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a b s t r a c t

Themultivariate linear regressionmodel is an important tool for investigating relationships
between several response variables and several predictor variables. The primary interest is
in inference about the unknown regression coefficient matrix. We propose multivariate
bootstrap techniques as a means for making inferences about the unknown regression
coefficient matrix. These bootstrapping techniques are extensions of those developed in
Freedman (1981), which are only appropriate for univariate responses. Extensions to the
multivariate linear regression model are made without proof. We formalize this extension
and prove its validity. A real data example and two simulated data examples which offer
some finite sample verification of our theoretical results are provided.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The linear regression model is an important and useful tool in many statistical analyses for studying the relationship
among variables. Regression analysis is primarily used for predicting values of the response variable at interesting values
of the predictor variables, discovering the predictors that are associated with the response variable, and estimating
how changes in the predictor variables affects the response variable (Weisberg, 2005). The standard linear regression
methodology assumes that the response variable is a scalar. However, itmay be the case that one is interested in investigating
multiple response variables simultaneously. One could perform a regression analysis on each response separately in this
setting. Such an analysis would fail to detect associations between responses. Regression settings where associations of
multiple responses are of interest require a multivariate linear regression model for analysis.

Bootstrapping techniques are well understood for the linear regression model with a univariate response (Bickel and
Freedman, 1981; Freedman, 1981). In particular, theoretical justification for the residual bootstrap as a way to estimate
the variability of the ordinary least squares (OLS) estimator of the regression coefficient vector in this model has been
developed (Freedman, 1981). Theoretical extensions of residual bootstrap techniques appropriate for the multivariate
linear regression model have not been formally introduced. The existence of such an extension is stated without proof
and rather implicitly in subsequent works (Freedman and Peters, 1984; Diaconis and Efron, 1983). In this article we show
that the bootstrap procedures in Freedman (1981) provide consistent estimates of the variability of the OLS estimator
of the regression coefficient matrix in the multivariate linear regression model. Our proof technique follows similar logic
as Freedman (1981). The generality of the bootstrap theory developed in Bickel and Freedman (1981) provide the tools
required for our extension to the multivariate linear regression model.

2. Bootstrap for the multivariate linear regression model

The multivariate linear regression is

Yi = βXi + εi, (i = 1, . . . , n), (1)
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where Yi ∈ Rr and r > 1 in order to have an interesting problem, β ∈ Rr×p, Xi ∈ Rp, and the ε′

is ∈ Rr are errors having
mean zero and variance–covariance matrix Σ where Σ > 0. It is assumed that separate realizations from the model (1)
are independent and that n > p. We further define X ∈ Rn×p as the design matrix with rows XT

i , Y ∈ Rn×r is the matrix
of responses with rows Y T

i , and ε ∈ Rn×r is the matrix of all errors with rows εT
i . The OLS estimator of β in model (1) is

β̂ = YTX(XTX)−1. We let ε̂ ∈ Rn×r denote the matrix of residuals consisting of rows ε̂T
i = (Yi − β̂Xi)T . The multivariate

linear regression model assumed here is slightly different than the traditional multivariate linear regression model. The
traditional model makes the additional assumptions that the errors are normally distributed and the design matrix X is
fixed.

We consider two bootstrap procedures that consistently estimate the asymptotic variability of vec(β̂) under different
assumptions placed upon the model (1), where the vec operator stacks the columns of a matrix so that vec(β̂) ∈ Rrp×1. The
first bootstrap procedure is appropriate when the design matrix X is assumed to be fixed and the errors are constant. In
this setup, residuals are resampled. The second bootstrap procedure is appropriate when (XT

i , εT
i )

T are realizations from a
joint distribution. In this setup, cases (XT

i , Y T
i )

T are resampled. It is known that bootstrapping under these setups provides
a consistent estimator of the variability of var(β̂) in model (1) when r = 1 (Freedman, 1981). Convergence theorems are
stated in terms of the Mallows metric for two probability measures µ, ν in Rk. The Mallows metric is

dpl (µ, ν) = inf
U∼µ,V∼ν

E1/l (
∥U − V∥

l) . (2)

A brief description of useful properties of (2) is stated in the beginning of Section 4.We now provide the neededmultivariate
bootstrap extensions.

2.1. Fixed design

We first establish the residual bootstrap of Freedman (1981) when X is assumed to be a fixed design matrix. Resampled,
starred, data is generated by the model

Y∗
= Xβ̂T

+ ε∗, (3)

where ε∗
∈ Rn×r is the matrix of errors with rows being independent. The rows in ε∗ have common distribution F̂n which

is the empirical distribution of the residuals from the original dataset, centered at their mean. Now β̂∗
= Y∗

T
X(XTX)−1 is

the OLS estimator of β from the starred data. This process is performed a total of B times with a new estimator β̂∗ computed
from (3) at each iteration. We then estimate the variability of vec(β̂) with

var∗
{
vec(β̂)

}
= (B − 1)−1

B∑
b=1

{
vec(β̂∗

b ) − vec(β̄∗)
}{

vec(β̂∗

b ) − vec(β̄∗)
}T

where β̂∗

b is the residual bootstrap estimator of β at iteration b and β̄∗
= B−1∑B

b=1β̂
∗

b . We summarize this bootstrap
procedure in Algorithm 1.

Algorithm 1. Bootstrap procedure with fixed design matrix.

Step 1. Set B and initialize b = 1.
Step 2. Sample residuals from F̂n, with replacement, and compute Y∗ as in (3).
Step 3. Compute β̂∗

b = Y∗
T
X(XTX)−1, store vec(β̂∗

b ), and let b = b + 1.
Step 4. Repeat Steps 2–3 B − 1 times.

Before the theoretical justification of the residual bootstrap is formally given, some important quantities are stated. The
residuals from the regression (3) are ε̂∗

= Y∗
− Xβ̂∗

T
. The variance–covariance matrix Σ in model (1) is then estimated by

Σ̂ = n−1
n∑

i=1

ε̂îε
T
i − µ̂2, µ̂2

=

(
n−1

n∑
i=1

ε̂i

)(
n−1

n∑
i=1

ε̂i

)T

.

Likewise, the variance–covariance estimate from the starred data is

Σ̂∗
= n−1

n∑
i=1

ε̂∗

i ε̂
∗
T

i − µ̂∗
2
, µ̂∗

2
=

(
n−1

n∑
i=1

ε̂∗

i

)(
n−1

n∑
i=1

ε̂∗

i

)T

.

Let Ik denote the k × k identity matrix. Theorem 1 provides bootstrap asymptotics for the regression model (1). It extends
Theorem 2.2 of Freedman (1981) to the multivariate setting.

Theorem 1. Assume the regression model (1) where the errors have finite fourth moments. Suppose that n−1XTX → ΣX > 0.
Then, conditional on almost all sample paths Y1, . . . , Yn, as n → ∞,
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(a) drp2
[
√
n
{
vec(β̂∗) − vec(β̂)

}
,N(0, Σ−1

X ⊗ Σ)
]

→ 0,
(b) Σ̂∗

→p∗Σ , and
(c) drp2

[
√
n
{
(XTX)1/2 ⊗ Σ̂∗

−1/2
}{

vec(β̂∗) − vec(β̂)
}

,N(0, Irp)
]

→ 0.

The proof of Theorem 1, along with the details of several necessary lemmas and theorems, are included in the theoretical
details section. Theorem1establishes themultivariate analogue for the residual bootstrap. This theorem shows that standard
error estimation of the estimated β matrix obtained through bootstrapping, is

√
n-consistent. Now let f : Rrp

→ Rk be a
differentiable function. Then the conclusions of Theorem 1 can be applied to establish a multivariate delta method based
on estimates obtained via the residual bootstrap. This immediately follows from a first order Taylor expansion and some
algebra arriving at

√
n
[
f
{
vec(β̂∗)

}
− f

{
vec(β̂)

}]
= ∇f

{
vec(β̂)

}
√
n
{
vec(β̂∗) − vec(β̂)

}
+ Op(n−1/2). (4)

Therefore (4) converges weakly to a normal distribution with mean zero and variance given by

∇f {vec (β)}
(
Σ−1

X ⊗ Σ
)
∇

T f {vec (β)}

as n → ∞.

2.2. Random design and heteroskedasticity

In this section we assume that the Xis in model (1) are realizations of a random variable X . The regression coefficient
matrix β now takes the form β = E(YXT )Σ−1

X where ΣX = E(XXT ) and it is assumed that ΣX > 0. Now that X is stochastic,
there may be some association between X and the errors ε. The possibility of heteroskedasticity means that we need to alter
the bootstrap procedure outlined in the previous section in order to consistently estimate the variability of vec(β̂).

It is assumed that thedata vectors (XT
i , Y T

i )
T

∈ Rp+r are independent,with a commondistributionµ and E(∥(XT
i , Y T

i )
T
∥
4) <

∞where ∥ · ∥ is the Euclidean norm. Unlike the fixed design setting, data pairs (XT
i , Y T

i )
T are resampled with replacement to

form the starred data (X∗
T

i , Y ∗
T

i )T , for i = 1, . . . , n. Given the original sample, (XT
i , Y T

i )
T , i = 1, . . . , n, the resampled vectors

are independent, with distribution µn. Denote X∗
∈ Rn×p and Y∗

∈ Rn×r as the matrix with rows X∗
T

i and Y ∗
T

i respectively.

The starred estimator ofβ obtained from resampling is then β̂∗
= Y∗

T
X∗

(
X∗

T
X∗

)−1
. For every n there is positive probability,

albeit low, that X∗
T
X∗ is singular, and the probability of singularity decreases exponentially in n. We assume that displayed

equation (1.17) in Chatterjee and Bose (2000) holds in order to circumvent singularity in our bootstrap procedure.
The bootstrap is performed a total of B times with a new estimator β̂∗ computed at each iteration. We then estimate the

variability of vec(β̂) with

var∗
{
vec(β̂)

}
= (B − 1)−1

B∑
b=1

{
vec(β̂∗

b ) − vec(β̄∗)
}{

vec(β̂∗

b ) − vec(β̄∗)
}T

where β̂∗

b is the bootstrap estimator of β at iteration b and β̄∗
= B−1∑B

b=1β̂
∗

b . We summarize this bootstrap procedure in
Algorithm 2.

Algorithm 2. Bootstrap procedure with random design matrix.

Step 1. Set B and initialize b = 1.
Step 2. Resample (XT

i , Y T
i )

T with replacement.
Step 3. Compute β̂∗

b = Y∗
T
X∗(X∗

T
X∗)−1, store vec(β̂∗

b ) and let b = b + 1.
Step 4. Repeat Steps 2–3 B − 1 times.

We now show that the variability of vec(β̂) is estimated consistently by our multivariate bootstrap procedure which
resamples cases. Let M be a non-negative definite matrix with entries Mjk = E

{
vec(Xiε

T
i )jvec(Xiε

T
i )k
}
for j, k = 1, . . . , rp

and define ∆ =
(
Σ−1

X ⊗ Ir
)
M
(
Σ−1

X ⊗ Ir
)
. where n−1XTX → ΣX a.e. as n → ∞. Then

√
nvec

(
β̂ − β

)
= vec

{
n−1/2εTX(n−1XTX)−1}

=
{
(n−1XTX)−1

⊗ Ir
}
vec

(
n−1/2εTX

)
→ N(0, ∆).

(5)

The next theorem states that
√
nvec

(
β̂∗

− β̂

)
is the same as (5). This is an extension of Theorems 3.1 and 3.2 of Freedman

(1981) to the multivariate linear regression setting.

Theorem 2. Assume that (XT
i , Y T

i )
T

∈ Rp+r are independent, with a common distribution µ, E(∥(XT
i , Y T

i )
T
∥
4) < ∞, and

ΣX = E(XXT ) is positive definite. Then, conditional on almost all sample paths, (XT
i , Y T

i )
T , i = 1, . . . , n, as n → ∞,
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Table 1
Comparison of the 95% confidence interval obtained by the bootstrap using
Algorithm 1 (column 2) and a 95% confidence interval obtained bymaximum
likelihood estimation (column 3) for the first two components of vec(β) (col-
umn 1).

Component Bootstrap CI Sample CI

n = 100 vec(β)1 (−0.517 0.831) (−0.502 0.843)
vec(β)2 (0.063 1.449) (0.031 1.443)

n = 500 vec(β)1 ( 0.406 0.950) (0.401 0.955)
vec(β)2 (−0.172 0.342) (−0.175 0.336)

n = 1000 vec(β)1 (0.289 0.682) (0.293 0.681)
vec(β)2 (0.102 0.487) (0.100 0.490)

n = 5000 vec(β)1 (0.481 0.656) (0.480 0.656)
vec(β)2 (0.046 0.223) (0.047 0.221)

(a) n−1
(
X∗

T
X∗

)
→p∗ΣX ,

(b) drp2
[
√
n
{
vec(β̂∗) − vec(β̂)

}
,N(0, ∆)

]
→ 0, and

(c) the sequence Σ̂∗
→p∗Σ .3

The proof of Theorem 2, along with necessary lemmas, are included in the theoretical details section.

3. Examples

3.1. Simulations

In this section we provide two simulated examples which show support for our multivariate bootstrap procedures.

3.1.1. Fixed design
This example illustrates Theorem 1. We generated data according to the multivariate linear regression model (1) where

Yi ∈ R3, Xi ∈ R2, and both β and Σ are prespecified. Our goal is to make inference about vec(β) using confidence intervals.
For each component of β , a 95% confidence interval computed using the residual bootstrap in Algorithm 1 is compared
with a 95% confidence interval obtained frommaximum likelihood estimation of β and Σ in model (1). Four data sets were
generated at different sample sizes and the performance of the multivariate residual bootstrap is assessed. The bootstrap
is performed B = 5000 times in each dataset. The results are displayed in Table 1. For the first two components of β , we
see that the confidence regions obtained from both methods are close to each other and that the distance between the two
shrinks as n increases. Similar results are obtained for the other components of β . A separate simulation study shows that
the coverage probabilities of our bootstrap are at the nominal level for all of the considered cases.

3.1.2. Random design and heteroskedasticity
This example aims to show support for Theorem 2. We generated data according to the multivariate linear regression

model (1) where Yi ∈ R3, Xi ∈ R2, and both β and Σ are prespecified. The predictors and errors are generated according to(
Xi
εi

)
∼ N

{(
0
0

)
,

(
ΣX ΣXε

ΣεX Σ

)}
,

for i = 1, . . . , n. Our goal is tomake inference about vec(β) using themultivariate bootstrap procedure in the randomdesign
case. For each component ofβ , a 95% confidence interval computedusing the bootstrap inAlgorithm2 is comparedwith a 95%
confidence interval obtained from maximum likelihood estimation of β and Σ in model (1) under heterogeneity. Four data
sets were generated at different sample sizes and the performance of the multivariate bootstrap is assessed. The bootstrap
is performed a total of B = 5000 times in each dataset. The results are displayed in Table 2. For the first two components of
β , we see that the confidence regions obtained from bothmethods are close to each other and that the distance between the
two shrinks as n increases. Similar results are obtained for the other components of β . A separate simulation study shows
that the coverage probabilities of our bootstrap are at the nominal level for all of the considered cases.

3.2. Cars data

The data in this example, analyzed in Henderson and Velleman (1981), was extracted from the 1974 Motor Trend US
magazine. The objective of this study is to compare aspects of automobile design on performance and fuel composition
for 32 automobiles (1973–74) models. In this analysis, we assume that the multivariate model (1) with miles per gallon,
displacement, and horse power as response variables and number of cylinders and transmission type are predictors. Number
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Table 2
Comparison of the 95% confidence interval obtained by the bootstrap using
Algorithm 2 (column 2) and a 95% confidence interval obtained bymaximum
likelihood estimation (column 3) for the first two components of vec(β) (col-
umn 1).

Component Bootstrap CI Sample CI

n = 100 vec(β)1 (0.098 1.282) (0.145 1.230)
vec(β)2 (0.111 1.025) (0.114 1.042)

n = 500 vec(β)1 (0.987 1.505) (0.995 1.505)
vec(β)2 (0.583 1.109) (0.604 1.084)

n = 1000 vec(β)1 (0.801 1.185) (0.804 1.180)
vec(β)2 (0.620 0.983) (0.635 0.968)

n = 5000 vec(β)1 (0.945 1.117) (0.944 1.118)
vec(β)2 (0.637 0.808) (0.645 0.798)

Table 3
Comparison of the 95% confidence interval obtained by the bootstrap using
Algorithm 1 (column 2) and a 95% confidence interval obtained bymaximum
likelihood estimation (column 3) for the first five components of vec(β) (col-
umn 1).

Component Bootstrap CI Sample CI

vec(β)1 (2.271 7.108) (2.286 7.136)
vec(β)2 (−3.775 0.838) (−3.806 0.916)
vec(β)3 (−6.896 −3.846) (−6.900 −3.812)
vec(β)4 (0.176 4.967) (0.181 4.939)
vec(β)5 (−134.226 −55.706) (−134.408 −56.787)

of cylinders and transmission type are both factor variables. The automobiles have either 4, 6, or 8 cylinders and their
transmission type is either automatic or manual.

For inference for β , we compare a 95% bootstrap confidence interval using the fixed design bootstrap in Algorithm 1with
a 95% confidence interval obtained frommaximum likelihood estimation of β and Σ in model (1). The number of bootstrap
resamples is set at B = 5000. The results are depicted in Table 3. We see that inferences about β are fairly similar for both
methods. This suggests that the multivariate linear model with constant errors and a fixed design is an appropriate model
for the cars data.

4. Theoretical details

Before we present our proof of Theorems 1 and 2, we motivate the Mallows metric as a central tool for our proof
technique. TheMallowsmetric for probabilities inRp, relative to the Euclideannormwas the driving force needed to establish
the validity of the residual bootstrap approximation in the context of univariate regression (Bickel and Freedman, 1981;
Freedman, 1981). Properties of the Mallows metric are developed for random variables on separable Banach spaces of finite
dimension (Bickel and Freedman, 1981). Since Rk is indeed a separable Banach space for a natural number k, the theory
in Bickel and Freedman (1981) applies to our case. In the present article, we use the Mallows metric when r > 1 to prove
that the residual bootstrap can be used to estimate the variability of vec(β̂) consistently.

4.1. Fixed design

Let Ψn(F ) be the distribution function of
√
n
{
vec(β̂) − vec(β)

}
where F is the law of the errors ε so that Ψn(F ) is a

probability measure on Rrp. Let G be an alternate law of the errors, where it is assumed that G is mean-zero with finite
variance ΣG > 0. In applications, G will be the centered empirical distribution of the residuals.

Theorem 3.
[
drp2 {Ψn(F ), Ψn(G)}

]2
≤ nr tr

{
(XTX)−1

} {
dr2(F ,G)

}2.
Proof. Let A = X(XTX)−1. Then Ψn(F ) is the law of

√
nεT

n (F )Awhere εn(F ) is the matrix with n rows of independent random
variables ε, having common law F . Ψn(G) can be thought of similarly. Observe that ATA = (XTX)−1. Then, from Lemma 8.9
in Bickel and Freedman (1981), we see that[

drp2 {Ψn(F ), Ψn(G)}
]2

=
(
drp2
[
vec{εT

n (F )A}, vec{εT
n (G)A}

])2
=
(
drp2
[
(AT

⊗ Ir )vec{εT
n (F )}, (A

T
⊗ Ir )vec{εT

n (G)}
])2

≤ n tr
{
(AT

⊗ Ir )(AT
⊗ Ir )T

} {
dr2(F ,G)

}2
= n tr

{
(AT

⊗ Ir )(A ⊗ Ir )
} {

dr2(F ,G)
}2
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= n tr
(
ATA ⊗ Ir

) {
dr2(F ,G)

}2
= n tr

{
(XTX)−1

⊗ Ir
} {

dr2(F ,G)
}2

= nr tr
{
(XTX)−1} {dr2(F ,G)

}2
,

which is our desired conclusion. □

With Theorem 3we can bound the distance between the sample dependent distribution functionsΨn(F ) andΨn(G) by the
distance between their underlying laws. As in Freedman (1981), we proceed with Fn as the empirical distribution function
of ε1, . . . , εn. Let F̃n be the empirical distribution of the residuals ε̂1, . . . , ε̂n from the original regression, and let F̂n be F̃n
centered at its mean µ̂ = n−1∑n

i=1̂εi. Since ε̂ = Y − Xβ̂T , we have ε̂ − ε = −Pε where P is the projection into the column
space of X.

Lemma 1. E2
{
dr2 (̃Fn, Fn)

}
≤ p tr(Σ)/n.

Proof. From the definition of the Mallows metric we have{
dr2 (̃Fn, Fn)

}2
≤ n−1

n∑
i=1

∥̂εi − εi∥
2

= n−1 tr
{
(̂ε − ε)T (̂ε − ε)

}
= n−1 tr

(
εTPε

)
.

From linearity of the expectation with respect to the trace operator,

E
{
tr
(
εTPε

)}
= tr

{
E
(
εTPε

)}
= tr

{
PE
(
εεT )}

≤ tr (P) tr (Σ) = p tr (Σ)

and this completes the proof. □

Lemma 2. E2
{
dr2 (̂Fn, Fn)

}
≤ (p + 1) tr(Σ)/n.

Proof. From Lemma 8.8 in Bickel and Freedman (1981) we have

dr2 (̂Fn, Fn)
2

= dr2{̃Fn − E (̃Fn), Fn − E(Fn)}2 + ∥E(Fn)∥2

= dr2 (̃Fn, Fn)
2
− ∥E (̃Fn) − E(Fn)∥2

+ ∥E(Fn)∥2

≤ dr2 (̃Fn, Fn)
2
+ ∥n−1

n∑
i=1

εi∥
2

with the empirical distribution functions Fn, F̃n, and F̂n used as random variables in the application of Lemma 8.8 in Bickel
and Freedman (1981). We see that

E

(
∥n−1

n∑
i=1

εi∥
2

)
= n−2

⎧⎨⎩E

⎛⎝ n∑
i=1

εT
i εi +

∑
i̸=j

εT
i εj

⎞⎠⎫⎬⎭ = n−1 {E(εT
1ε1)

}
= n−1 tr (Σ) .

Our conclusion follows from Lemma 1. □

These results imply the validity of the bootstrap approximation for the model (1) if we assume that n−1XTX → ΣX > 0.
From Theorem 3,

E
[
drp2 {Ψn (̂Fn), Ψn(F )}

]
≤ nr tr

{
(XTX)−1} dr2 (̂Fn, F )

and because of the metric properties of dr2(·, ·)

1
2
dr2 (̂Fn, F )

2
≤ dr2 (̂Fn, Fn)

2
+ dr2(Fn, F )

2

where Lemma 2 shows that dr2 (̂Fn, Fn)
2
→p∗0 and Lemma 8.4 of Bickel and Freedman (1981) implies that dr2(Fn, F )

2
→p∗0

with the separable Banach space taken to be Rr . The next results are special cases of Lai et al. (1979) which are adapted
from Freedman (1981) to the multivariate setting. We let εj, j = 1, . . . , r , be the column of ε corresponding to the errors of
response Yj.

Lemma 3. n−1XTε → 0 a.s. and β̂ → β a.s.

Proof. Let Aj be the jth column of ε. Then n−1XTε ∈ Rp×r with columns n−1XTε. Lemma 2.3 of Freedman (1981) states
that n−1XTAj → 0 a.s. for any particular j = 1, . . . , r . Therefore n−1XTε → 0 a.s. A similar argument verifies our second
result. □

Lemma 4. n−1 tr
{
(̂ε − ε)T (̂ε − ε)

}
→ 0 a.s.



STAPRO: 8064

Please cite this article in press as: Eck D.J., Bootstrapping for multivariate linear regression models. Statistics and Probability Letters (2017),
https://doi.org/10.1016/j.spl.2017.11.001.

D.J. Eck / Statistics and Probability Letters xx (xxxx) xxx–xxx 7

Proof. A similar argument to that of Lemma 2.4 in Freedman (1981) gives

n−1 tr
{
(̂ε − ε)T (̂ε − ε)

}
= n−1 tr

{
εTX(XTX)−1XTε

}
= tr

{(
n−1εTX

) (
n−1XTX

)−1 (
n−1XTε

)}
.

The center term converges to ΣX > 0 and the left and right terms converge to 0 a.s. by Lemma 3. Our result follows. □

Lemma 5. dr2 (̂Fn, Fn) → 0 a.s. and dr2 (̂Fn, F ) → 0 a.s.

Proof. From the arguments in the proofs of Lemmas 1 and 2 we have that

dr2 (̂Fn, Fn) = dr2 (̃Fn, Fn)
2
− ∥E (̃Fn) − E(Fn)∥2

+ ∥E(Fn)∥2

= ∥n−1
n∑

i=1

εi∥
2
− ∥n−1

n∑
i=1

(̂εi − εi) ∥
2
+ dr2 (̃Fn, Fn)

≤ ∥n−1
n∑

i=1

εi∥
2
+ n−1 tr

{
(̂ε − ε)T (̂ε − ε)

}
which converges to 0 a.s. by Lemma4. Therefore the first convergence result holds. From themetric properties of theMallows
metric we have that

1
2
dr2 (̂Fn, F )

2
≤ dr2 (̂Fn, Fn)

2
+ dr2(Fn, F )

2.

Our second convergence result follows from the first convergence result and Lemma 8.4 of Bickel and Freedman (1981). □

Lemma 6. Let ui and vi, i = 1, . . . , n, be r × 1 vectors. Let

ū = n−1
n∑

i=1

ui, and s2u = n−1
n∑

i=1

(ui − ū)(ui − ū)T

and similarly for v. Then

∥s2u − s2v∥
2
F ≤ ∥n−1

n∑
i=1

(ui − vi)(ui − vi)T∥2
F

where ∥ · ∥F is the Frobenius norm.

Proof. We have

∥s2u − s2v∥
2
F =

n∑
j=1

n∑
k=1

|n−1
n∑

i=1

(ui − ū)j(ui − ū)Tk − n−1
n∑

i=1

(vi − v̄)j(vi − v̄)Tk |
2

≤

n∑
j=1

n∑
k=1

|n−1
n∑

i=1

(ui − vi)j(ui − vi)k|2

= ∥n−1
n∑

i=1

(ui − vi)(ui − vi)T∥2
F ,

where the inequality follows from Freedman (1981, Lemma 2.7). □

The proof of Theorem 1 is now given. Before this theorem, we define the vech(A) ∈ Rp(p+1)/2×1 operator to be the function
that stacks the unique p(p + 1)/2 elements of any symmetric matrix A ∈ Rp×p.

Proof. Exchange F̂n for G in Theorem 3 and observe that

drp2
{
Ψn(F ), Ψn (̂Fn)

}
≤ nr tr

{
(XTX)−1} dr2(F , F̂n)2.

From Lemma 5 we know that dr2(F , F̂n)2 → 0 almost everywhere. Our result for part (a) follows since F is mean-zero normal
with variance Σ−1

X ⊗ Σ . We now show that part (b) holds. First, we need to establish that Σ̂ → Σ almost everywhere. To
see this, introduce

Σn = n−1
n∑

i=1

εiε
T
i −

(
n−1

n∑
i=1

εi

)(
n−1

n∑
i=1

εi

)T

.
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Clearly, Σn → Σ a.s. Let Cn = n−1∑n
i=1

(
ε̂i − εi

) (
ε̂i − εi

)T . We have,

∥Σ̂ − Σn∥
2
F ≤ ∥Cn∥

2
F = tr(CnCn) ≤ tr2(Cn)

= tr2
{
n−1

n∑
i=1

(̂εi − εi)T (̂εi − εi)

}
= tr2

{
n−1 (̂ε − ε)T (̂ε − ε)

}
→ 0

a.s. where the first inequality follows from Lemma 6 with Σ̂n and Σn taking the place of s2u and s2v respectively, the second
inequality follows from the fact that Cn is positive definite a.s., and the convergence follows from Lemma 4.

Let Dn = E
(
∥Σ̂∗

n − Σ∗
n∥F | Y1, . . . , Yn

)
. From Lemma 6 and the proof of Lemma 1 we see that,

Dn ≤ E

{
∥n−1

n∑
i=1

(̂
ε∗

i − ε∗

i

) (̂
ε∗

i − ε∗

i

)T
∥F | Y1, . . . , Yn

}
≤ E

[
tr
{
n−1 (̂ε∗

− ε∗)T (̂ε∗
− ε∗)

}
| Y1, . . ., Yn

]
≤ p tr

(
Σ̂
)
/n

where the last inequality follows from the argument that proves Lemma 1 applied to the starred data, and p tr
(
Σ̂
)
/n → 0

a.s. It remains to show that Σ̂∗
n converges to Σ . Conditional on Y1, . . . , Yn,

dr(r+1)/2
2

{
n−1

n∑
i=1

vech(ε∗

i ε
∗
T

i ), n−1
n∑

i=1

vech(εiεT
i )

}

≤ dr(r+1)/2
2

{
vech(ε∗

1ε
∗
T

1 ), vech(ε1εT
1 )
} (6)

by Lemma 8.6 in Bickel and Freedman (1981). Now ε∗ has conditional distribution F̂n and ε has law F and Lemma 5
gives dr2

(̂
Fn, F

)
→ 0 almost everywhere. We now show that d1

{
vech(ε∗

1ε
∗
T

1 ), vech(ε1εT
1 )
}

→ 0 a.s. by Lemma 8.5

of Bickel and Freedman (1981) with φ(x) = vech
(
xxT
)
where x ∈ Rr . To do this, we show that K can be chosen so that

∥φ(x)∥1 ≤ K (1 + ∥x∥2
2) where ∥ · ∥1 and ∥ · ∥2 are the L1 and L2 norms respectively. From the definition of the Euclidean

norm, we have ∥x∥2
2 =

∑r
i=1x

2
i . It is clear that x

2
i + x2j ≥ 2|xixj| for all i, j = 1, . . . , r . Now, pick K =

( r
2

)
+ 1. We see that

K (1 + ∥x∥2
2) ≥

⏐⏐⏐ r∑
i=1

x2i +

( r
2

) r∑
i=1

x2i
⏐⏐⏐ ≥

⏐⏐⏐ r∑
i=1

x2i +

r∑
i̸=j

|xixj|
⏐⏐⏐

≥

⏐⏐⏐ r∑
i≥j

|xixj|
⏐⏐⏐ ≥ ∥vech

(
xxT
)
∥1 = ∥φ(x)∥1.

A similar argument shows that 1/n
∑n

i=1ε
∗

i converges to 0. Part (c) follows from both (a) and (b). □

4.2. Random design and heteroskedasticity

In this section we provide the proof of Theorem 2. Several quantities and lemmas are introduced in order to prove
Theorem 2. The logic follows that of Freedman (1981, Section 3). Define,

Σ(µ) =

∫
xxTµ(dx),

β(µ) =

∫
yxTµ(dx, dy)Σ(µ)−1,

ε(µ, x, y) = y − β(µ)xT .

The next two lemmas are needed to prove Theorem 2.

Lemma 7. If dp+r
4 (µn, µ) → 0 as n → ∞, then

(a) Σ(µn) → Σ(µ) and β(µn) → β(µ),
(b) the µn-law of vec{ε(µn, x, y)xT } converges to the µ-law of vec{ε(µ, x, y)xT } in drp2 ,
(c) the µn-law of ∥ε(µn, x, y)∥2 converges to the µ-law of ∥ε(µ, x, y)∥2 in d1.

Proof. Part (a) immediately follows from Bickel and Freedman (1981, Lemma 8.3c).
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We use (Bickel and Freedman, 1981, Lemma 8.3a) to verify part (b). The weak convergence step is evident. Now,

∥vec{ε(µn, x, y)xT }∥2
= ∥vec{yxT − β(µn)xxT }∥2

= ∥vec(yxT )∥2
+ ∥vec(β(µn)xxT )∥2

− 2vec(yxT )Tvec{β(µn)xxT }.

Let z = (xT , yT )T . Part (b) follows from, integration with respect to µn, part (a), and Bickel and Freedman (1981, Lemma
8.5) with φ(z) = vech(zzT ). The steps involving (Bickel and Freedman, 1981, Lemma 8.5) are similar to those in the proof of
Theorem 1.

Part (c) follows from the same argument used to prove part (b). □

Lemma 8. dp+r
4 (µn, µ) → 0 a.e. as n → ∞.

Proof. The steps are the same as those in Freedman (1981, Lemma 3.2). □

The proof of Theorem 2 is now given.

Proof. We can write

vec
{√

n
(
β̂∗

− β̂

)}
= vec

[√
n
{
Y∗

T
X∗(X∗

T
X∗)−1

− β̂

}]
= vec

[√
n
{
(ε∗

+ X∗β̂T )TX∗(X∗
T
X∗)−1

− β̂

}]
= vec

{
n−1/2ε∗

T
X∗(n−1X∗

T
X∗)−1

}
= vec

(
Z∗W ∗

−1
)

=

(
W ∗

−1
⊗ Ir

)
vec(Z∗)

where Z∗
= n−1/2ε∗

T
X∗ and W ∗

= n−1X∗
T
X∗. Freedman (1981, Theorem 3.1) implies that the conditional law, conditional

on (Xi, Yi), i = 1, . . . , n, ofW ∗
→p∗ΣX . This verifies part (a).

We now verify part (b). From Bickel and Freedman (1981, Lemma 8.7), we have

drp2
{
vec(Z∗), vec(Z)

}2
≤ drp2

{
vec(X∗

i ε∗
T

i ), vec(Xiε
T
i )
}2

where the right side goes to 0 a.e. as n → ∞. Lemma 8 states that µn → µ a.e. in dr+p
4 as n → ∞ and part (b) of

Lemma 7 implies that the distribution of vec(Z∗), conditional on (Xi, Yi), i = 1, . . . , n, converges to vec(Z). The random
variable vec(Z) is normally distributed with mean 0 and variance matrix M . Combining this with part (a) verifies that the
conditional distribution of

(
W ∗

−1
⊗ Ir

)
vec(Z∗) converges to

(
Σ−1

X ⊗ Ir
)
vec(Z) as n → ∞. This completes the proof of

part (b).
Part (c) follows from the same argument in the proof of Theorem 1 where Lemmas 8 and 7(c) combine to show that (6)

converges to 0 as n → ∞. Note that ε∗

1 = Y ∗

1 − β̂X∗

1 in this argument. This completes the proof. □
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