yields small stan-

dard deviations. However, OLS* is an infeasible, oracle estimator. Instead, we

should make a realistic comparison between MSOLS and MSII and use OLS* as the

benchmark to measure the efficiency loss when all variables cannot be taken from a

single data source.

For MSOLS, whether Wi,j(i) or W †
i,j(i) is used as the regressor has almost no dif-

ference; this reflects the fact that the extra second-order bias induced by replacing

Zi with Zj(i) is Op (n−1) = op
(
n−1/2

)
. As predicted in Theorem 1, the bias of the

MSOLS estimate decreases with the number of matches K. However, it is inconsis-

tent in that its bias does not vanish with the sample size n. Also observe that the

standard deviation of each MSOLS estimate shrinks with n, as Theorem 1 suggests.

Now we turn to MSII. At a glance, we can find that the proposed bias-correction

method works remarkably well, and that the choice of the regressor again does not
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change the results. However, unlike MSOLS, increasing K has little effect at best,

which suggests that MSII works well across small values of K. The results also

confirm consistency of MSII; as n increases, the simulation average of each MSII

estimate gets closer to the truth and its standard deviation shrinks. In addition,

SE is reasonably close to SD, which indicates that the (properly-scaled) covariance

estimator Ω̂ yields good estimates of standard deviations of MSII. Coverage rates

are also close to the nominal level of confidence, and the single match case appears

to have advantage from the viewpoint of coverage accuracy.

Comparing MSII with OLS*, we have the following two findings. First, unlike

OLS*, MSII is not unbiased. However, it is nearly unbiased for large sample sizes.

Second, standard deviations of the latter are always greater than those of the former.

The relative efficiency loss can be thought of as the price to pay for identifying and

estimating the regression using two samples jointly. It is worth noting that while

standard deviations of MSOLS are greater than those of OLS*, they are smaller

than those of MSII. This can be explained by the fact that the asymptotic variance

of
√
n
(
θ̂OLS −Q−1

W PW θ −BOLS2

)
is Q−1

W Ω11Q
−1
W , which tends to be smaller (in the

matrix sense) than P−1
W ΩP−1

W .

(b) For d3 = 2: Next, we look into Panel (b), which presents the results from two

matching variables. Only results of MSII-FM for K = 1 are provided, because those

for K ≥ 2 are quite poor. As in the case for d3 = 1, employing Wi,j(i) or W †
i,j(i) has

little effect on MSOLS or MSII-FM; although the extra second-order bias generated

by switching Zi to Zj(i) is Op

(
n−1/2

)
, its effect appears to be minor at best.

Even after the number of matching variables increases, the general tendency re-

mains unchanged. Performance of MSOLS varies with K. MSII-FM successfully

corrects the bias generated by MSOLS, at the expense of precision in estimation.

Standard deviations of MSII-FM are close to that of the initial MSII, which reflects
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that the FM procedure corrects the second-order bias of MSII without inflating the

variance. However, FM works only for K = 1. The rationale could be that FM

requires both the initial MSII and second-order bias estimates to be of good qual-

ity. This requirement is unlikely to be satisfied with many matches, which include

poor ones and thus inevitably affect the performance of MSII-FM. In terms of the

power-series approximation, results from the second- and third-order polynomials

look similar, and those from the fourth-order polynomial differ slightly. Coverage

accuracy in estimates of β22 may be a concern. However, based on the results for

larger samples (reported in the Supplement), it seems that the under-coverage is due

to finite-sample bias of MSII-FM.

(c) For d3 = 3: In Panel (c), only results of MSII-FM for K = 1 are provided

again in view of quality. An apparent difference is that once the number of matching

variables increases to three, results from using Wi,j(i) or W †
i,j(i) differ substantially for

each of MSOLS and MSII-FM. Observe that MSII-FM using Wi,j(i) exhibits much

better finite-sample properties. In contrast, MSII-FM based on W †
i,j(i) generates

considerable biases in estimates of γ. The extra second-order bias when Zj(i) is

used in place of Zi becomes as slow as Op

(
n−1/3

)
, and its adverse effect is no longer

negligible in finite samples. Coverage rates of MSII-FM are improved from those for

d3 = 2. In terms of the series approximation, results from the second-and third-order

polynomials are again similar. However, those from the fourth-order polynomial look

inferior in the presence of non-smoothness in g22 (·), in particular, for Model B.

(d) Summary: Simulation results confirm that the bias-corrected estimation pro-

posed in this paper works reasonably well. Simulation averages of MSII(-FM) for

d3 = 1 (d3 = 2, 3) tend to be closer to the truths as n increases, even in the most

difficult case. Judging from the Monte Carlo evidence, we recommend setting K = 1,

employing Wi,j(i) as the regressor, and applying the second- or third-order polynomials
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for the series approximation in MSII-FM. It follows that making MSOLS consistent

by use of K-NN method (i.e., by letting K diverge at a slower rate than n and m) does

not appear to be a solution in the setting of matched sample estimation. Rather, it

looks promising to pursue the strategy of constructing a matched sample based on a

single match and then correcting the non-negligible bias of the estimate analytically.

5 An Empirical Application: Returns to Schooling

We now apply our proposed estimation methods to a version of Mincer’s (1974)

wage regression. As argued in Card (1995), the estimation result may suffer from

the “ability bias” unless it includes a variable representing ability as a regressor.

Therefore, we consider the following wage regression

log (wage) = β0 + β1educ+ β2exper + β3exper
2 + β4abil

+ β5feduc+ β6meduc+ β7black + β8smsa+ β9south+ u, (6)

where educ is years of education, exper is work experience, abil is an ability measure,

feduc and meduc are years of father’s and mother’s education, and black, smsa and

south are indicator variables that take one if the individual is black, lives in the urban

area and south, respectively.

We estimate regression (6) using three data sets, namely, those used in Card

(1995), Blackburn and Neumark (1992), and Heckman, Tobias and Vytlacil (2000).

The data sets are available under the names “card”, “wage2” and “htv”, respectively,

as supplemental materials for Wooldridge (2013). Each of the three data sets is drawn

from the National Longitudinal Survey (NLS) and contains some ability measure; to

be precise, while both card and wage2 include scores of IQ and Knowledge of the

World of Work (kww) tests, htv has the “g” measure constructed from 10 component

tests of the Armed Services Vocational Aptitude Battery.

We conduct two exercises that address the following questions:
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(Q1) How would the estimation result change if kww in card were missing and

instead taken from wage2?

(Q2) What would happen if kww in card were replaced by g from htv?

For these exercises, the OLS result using 2191 male observations in card with

kww chosen as abil can be viewed as the benchmark result from the infeasible OLS*.

Because each of Q1 and Q2 requires a matched sample, we regard card as S1 and

wage2 or htv as S2. The NNM is made in the following manner. When wage2

is employed as S2, (educ, feduc,meduc, black, smsa, south) are chosen as matching

variables, where the first three variables are treated as continuous. On the other

hand, htv contains only white-male observations. Accordingly, when using it as S2,

we choose five matching variables excluding black. Not surprisingly, there are several

ties of the matching variables in S2. Then, we take an average of kww or g within ties

and assign the average as the unique value of the ability measure to each combination

of matching variables. As a consequence, 466 and 589 distinct combinations of

matching variables remain in male samples of wage2 and htv, respectively. In both

cases, the NNM is based on the Mahalanobis metric, and we set the number of matches

K = 1 (single match) based on the simulation results.

Given the matched sample, we estimate (6) by MSOLS and MSII-FM. Specifically,

MSOLS-A and MSII-FM-A (i.e., estimators with Wi,j(i) used as the regressor) are

chosen, and the third-order polynomial is applied for the power-series approximation

of MSII-FM, again based on the simulation results; estimation results from second-

and fourth-order polynomials are qualitatively similar.

TABLE 2 ABOUT HERE

Table 2 presents estimation results and standard errors (in parentheses). White’s

(1980) heteroskedasticity-robust standard errors are computed for OLS*, whereas
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‘standard errors’ for MSOLS are square-roots of diagonal elements of Q̂−1
W Ω̂11Q̂

−1
W /n :=

Q̂−1
W

(
Ω̂11A + Ω̂11B

)
Q̂−1
W /n, where

Ω̂11B =
n

m

[(
β̂′2,IIΣ̂2β̂2,II

)
W̄W̄ ′

+
1

K2
diag

{
0(d1+1)×(d1+1),

(
β̂′2,IIΣ̂2β̂2,II

)
V̂g2 + 2

{
Γ̂ (−1) + Γ̂ (1)

}
, 0d3×d3

}]

for (n,m) given in the corresponding column of Table 2. The latter should be

interpreted with caution; because θ̂OLS is inconsistent (and even its convergence rate

is slower than the parametric one), the numbers merely indicate measures of dispersion

at the same scale as other estimates and are not intended for inference.

The benchmark OLS* result using card is provided in the first column. Signs of

the coefficient estimates on educ, exper, exper2, and abil (= kww) are as expected,

and they are significant at the 5% level. To answer Q1, we run MSOLS and MSII-FM

using the matched sample with wage2. The results are reported in columns 2 and 3.

Signs of the coefficient estimates by MSII-FM are the same as those by OLS*. On

the other hand, MSOLS overestimates returns to schooling due to failure to correct

for matching results. It also yields a negative estimate of the ability effect, whereas

the one from MSII-FM is positive (but insignificant due to the large standard error).

Furthermore, to answer Q2, we replace the ability measure with g by constructing

the matched sample with htv. Results from MSOLS and MSII-FM using this sample

are presented in columns 4 and 5. There is still the tendency that MSII-FM estimates

are closer to those of OLS*. MSOLS again tends to inflate returns to schooling. The

estimated ability effect turns positive, but its magnitude is much smaller than the

one from MSII-FM.

6 Conclusion

Regression estimation using samples constructed via the NNM from two sources is

not uncommon in applied economics. This paper has demonstrated that such OLS
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estimators are generally inconsistent, and thus an appropriate bias correction is re-

quired. It has also been shown that the convergence rate to the probability limit of

the OLS depends on the number of matching variables and the divergence pattern of

two sample sizes.

Two versions of bias-corrected estimators have been proposed, and each can be

interpreted as a variant of indirect inference estimators. The MSII estimator attains

the parametric convergence rate for the cases with at most two matching variables,

whereas the MSII-FM estimator achieves the parametric convergence rate when the

number of matching variables does not exceed four. Monte Carlo results suggest

that a small number of matches work well in practice, and in particular, we should

consider the single match when the number of matching variables is two or three.

The paper aims at providing corrections for an established practice, which is to run

(parametric) OLS ignoring imputation. In particular, our proposal for MSII-FM is

based on a nonparametric series estimation of g2(Z) = E(X2|Z). The nonparametric

estimator is employed only when the curse of dimensionality in matching variables

prevents MSII from attaining parametric convergence. Alternatively, it is possible

to use a nonparametric estimate of g2(Z) as a (generated) regressor in place of X2 in

regression (1) from the beginning. As illustrated in Section 2.4, this would result in

a partially linear semiparametric model with a measurement error problem. There

could be several different (nonparametric) estimators available for the model of this

class. However, such estimators are not as widely used in practice as the OLS, and

hence we leave the development of the estimators for future work.

Several other extensions would be fruitful. First, we may adopt propensity score

matching as a means of dimension reduction using multiple matching variables. This

would involve using the observable variables to estimate a selection model for obser-

vations that are imputed, and obtaining the (imputation) propensity score. In a

closely related paper, Abadie and Imbens (2016) deliver asymptotic properties of the
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matching estimators of average treatment effects using an estimated propensity score

as a plug-in. It may be worth pursuing a similar idea for matched-sample regression

estimation.

Second, combining our matched-sample estimation theory with IV/GMM estima-

tion would be also of interest in the presence of endogeneity in regressors. This is

particularly relevant to empirical studies using earnings data, which are thought to

include measurement errors and imputation biases.

Finally, the estimation theory may be extended to kernel estimation of varying

coefficient models using matched samples. It is not difficult to see that kernel estima-

tors of the varying coefficients are also inconsistent, and appropriate bias-correction

methods similar to those proposed in this paper are worth investigating.

A Appendix: Technical Proofs

A.1 A Useful Lemma

Before proceeding, we present a lemma about the error bounds from NNM, which is

repeatedly applied in the technical proofs below. To do so, we provide the formal

definition of the matching discrepancy from Abadie and Imbens (2006).

Let z ∈ Z be a fixed value of the matching variable Z, where, in practice, z is one of

{Zi}ni=1 in S1. Then, the kth closest matching discrepancy Uk = Uk (z) , k = 1, . . . , K

is defined as Uk := Zjk(z)−z if Zjk(z) is the kth closest match to z among all {Zj}mj=1 in

S2. The following lemma states uniform moment bounds of the matching discrepancy.

Lemma A1. (Abadie and Imbens, 2006, Lemma 2) If Assumptions 1-2 hold,

then all the moments of m1/d3 ‖Uk‖ are uniformly bounded in m and z ∈ Z.

A.2 Proof of Theorem 1

The proof requires the following lemma.
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Lemma A2. If Assumptions 1-3 hold, then BRW 2 = O
(
m−1/d3

)
+ op

(
n−1/2

)
.

A.2.1 Proof of Lemma A2

Consider the identity BRW 2 ≡ E (BRW 2) + {BRW 2 − E (BRW 2)}. It follows from

Assumption 1, Lipschitz continuity of g2, the Cauchy-Schwarz inequality, and Lemma

A1 that
∥∥E
(
m1/d3BRW 2

)∥∥ < ∞, and thus E (BRW 2) = O
(
m−1/d3

)
. Similarly, we

have V ar
(
n1/2m1/d3 ‖BRW 2‖

)
<∞ so that

BRW 2 = O
(
m−1/d3

)
+Op

(
n−1/2m−1/d3

)
= O

(
m−1/d3

)
+ op

(
n−1/2

)
. �

A.2.2 Proof of Theorem 1

It is easy to see from (2) that R̂W := Q̂W θ +BRW 1 +BRW 2 + ERW
, where

BRW 1 = E
(
Wi,j(i)εi,j(i)

)
,

BRW 2 =
1

n

n∑

i=1

Wi,j(i)λi,j(i), and

ERW
=

1

n

n∑

i=1

{
Wi,j(i)εi,j(i) − E

(
Wi,j(i)εi,j(i)

)}
.

It follows that θ̂OLS := θ+BOLS1 +BOLS2 +EOLS, where BOLS1 = Q̂−1
W BRW 1, BOLS2 =

Q̂−1
W BRW 2 and EOLS = Q̂−1

W ERW
correspond to the first-order (or leading) bias, the

second-order bias due to the matching discrepancy and the weighted average of errors,

respectively.

We begin with evaluating BOLS1. First note that E (X1iη
′
2i) = E {g1 (Z) η′2} +

E (η1η
′
2) = 0d1×d2 , E

(
X2j(i)η

′
2j(i)

)
= (1/K) Σ2, and that the ith and jk (i)th observa-

tions are independent. Then,

BRW 1 =




0(d1+1)×1

− (1/K) Σ2β2

0d3×1


 = − 1

K
diag

{
0(d1+1)×(d1+1),Σ2, 0d3×d3

}
θ := − 1

K
Σθ.

Because Q̂W = QW + Op

(
n−1/2

)
, we obtain BOLS1 = − (1/K)Q−1

W Σθ + Op

(
n−1/2

)
.

Next, Lemma A2 implies that BOLS2 = O
(
m−1/d3

)
+ op

(
n−1/2

)
. Finally, ERW

=

Op

(
n−1/2

)
by CLT, and thus EOLS = Op

(
n−1/2

)
. Therefore, θ̂OLS = Q−1

W PW θ +

O
(
m−1/d3

)
+Op

(
n−1/2

)
by denoting PW := QW − (1/K) Σ. �
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A.3 Proof of Theorem 2

The proof requires the following lemma.

Lemma A3. If Assumptions 1-3 hold, then Σ̂2 and BΣ2 admit the expansions Σ̂2−

BΣ2 = Σ2 +Op

(
m−1/2

)
and BΣ2 = O

(
m−2/d3

)
+ op

(
m−1/2

)
.

A.3.1 Proof of Lemma A3

Observe that

Σ̂2 =
1

2 (m− 1)

m∑

j=2

∆X2(j)∆X
′
2(j)

=
1

2 (m− 1)

m∑

j=2

∆η2(j)∆η
′
2(j) +

1

2 (m− 1)

m∑

j=2

∆η2(j)∆g
′
2(j)

+
1

2 (m− 1)

m∑

j=2

∆g2(j)∆η
′
2(j) +

1

2 (m− 1)

m∑

j=2

∆g2(j)∆g
′
2(j)

= S1 + S2 + S3 + S4 (say).

As in the proof of Lemma A2, consider the identity Si ≡ E (Si) + {Si − E (Si)} for

i = 1, 2, 3, 4. First, S1 = E (S1) + {S1 − E (S1)} = Σ2 +Op

(
m−1/2

)
. Second, for S4,

it follows from Lipschitz continuity of g2 (·) in Assumption 3(ii) that the order of mag-

nitude in ‖E (S4)‖ is determined by E
{∑m

j=2

∥∥∆Z(j)

∥∥2
}
/ {2 (m− 1)}. Because the

re-ordered sample
{
Z(j)

}m
j=1

is constructed by the nearest-neighbor algorithm in accor-

dance with Yatchew (1997), we may apply the moment approximation in Theorem 5.4

of Evans, Jones and Schmidt (2002) to obtain E
{∑m

j=2

∥∥∆Z(j)

∥∥2
}
/ {2 (m− 1)} =

O
(
m−2/d3

)
so that E (S4) = O

(
m−2/d3

)
. Also V ar

(
m1/2+2/d3 ‖S4‖

)
< ∞ by the

theorem, and thus S4 = O
(
m−2/d3

)
+ Op

(
m−(1/2+2/d3)

)
= O

(
m−2/d3

)
+ op

(
m−1/2

)
.

Third, for S2 and S3, we have E (S2) = E (S3) = 0d2×d2 . Because, by a similar

argument to above, V ar
(
m1/2+1/d3 ‖S3‖

)
, V ar

(
m1/2+1/d3 ‖S3‖

)
<∞, each of S2 and

S3 is Op

(
m−(1/2+1/d3)

)
= op

(
m−1/2

)
. Finally, rewriting S4 as BΣ2 yields the stated

result. �
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A.3.2 Proof of Theorem 2

By the proof of Theorem 1,

R̂W =

(
Q̂W −

1

K
Σ

)
θ +BRW 2 + ERW

= P̂W θ +BRW 2 +
1

K

(
Σ̂− Σ

)
θ + ERW

.

It also follows from Lemma A3 that

1

K

(
Σ̂− Σ

)
θ =

1

K
diag

{
0(d1+1)×(d1+1),

(
Σ̂2 −BΣ2

)
− Σ2, 0d3×d3

}
θ

+
1

K
diag

{
0(d1+1)×(d1+1), BΣ2 , 0d3×d3

}
θ

= Op

(
m−1/2

)
+
{
O
(
m−2/d3

)
+ op

(
m−1/2

)}
,

where the first term on the right-hand side is denoted as EΣ2 hereinafter. Therefore,

θ̂II = P̂−1
W R̂W

= θ +BMD +BΣ + P̂−1
W ERW

+ P̂−1
W EΣ2

= θ +
{
O
(
m−1/d3

)
+ op

(
n−1/2

)}
+
{
O
(
m−2/d3

)
+ op

(
m−1/2

)}

+Op

(
n−1/2

)
+Op

(
m−1/2

) p→ θ. � (A1)

A.4 Proof of Theorem 3

To save space, we only demonstrate asymptotic normality results depending on the

divergence pattern of (n,m); see the Supplement for detailed derivation of asymp-

totic variances VI , VII and VIII . It follows from (A1) that if n/m → κ, then

√
n
(
θ̂II − θ −BMD −BΣ

)
d→ N (0, VI), where

VI := P−1
W lim

n,m→∞
n/m→κ

V ar
{√

n (ERW
+ EΣ2)

}
P−1
W .

Alternatively, if n/m→ 0, then
√
n
(
θ̂II − θ −BMD −BΣ

)
d→ N (0, VII), where

VII := P−1
W lim

n,m→∞
n/m→0

V ar
(√

nERW

)
P−1
W .

Finally, if n/m→∞, then
√
m
(
θ̂II − θ −BMD −BΣ

)
d→ N (0, VIII), where

VIII := P−1
W lim

m→∞
V ar

(√
mEΣ2

)
P−1
W . �
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A.5 Proof of Corollary 1

Because the corollary is a straightforward outcome of Theorem 3, its proof is omitted. �

A.6 Proof of Theorem 4

The proof requires the following lemma.

Lemma A4. If Assumptions 1-7 hold, then

max
1≤i≤n

∣∣∣λ̂i,j(i) − λi,j(i)
∣∣∣

=

{
op
(
n−1/2

)
if n/m→ κ and d3 = 2, 3 or if n/m→ 0 and d3 = 3, 4

op
(
m−1/2

)
if n/m→∞ and d3 = 2, 3

.

A.6.1 Proof of Lemma A4

It is easy to see that λ̂i,j(i) := R1i +R2i +R3i + λi,j(i), where

R1i =
1

K

∑

j∈JK(i)

[{ĝ2 (Zi)− g2 (Zi)} − {ĝ2 (Zj)− g2 (Zj)}]′
(
β̂

(1)
II,2 − β2

)
,

R2i =
1

K

∑

j∈JK(i)

[{ĝ2 (Zi)− g2 (Zi)} − {ĝ2 (Zj)− g2 (Zj)}]′ β2, and

R3i =
1

K

∑

j∈JK(i)

{g2 (Zi)− g2 (Zj)}′
(
β̂

(1)
II,2 − β2

)
.

Hence, the proof is boiled down to demonstrating that each of max1≤i≤n |R`i| , ` =

1, 2, 3 is bounded by either op
(
n−1/2

)
or op

(
m−1/2

)
, depending on the divergence

pattern of (n,m) and d3.

We first work on R3i. To derive the bounds for R1i and R3i, we may apply (A1)

to obtain

θ̂
(1)
II = θ +





O
(
n−1/d3

)
+Op

(
n−1/2

)
if n/m→ κ and d3 = 2, 3

O
(
m−1/d3

)
+Op

(
n−1/2

)
if n/m→ 0 and d3 = 3, 4

O
(
m−1/d3

)
+Op

(
m−1/2

)
if n/m→∞ and d3 = 2, 3

.
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It follows from Lemma A1 and Lipschitz continuity of g2 (·) that max1≤i≤n |R3i| is

bounded by





Op

(
m−1/d3

) {
O
(
n−1/d3

)
+Op

(
n−1/2

)}
= op

(
n−1/2

)
if n/m→ κ and d3 = 2, 3

Op

(
m−1/d3

) {
O
(
m−1/d3

)
+Op

(
n−1/2

)}
= op

(
n−1/2

)
if n/m→ 0 and d3 = 3, 4

Op

(
m−1/d3

) {
O
(
m−1/d3

)
+Op

(
m−1/2

)}
= op

(
m−1/2

)
if n/m→∞ and d3 = 2, 3

.

The remaining task is to demonstrate that for k = 1, . . . , K,

max
1≤i≤n

∥∥{ĝ2 (Zi)− g2 (Zi)} −
{
ĝ2

(
Zjk(i)

)
− g2

(
Zjk(i)

)}∥∥

=

{
op
(
n−1/2

)
if n/m→ κ and d3 = 2, 3 or if n/m→ 0 and d3 = 3, 4

op
(
m−1/2

)
if n/m→∞ and d3 = 2, 3

. (A2)

However, Lemma A.2 of Abadie and Imbens (2011) holds under Assumptions 1-7.

Therefore,

max
1≤i≤n

∣∣{ĝ2r (Zi)− ĝ2r

(
Zjk(i)

)}
−
{
g2r (Zi)− g2r

(
Zjk(i)

)}∣∣ = op
(
m−1/2

)
, r = 1, . . . , d2,

and thus (A2) immediately follows. Then, each of max1≤i≤n |R1i| and max1≤i≤n |R2i|

is also bounded by either op
(
n−1/2

)
or op

(
m−1/2

)
. This completes the proof. �

A.6.2 Proof of Theorem 4

To save space, we focus on the case in which n/m → κ ∈ (0,∞) and d3 = 2, 3.

Observe that θ̂II−FM := θ̂
(1)
II − B̂MD := θ̂

(1)
II − (1/n)

∑n
i=1Wi,j(i)λ̂i,j(i). By Theorem 3,

√
n
(
θ̂

(1)
II − θ −BMD −BΣ

)
d→ N (0, VI). Lemma A4 implies that

∥∥∥BMD − B̂MD

∥∥∥ =

op
(
n−1/2

)
. Then,

√
n
{(
BMD − B̂MD

)
+BΣ

}
= op (1), and thus the result immedi-

ately follows. �

A.7 Proof of Proposition 1

The proof is obvious in light of Section A of the Supplement and thus omitted. �
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Table 1: Monte Carlo Results for Model C

Panel (a): d3 = 1

(n,m) Estimator β22 γ1
(1000, 1000) OLS* Mean 1.0003 0.9970

SD 0.0202 0.0529
RMSE 0.0202 0.0529

SE 0.0207 0.0527
CR 96% 95%
K 1 2 4 8 1 2 4 8

MSOLS-A Mean 0.5556 0.7148 0.8355 0.9203 1.0513 1.0272 1.0145 1.0091
SD 0.0512 0.0546 0.0582 0.0611 0.1134 0.1052 0.1019 0.1008

RMSE 0.4474 0.2903 0.1745 0.1004 0.1245 0.1087 0.1029 0.1012
MSOLS-B Mean 0.5556 0.7148 0.8355 0.9203 1.0513 1.0271 1.0145 1.0092

SD 0.0512 0.0546 0.0582 0.0611 0.1135 0.1052 0.1020 0.1008
RMSE 0.4474 0.2903 0.1745 0.1005 0.1245 0.1087 0.1030 0.1012

K 1 2 4 8 1 2 4 8
MSII-A Mean 1.0251 1.0142 1.0126 1.0221 0.9970 0.9980 0.9993 1.0013

SD 0.1141 0.0906 0.0774 0.0711 0.1231 0.1098 0.1040 0.1019
RMSE 0.1168 0.0917 0.0784 0.0744 0.1231 0.1098 0.1040 0.1019

SE 0.1040 0.0740 0.0633 0.0609 0.1199 0.1064 0.0994 0.0961
CR 94% 89% 88% 90% 95% 94% 93% 93%

MSII-B Mean 1.0251 1.0142 1.0126 1.0221 0.9970 0.9979 0.9993 1.0013
SD 0.1141 0.0906 0.0774 0.0711 0.1231 0.1098 0.1040 0.1019

RMSE 0.1168 0.0917 0.0784 0.0744 0.1231 0.1099 0.1040 0.1019
SE 0.1040 0.0740 0.0633 0.0609 0.1199 0.1064 0.0994 0.0962
CR 94% 89% 88% 89% 95% 94% 93% 93%

(2000, 2000) OLS* Mean 0.9995 0.9988
SD 0.0145 0.0372

RMSE 0.0145 0.0372
SE 0.0147 0.0374
CR 96% 94%
K 1 2 4 8 1 2 4 8

MSOLS-A Mean 0.5602 0.7204 0.8406 0.9191 1.0502 1.0263 1.0137 1.0063
SD 0.0359 0.0380 0.0399 0.0416 0.0814 0.0758 0.0729 0.0716

RMSE 0.4413 0.2821 0.1643 0.0909 0.0956 0.0803 0.0742 0.0719
MSOLS-B Mean 0.5602 0.7204 0.8406 0.9191 1.0502 1.0263 1.0137 1.0063

SD 0.0359 0.0380 0.0399 0.0416 0.0814 0.0758 0.0729 0.0716
RMSE 0.4413 0.2821 0.1643 0.0909 0.0956 0.0803 0.0742 0.0719

K 1 2 4 8 1 2 4 8
MSII-A Mean 1.0144 1.0100 1.0099 1.0135 0.9961 0.9975 0.9986 0.9985

SD 0.0745 0.0614 0.0519 0.0478 0.0879 0.0790 0.0744 0.0724
RMSE 0.0758 0.0622 0.0528 0.0496 0.0880 0.0790 0.0745 0.0724

SE 0.0712 0.0512 0.0436 0.0413 0.0843 0.0750 0.0700 0.0676
CR 94% 90% 90% 91% 94% 94% 94% 93%

MSII-B Mean 1.0144 1.0100 1.0099 1.0135 0.9961 0.9975 0.9987 0.9985
SD 0.0745 0.0614 0.0519 0.0478 0.0879 0.0790 0.0744 0.0724

RMSE 0.0758 0.0622 0.0528 0.0496 0.0880 0.0790 0.0745 0.0724
SE 0.0712 0.0512 0.0436 0.0413 0.0843 0.0750 0.0700 0.0676
CR 94% 90% 90% 91% 95% 94% 94% 93%
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Table 1: Continued

Panel (b): d3 = 2

(n,m) Estimator β22 γ1
(1000, 1000) OLS* Mean 0.9986 0.9977

SD 0.0165 0.0571
RMSE 0.0166 0.0572

SE 0.0164 0.0588
CR 95% 95%
K 1 2 4 8 1 2 4 8

MSOLS-A Mean 0.4733 0.6337 0.7856 0.9459 1.0597 1.0291 1.0100 0.9780
SD 0.0528 0.0571 0.0662 0.0847 0.1767 0.1725 0.1766 0.1967

RMSE 0.5294 0.3707 0.2243 0.1005 0.1865 0.1749 0.1769 0.1979
MSOLS-B Mean 0.4735 0.6340 0.7858 0.9461 1.0123 0.9931 0.9795 0.9457

SD 0.0529 0.0573 0.0664 0.0850 0.1782 0.1731 0.1786 0.1991
RMSE 0.5292 0.3705 0.2242 0.1006 0.1786 0.1732 0.1798 0.2064
Poly. (initial) 2nd 3rd 4th (initial) 2nd 3rd 4th

MSII-FM-A Mean 1.1785 1.1803 1.1805 1.1588 0.9740 0.9723 0.9725 0.9667
SD 0.1768 0.1772 0.1773 0.1750 0.2100 0.2123 0.2133 0.2165

RMSE 0.2512 0.2528 0.2530 0.2363 0.2116 0.2141 0.2150 0.2191
SE − 0.1688 0.1689 0.1679 − 0.1869 0.1871 0.1891
CR − 87% 87% 90% − 92% 92% 92%

MSII-FM-B Mean 1.1791 1.1803 1.1805 1.1587 0.9272 0.9710 0.9714 0.9654
SD 0.1770 0.1772 0.1773 0.1750 0.2114 0.2153 0.2160 0.2185

RMSE 0.2518 0.2528 0.2530 0.2363 0.2236 0.2173 0.2179 0.2212
SE − 0.1688 0.1689 0.1679 − 0.1866 0.1868 0.1887
CR − 87% 87% 90% − 90% 90% 91%

(2000, 2000) OLS* Mean 0.9997 1.0009
SD 0.0116 0.0405

RMSE 0.0116 0.0406
SE 0.0116 0.0415
CR 95% 95%
K 1 2 4 8 1 2 4 8

MSOLS-A Mean 0.5365 0.6953 0.8374 0.9698 1.0429 1.0200 1.0000 0.9811
SD 0.0350 0.0372 0.0421 0.0502 0.1095 0.1049 0.1071 0.1160

RMSE 0.4648 0.3070 0.1680 0.0586 0.1176 0.1068 0.1071 0.1175
MSOLS-B Mean 0.5365 0.6953 0.8374 0.9699 1.0192 1.0020 0.9844 0.9656

SD 0.0351 0.0372 0.0421 0.0503 0.1105 0.1055 0.1077 0.1171
RMSE 0.4648 0.3069 0.1679 0.0587 0.1121 0.1055 0.1089 0.1220
Poly. (initial) 2nd 3rd 4th (initial) 2nd 3rd 4th

MSII-FM-A Mean 1.1229 1.1242 1.1243 1.1132 0.9787 0.9778 0.9776 0.9752
SD 0.0932 0.0933 0.0933 0.0924 0.1250 0.1254 0.1256 0.1274

RMSE 0.1543 0.1553 0.1554 0.1461 0.1268 0.1274 0.1276 0.1298
SE − 0.0894 0.0894 0.0892 − 0.1183 0.1183 0.1198
CR − 63% 63% 69% − 87% 87% 88%

MSII-FM-B Mean 1.1230 1.1242 1.1243 1.1131 0.9548 0.9774 0.9772 0.9753
SD 0.0933 0.0933 0.0933 0.0924 0.1258 0.1267 0.1269 0.1288

RMSE 0.1544 0.1553 0.1554 0.1461 0.1337 0.1287 0.1289 0.1312
SE − 0.0894 0.0894 0.0892 − 0.1182 0.1182 0.1196
CR − 63% 63% 69% − 86% 86% 87%
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Table 1: Continued

Panel (c): d3 = 3

(n,m) Estimator β22 γ1
(1000, 1000) OLS* Mean 0.9994 0.9997

SD 0.0135 0.0580
RMSE 0.0135 0.0580

SE 0.0139 0.0585
CR 96% 96%
K 1 2 4 8 1 2 4 8

MSOLS-A Mean 0.2193 0.3687 0.5758 0.8942 1.1498 1.0658 0.9978 0.9333
SD 0.0748 0.0887 0.1163 0.1528 0.3103 0.3050 0.3246 0.3601

RMSE 0.7843 0.6375 0.4398 0.1859 0.3445 0.3121 0.3246 0.3663
MSOLS-B Mean 0.2205 0.3703 0.5788 0.8994 0.6439 0.6835 0.6775 0.6299

SD 0.0755 0.0895 0.1168 0.1542 0.3176 0.3146 0.3406 0.3837
RMSE 0.7832 0.6360 0.4371 0.1842 0.4772 0.4463 0.4691 0.5332
Poly. (initial) 2nd 3rd 4th (initial) 2nd 3rd 4th

MSII-FM-A Mean 1.1151 1.0889 1.0901 1.0651 0.9763 0.9550 0.9534 0.9404
SD 0.4064 0.4009 0.4005 0.3953 0.3698 0.3751 0.3770 0.3712

RMSE 0.4224 0.4106 0.4105 0.4007 0.3705 0.3778 0.3799 0.3760
SE − 0.3718 0.3726 0.3669 − 0.3288 0.3304 0.3245
CR − 92% 92% 91% − 85% 85% 86%

MSII-FM-B Mean 1.1217 1.0890 1.0903 1.0649 0.4709 0.8358 0.8318 0.8200
SD 0.4099 0.4012 0.4009 0.3954 0.3777 0.4210 0.4249 0.4136

RMSE 0.4275 0.4110 0.4110 0.4007 0.6501 0.4519 0.4570 0.4511
SE − 0.3722 0.3730 0.3673 − 0.3273 0.3290 0.3200
CR − 92% 92% 91% − 77% 77% 76%

(2000, 2000) OLS* Mean 1.0002 0.9991
SD 0.0096 0.0419

RMSE 0.0096 0.0419
SE 0.0099 0.0415
CR 96% 94%
K 1 2 4 8 1 2 4 8

MSOLS-A Mean 0.2994 0.4653 0.6632 0.9149 1.1037 1.0492 0.9910 0.9347
SD 0.0454 0.0541 0.0657 0.0877 0.2007 0.1904 0.1946 0.2169

RMSE 0.7021 0.5374 0.3432 0.1222 0.2259 0.1967 0.1948 0.2265
MSOLS-B Mean 0.3003 0.4664 0.6648 0.9175 0.7534 0.7911 0.7804 0.7366

SD 0.0459 0.0546 0.0664 0.0886 0.2033 0.1931 0.1977 0.2235
RMSE 0.7012 0.5364 0.3417 0.1211 0.3195 0.2845 0.2955 0.3454
Poly. (initial) 2nd 3rd 4th (initial) 2nd 3rd 4th

MSII-FM-A Mean 1.0576 1.0477 1.0481 1.0191 0.9800 0.9667 0.9663 0.9617
SD 0.1826 0.1816 0.1818 0.1787 0.2277 0.2305 0.2307 0.2239

RMSE 0.1915 0.1877 0.1881 0.1797 0.2286 0.2328 0.2332 0.2271
SE − 0.1800 0.1802 0.1771 − 0.1985 0.1989 0.1961
CR − 97% 97% 96% − 90% 90% 91%

MSII-FM-B Mean 1.0608 1.0477 1.0481 1.0189 0.6300 0.9094 0.9094 0.9032
SD 0.1840 0.1817 0.1819 0.1788 0.2328 0.2526 0.2530 0.2438

RMSE 0.1938 0.1879 0.1882 0.1798 0.4371 0.2683 0.2687 0.2623
SE − 0.1801 0.1802 0.1772 − 0.1996 0.2000 0.1955
CR − 96% 96% 96% − 84% 85% 85%

Note: Mean = simulation average of the parameter estimate; SD = simulation
average of the parameter estimate; RMSE = root mean-squared error of the param-
eter estimate; SE = simulation average of the standard error; and CR = coverage
rate for the nominal 95% confidence interval.
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Table 2: Estimation Results of Wage Regressions with Ability Measures

Dependent Variable: log (wage)

(1) (2) (3) (4) (5)
Regressors OLS* MSOLS MSII-FM MSOLS MSII-FM
educ 0.0612 0.0736 0.0690 0.0724 0.0693

(0.0054) (0.0050) (0.0074) (0.0050) (0.0165)
exper 0.0787 0.0875 0.0847 0.0876 0.0876

(0.0084) (0.0082) (0.0083) (0.0081) (0.0082)
exper 2 −0.0022 −0.0023 −0.0022 −0.0023 −0.0023

(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)
abil 0.0056 −0.0007 0.0016 0.0006 0.0070

(0.0013) (0.0014) (0.0046) (0.0049) (0.0356)
feduc −0.0018 −0.0006 −0.0007 −0.0007 −0.0010

(0.0031) (0.0031) (0.0031) (0.0032) (0.0038)
meduc 0.0071 0.0080 0.0073 0.0079 0.0072

(0.0037) (0.0037) (0.0039) (0.0037) (0.0041)
black −0.1321 −0.1664 −0.1559 −0.1630 −0.1607

(0.0258) (0.0259) (0.0331) (0.0249) (0.0283)
smsa 0.1517 0.1602 0.1576 0.1595 0.1612

(0.0179) (0.0183) (0.0186) (0.0181) (0.0198)
south −0.1111 −0.1126 −0.1125 −0.1125 −0.1104

(0.0178) (0.0179) (0.0178) (0.0180) (0.0216)
intercept 4.6861 4.6491 4.6540 4.6425 4.6818

(0.0841) (0.0861) (0.1107) (0.0849) (0.1945)
abil? kww kww kww g g
Matching? No Yes Yes Yes Yes
(n,m) (2191,−) (2191, 466) (2191, 466) (2191, 589) (2191, 589)

Note: Numbers in parentheses are standard errors. White’s (1980) heteroskedasticity-
robust standard errors are calculated for OLS*, whereas ‘standard errors’ for MSOLS
are square-roots of diagonal elements of Q̂−1

W Ω̂11Q̂
−1
W /n.
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