Possibilistic linear regression with fuzzy data: Tolerance approach with prior information

Michal Černý, Milan Hladík

PII: S0165-0114(17)30371-8
DOI: https://doi.org/10.1016/j.fss.2017.10.007
Reference: FSS 7308

To appear in: Fuzzy Sets and Systems

Received date: 16 August 2016
Revised date: 15 August 2017
Accepted date: 14 October 2017

Please cite this article in press as: M. Černý, M. Hladík, Possibilistic linear regression with fuzzy data: Tolerance approach with prior information, Fuzzy Sets Syst. (2017), https://doi.org/10.1016/j.fss.2017.10.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Possibilistic Linear Regression with Fuzzy Data: Tolerance Approach with Prior Information

Michal Černýa,*, Milan Hladíka,b

aDepartment of Econometrics, University of Economics in Prague, Winston Churchill Square 4, 13067 Prague 3, Czech Republic.
bDepartment of Applied Mathematics, University of Mathematics and Physics, Charles University in Prague, Malostranské náměstí 25, 11000 Prague 1, Czech Republic.

Abstract

We introduce the tolerance approach to the construction of fuzzy regression coefficients of a possibilistic linear regression model with fuzzy data (both input and output). The method is very general: the only assumption is that \(\alpha \)-cuts of the fuzzy data are efficiently computable. We take into account possible prior restrictions of the parameters space: we assume that the restrictions are given by linear and quadratic constraints. The method for construction of the possibilistic regression coefficients is in a reduction of the fuzzy-valued model to an interval-valued model on a given \(\alpha \)-cut, which is further reduced to a linear-time method (i.e., running in \(O(np) \)) computing with endpoints of the intervals. The speed of computation makes the method applicable for huge datasets.

Unlike various approaches based on mathematical programming formulations, the tolerance-based construction preserves central tendency of the resulting regression coefficients. In addition, we prove further properties: if inputs are crisp and outputs are fuzzy, then the construction preserves piecewise linearity and convex shape of fuzzy numbers. We derive an \(O(n^2p) \)-algorithm for enumeration of breakpoints of the membership function of the estimated coefficients. (Here, \(n \) is the number of observations and \(p \) is the number of regression parameters). Similar results are also derived for the fuzzy input-and-output model.

We illustrate the theory for the case of triangular and asymmetric Gaussian fuzzy inputs and outputs of an inflation-consumption model.

Keywords: Possibilistic regression, fuzzy regression, linear regression, constrained regression, tolerance quotient

*Corresponding author

Email addresses: cernym@vse.cz (Michal Černý), milan.hladik@matfyz.cz (Milan Hladík)

Preprint submitted to Fuzzy Sets and Systems October 26, 2017
1. Introduction

1.1. Traditional regression with crisp data. Notation.

General formulation. We consider the linear regression model

\[y_i = x_i^T \beta + \varepsilon_i, \quad i = 1, \ldots, n, \]

(1)

where the vector of regression parameters \(\beta = (\beta_1, \ldots, \beta_p)^T \) is unknown and is to be estimated. The data \(y = (y_1, \ldots, y_n)^T \) are called outputs and the data \(x_i = (x_{i1}, \ldots, x_{ip})^T, i = 1, \ldots, n \), are called inputs. The matrix \(X = (x_1, \ldots, x_n)^T \) is the matrix of regressors. The symbol \(\varepsilon_i \) stands for the random error.

Parameter space. The parameter space is denoted by \(B \). It formalizes prior information about \(\beta \): it is assumed that \(\beta \in B \). The structure of \(B \) usually arises from the physical, technical or economic meaning of regression parameters.

We consider either the unconstrained case, where \(B = \mathbb{R}^p \), or the constrained case, where we assume constraints of the form

\[B = \{ b \mid Ub \leq z, \|Cb - d\|_2 \leq g \} \]

with known \(U, z, C, d, g \). (Inequalities are understood componentwise.) For example, when the regression parameters are a priori known to be nonnegative, then \(U = -I_{p \times p}, z = 0_{p \times 1} \) and \(C, b, g \) are empty.

A regression problem is then given by a triple \((y, X, B)\).

1.2. The possibilistic regression concept with crisp data.

In traditional regression the task is to estimate the parameters \(\beta \in B \) from the data \((y, X)\). In possibilistic regression, the task is to compute a feasible solution of the problem \((y, X)\), which is a set \(B \subseteq \mathbb{R}^p \) such that

\[(\forall i)(\exists b \in B) y_i = x_i^T b. \]

(2)

In addition, the task is to find a feasible solution which is, in a sense, minimal, or “the best”; this will be formalized later in Sections 3.2 and 3.3.

The condition (2) tells us that the \(i \)-th data point \((y_i, x_i)\) is covered by \(B \).

Observe that this is a distribution-free approach — indeed, contrary to the probabilistic linear regression model, distributional assumptions on the error term \(\varepsilon_i \) in (1) are not necessary. This corresponds to the well-known Tanaka’s possibilistic model from 1980’s; for a more detailed explanation see e.g. [1].

Remark 1. Possibilistic regression has been studied by several authors (see e.g. [1]) as a method complementary to traditional regression. The main goal of traditional regression is to capture the average behavior of the system modeled by (1); this is how estimators, such as least squares, are usually designed. Possibilistic regression belongs to the class of data envelopment methods, where the main goal is to capture also the best-case and worst-case behavior of the system.
This viewpoint is useful e.g. in civil engineering — when building bridges, we usually prefer that they would not fall down even in the worst case, rather than on average.

2. Linear regression with fuzzy data: State-of-the-art and problem formulation

Basically, there are two concepts to fuzzy linear regression. The first one is based on the model (1) with random error terms. The objective is usually to minimize the total sum of squares of the errors, extending the least squares method to the fuzzy environment. One of the early works was Diamond [2]. Later, it was extended by many authors including Černý et al. [3] for enclosing the set of least square solutions of interval data, Gu et al. [4] for an improved regression method proving statistical properties known for the crisp case, D’Urso [5] for constrained and unconstrained estimation, or D’Urso & Gastaldi [6] and Muzzioli et al. [7] for an extension to polynomial fuzzy regression.

Interval data can be understood either in the *ontic* or *epistemic* sense [8]. Since fuzzy data can be understood as generalized interval data [40], they inherit one of the interpretations, too. In the epistemic interpretation of interval data, an interval is a model for imprecise information about a real number which is not known exactly but can bounded both from above and from below. In the ontic interpretation, an interval represents a precise entity and data are intrinsically given by intervals. The results of this paper – which studied properties of estimation methods for regression models – do not lean on the first or the latter interpretation of data. However, the interpretation of data is essential for the choice of the regression methodology. We study the possibilistic regression. This methodology is suitable namely for epistemic data since the possibilistic paradigm takes into account all possible realizations of the real-valued data in the observed intervals.

Possibilistic approach. Our paper is focussed on the second concept, which is the possibilistic regression. It does not consider error terms, and the deviations in the observations are viewed as fuzziness of the model. The aim is to find fuzzy parameters minimizing the total spread of the parameters while keeping feasibility in the sense of (2).

Since the pioneering works by Tanaka and others [9, 10, 11, 1], there has been an intensive research in this area. Jung et al. [12] adapt the rank transform method to fuzzy linear regression. Ishibuchi & Nii [13] investigate symmetric and asymmetric fuzzy coefficients and present several solving methods, including fuzzified neural networks. Zeng et al. [14] propose a least absolute method using a new distance between triangular fuzzy numbers. Data envelopment analysis algorithm is integrated with fuzzy regression by Azadeh et al. [15], and goal programming approach to deviation minimization is considered by Hojati et al. [16]. Estimation of the fuzzy regression model to some prescribed degree as well as regularization terms were discussed by Ge et al. [17].

A serious drawback of the early models was that they put too much effort to envelop the observed data and minimizing the total spread, but less effort was
spent on right identification of the tendency. This is called a central tendency problem, and usually it is resolved by a two phase approach (cf. Section 3.2). In the first phase, a central tendency is identified, and in the second phase a covering of the data is computed. As an alternative approach, Bisserier et al. [18, 19] introduce the idea of a shift, enabling to control the model tendency. Wang & Tsaur [20] improve the Tanaka’s model by considering the objective function to minimize the total overestimation of the spread of the fuzzy parameters.

In [21], the authors proposed a tolerance approach to possibilistic regression for interval data. It applies the two phase method: First we recognize the central tendency, and then we calculate the optimal spread having a prescribed structure; see Section 3.3. Other advantage is that it is also computationally very cheap. Indeed, it has optimal computational complexity since its running time is proportional to the size of data, so it is applicable for very huge problems. Moreover, it is also convenient for handling outliers. All these advantages motivate us to extend this technique, originally developed for interval data, into the fuzzy context and consider the parameters to be fuzzy as well. Via \(\alpha \)-cuts, some of the properties of interval regression can be conveyed to fuzzy regression. Nevertheless, the fuzzy environment is more general and complex, bringing new questions and challenges.

Other approaches. Besides the aforementioned least square and possibilistic regression models, there were other methods developed, too. As observed by Muzzioli & Reynaerts[22], there is a link between fuzzy linear regression and interval systems of linear equations. A generalized concept of solutions of interval systems enables \(\forall \exists \)-quantification of interval parameters [23, 24]. In this context, the possibilistic regression can be viewed as tolerable solutions, which are characterized by universal quantifiers in the constraint matrix and existential quantifiers in the right-hand-side. Similarly, necessity regression [25, 26, 27, 28, 10, 29, 11] can be viewed as controllable solutions in interval systems, which are characterized by the converse quantification.

Applications. It is not possible to mention all the real-life problems that were solved by an approach of fuzzy linear regression. Just to mention some of them, the applications raise in house pricing problems [30] and estimating effects of price on electricity consumption [31, 32], transport data forecasting [33], forecasting in financial markets [34, 35, 7], analysis of technology developments [36], estimation of oil consumption [15], environmental processes analysis such as sediment motion [37], solar radiation prediction [38], or estimation of CO\(_2\) adsorption onto solids [39].

2.1. Notation.

In this paper, fuzzy data are understood as a generalization of interval data according to Dubois and Prade [40] and Fortin [41]. A fuzzy data point can be defined as a family of \(\alpha \)-cuts, which are nested intervals. In literature it is usual to speak about “fuzzy numbers” for short and so do we in this paper (although the terms “generalized interval” or “fuzzy interval” might be more appropriate). We would like to point out the discussion from Dubois and Prade [40]:
However, there is a recurrent confusion in the literature between the words “fuzzy” and other words or phrases like “imprecise”, “inexact”, “incompletely specified”, “vague” that rather refer to a lack of sufficient information. For instance, what is often called a fuzzy number is understood as a generalized interval, not as a generalized number. The calculus of fuzzy numbers is an extension of interval analysis.

In this sense, the fuzzy regression models studied in this paper naturally generalize regression models with interval-valued data. And our methodology basically consists in a reduction of fuzzy models into a family of nested interval models. The fuzzy arithmetic used in this paper is a natural generalization of the interval arithmetic, too.

For a fuzzy number \(\tilde{a} \), let \(\mu_{\tilde{a}} \) denote its membership function. For the sake of simplicity of exposition, we restrict ourselves to the class of fuzzy numbers with unimodal membership functions. The presented results are, however, valid even for interval modus. Under our assumption, let \(\text{mod}_{\tilde{a}} \) denote the unique modus. We say that \(\tilde{a} \) is piecewise linear if \(\mu_{\tilde{a}} \) is a piecewise linear function. We say that \(\tilde{a} \) is convex-shaped if the function \(\mu_{\tilde{a}} \) is convex on the interval \((-\infty, \text{mod}_{\tilde{a}})\) as well as on the interval \((\text{mod}_{\tilde{a}}, \infty)\). We define \(\tilde{a} \subseteq \tilde{b} \) if \(\mu_{\tilde{a}}(\xi) \leq \mu_{\tilde{b}}(\xi) \) for all \(\xi \).

Closed intervals are denoted in boldface. They can be represented either by endpoints or by the center and radius:

\[
a = [a, b] = [a^c - a^\Delta, a^c + a^\Delta].
\]

A similar notation \(A, A^c, A^\Delta \) is used for an interval matrix (or vector) \(A \).

The space of \((m \times n)\) interval matrices is denoted by \(\mathbb{I}R^{m \times n} \). Interval arithmetic is defined naturally \([42, 43]\):

\[
a + b = [a + b, \mu(a + b)],
a - b = [a - b, \mu(a - b)],
a \cdot b = [\min(\mu(a)b, a\mu(b)), \max(ab, a\mu(b), \mu(a)b)].
\]

The \(\alpha \)-cut of a fuzzy number \(\tilde{a} \) is an interval denoted by \(a^\alpha = [a^\alpha, a^\pi] \), where \(a^\alpha = \inf \mu_{\tilde{a}}(\xi) \geq \alpha \) and \(a^\pi = \sup \mu_{\tilde{a}}(\xi) \geq \alpha \). We say that \(\tilde{a} \) is bounded if \(a^\alpha = a^\pi = \text{mod}_{\tilde{a}} \) is bounded; otherwise \(\tilde{a} \) is unbounded. Arithmetic on fuzzy numbers is defined via \(\alpha \)-cuts: for fuzzy numbers \(\tilde{a}, \tilde{b}, \tilde{c} \) and an operation \(\circ \in \{+,-,\times\} \) we have \(\tilde{c} = \tilde{a} \circ \tilde{b} \) if \(c^\alpha = a^\alpha \circ b^\alpha \) for every \(\alpha \in (0, 1] \).

The absolute value \(|A| \) of a real-valued matrix (vector) \(A \) is understood componentwise.

2.2. Feasibility.

As we mentioned, we follow the traditional possibilistic approach to fuzzy regression. We naturally generalize the feasibility concept to take into account the (possibly) restricted parameter space \(\mathfrak{B} \). First we define the notion of feasibility for the special case when \(X \) is crisp (“crisp-input-fuzzy-output model”).
Definition 2. A fuzzy vector \tilde{b} is a feasible solution of the possibilistic regression problem $(\tilde{y}, X, \mathfrak{B})$ if

$$
(i) \quad \tilde{y} \subseteq X\tilde{b} \quad \text{and} \quad (ii) \quad b^{\alpha=0} \subseteq \mathfrak{B}.
$$

Remark 3. We could have used a more general definition: a set is γ-feasible if $\tilde{y} \subseteq X\tilde{b}$ and $b^{\alpha} \subseteq \mathfrak{B}$ for all $\alpha \geq 1 - \gamma$. Here, 1-feasibility is the same as feasibility in the sense of Definition 2. The γ-definition would not make any difference in the forthcoming theory; it is straightforward to generalize it from 1-feasibility to γ-feasibility and this is left to the reader.

Condition (i) in (3) can be restated in terms of α-cuts:

$$
(\forall \alpha)(\forall y \in y^{\alpha})(\exists i)(\exists b \in b^{\alpha}) \quad y_i = x_i^T b,
$$

showing that Definition 2 indeed generalizes (2) in the sense that “all data must be covered by \tilde{b}, on every α-level”. For these types of set inclusion properties, interval arithmetic is an appropriate tool because it produces guaranteed bounds. Therefore, we work in this setting even though alternative approaches such as stochastic arithmetic [44] exist.

When both (\tilde{y}, \tilde{X}) are fuzzy (“fuzzy-input-fuzzy-output model”), we make another natural step in generalization of the definition.

Definition 4 (fuzzy-input-fuzzy-output model). A fuzzy vector \tilde{b} is a feasible solution of the possibilistic regression problem $(\tilde{y}, \tilde{X}, \mathfrak{B})$ if

$$
(i) \quad (\forall \alpha)(\forall y \in y^{\alpha})(\forall X \in X^{\alpha})(\exists i)(\exists b \in b^{\alpha}) \quad y_i = x_i^T b \quad \text{and} \quad (ii) \quad b^{\alpha=0} \subseteq \mathfrak{B}.
$$

Observe that Definition 2 is a special case of Definition 4 for X crisp. Definition 4 again follows the possibilistic paradigm and tells us that every possible data point $X \in X^{\alpha}$ and $y \in y^{\alpha}$ must be covered.

2.3. Organization of the paper.

We consider separately two questions: (i) testing whether a given solution is feasible for the model (\tilde{X}, \tilde{y}); and (ii) how to find a feasible solution \tilde{b} which is in a sense “the best one”, or “the minimal one”. Step (ii) will be done in terms of the tolerance approach in Section 3.3.

First we develop the tolerance approach for crisp-valued data (Section 3) and interval-valued data (Section 4). Then, its application to α-cuts of (\tilde{y}, \tilde{X}) yields the method for fuzzy data. We will prove several interesting properties of the constructed coefficients \tilde{b}. Section 5 is devoted to the crisp-input-fuzzy-output model and Section 6 is devoted to the most general fuzzy-input-fuzzy-output model.
3. Crisp data

3.1. Feasibility.

We are to test whether a given $B \subseteq \mathbb{R}^p$ is feasible for a given crisp dataset (y, X). For the forthcoming theory it will be sufficient to restrict to the case when B is a p-dimensional interval (but the question is interesting for more general sets B, too).

Theorem 5. Let $B = \{b \mid Ub \leq z, \|Cb - d\| \leq g\}$. Then an interval vector $b \in \mathbb{R}^p$ is feasible if and only if the following system is solvable:

\begin{align}
Xb^c - |X|b^A &\leq y \leq Xb^c + |X|b^A, \\
Ub^c + |U|b^A &\leq z, \\
Cb^c + |C|b^A - d &\leq h, \\
-Cb^c + |C|b^A + d &\leq h, \quad \|h\| \leq g.
\end{align}

Proof. The constraint (4a) follows from the reformulation of $y \subseteq Xb$ as $y \in Xb = [Xb^c - |X|b^A, Xb^c + |X|b^A]$; see e.g. [42, 43].

The condition $Ub \leq z \forall b \in b$ can be reformulated as $Ub^c + |U|b^A \leq z$ since again $Ub = [Ub^c - |U|b^A, Ub^c + |U|b^A]$.

Eventually, the third condition $\|Cb - d\| \leq g \forall b \in b$ can be reformulated as $|Cb - d| \leq h, \|h\| \leq g \forall b \in b$. Since $\max_{b \in b} |Cb - d| = |Cb^c - d| + |C|b^A$, the remaining constraints follow.

Notice that (4) are linear and convex quadratic constraints, which are easily checked for solvability. Provided B contains linear inequalities only, then all constraints in (4) are linear, too.

3.2. Finding a solution: General discussion.

If (4) is solvable, then it typically has infinitely many solutions. That is why a suitable solution must be chosen. In accordance with [45, 28, 10, 29, 11], we can utilize the linear programming problem

$$
\min \sum_{i=1}^{p} b_i^A \text{ subject to } (4),
$$

or the convex quadratic programming problem

$$
\min \sum_{i=1}^{p} (b_i^A)^2 \text{ subject to } (4).
$$

As it was several times mentioned [21, 27, 46, 29], these approaches suffer from several drawbacks. In particular, they often do not respect the central tendency. Central tendency is the following property: given a solution b, its center b^c should provide a reasonable fit for data (y, X) with respect to the traditional goodness-of-fit measures, such as R-squared.
3.3. Tolerance approach.

Step 1. First we determine the center b^c, whose central tendency we want to respect, by traditional data fitting methods. For example, we can use the least squares $b^c = (X^T X)^{-1} X^T y$.

Step 2. Let a scaling vector $c \geq 0$, $c \neq 0$, called tolerance vector, be given by a user. We seek for $b^δ \in \mathbb{R}^p$ in the form

$$b^δ = [b^c - δc, b^c + δc].$$

The coefficient $δ \geq 0$ is called tolerance quotient. We say that $δ$ is feasible if $b^δ$ is feasible.

By introduction of the user-specified tolerance vector c we can control the widths of the resulting intervals $b^δ_i$. Typically, it is chosen as $c := (1, \ldots, 1)^T$ for absolute tolerances and $c := |b^c|$ for relative tolerances. Nevertheless, it can be be set up in any other way depending on the significance of parameters and decision maker’s preferences. For example, setting $c_i = 0$ forces $b^δ_i$ to be crisp; this is useful e.g. when the value b^c_i is assumed to be known exactly.

Case I: \mathcal{B} is unconstrained. The minimal $δ \geq 0$ such that all observations are covered is called optimal. It is denoted by $δ^*$, and is computed as follows.

Theorem 6 ([21]). If there is $i \in \{1, \ldots, n\}$ such that $|x_i^T c| = 0$ and $y_i \neq x_i^T b^c$ then there exists no feasible $δ$. Otherwise,

$$δ^* = \max_{i : |x_i^T c| > 0} \frac{|y_i - x_i^T b^c|}{|x_i^T c|},$$

where $\max \emptyset = 0$ by definition.

Case II: \mathcal{B} is constrained. For the constrained case, feasibility of $b^δ^*$ can be easily tested by Theorem 5.

Case III: \mathcal{B} is constrained only by linear constraints $Ub \leq z$. In this case, we do not need Theorem 5 in its full generality. We can easily compute the maximal $δ^1 \geq 0$ such that $b^{δ^1} \subseteq \mathcal{B}$ as

$$δ^1 = \min_{i : |u_i^T c| > 0} \frac{|y_i - u_i^T b^c|}{|u_i^T c|},$$

where u_i^T is the i-th row of U.

Theorem 7. If $δ^* \leq δ^1$, then $δ^*$ is feasible.

Remark 8. If $δ^* > δ^1$, then we can try to extend $b^{δ^*}$ to a feasible interval vector $b \supseteq b^{δ^1}$ such that central tendency and scaling vector is maximally respected. This is exactly the technique developed in [47, 48]. However, even this approach

That is why we employ the successful tolerance approach developed in [21]: first, we fix the center b^c by traditional crisp-data fitting methods and then we extend the centers to intervals, assuring feasibility and minimality.
does not guarantee feasibility, so in that case it seems better to employ some optimization problem discussed in Section 3.2. Alternatively, we can try to find a minimal perturbation of c such that the tolerance approach will be solvable. This leads to the optimization problem

$$\min_{b^\Delta \in \mathbb{R}^p} \|c - b^\Delta\| \quad \text{subject to} \quad Xb - |X|b^\Delta \leq y \leq Xb + |X|b^\Delta,$$

$$Ub + |U|b^\Delta \leq z,$$

$$Cb + |C|b^\Delta - d \leq h,$$

$$-Cb + |C|b^\Delta + d \leq h, \quad \|h\| \leq g.$$

Provided we use the Euclidean norm, this is a convex quadratic programming problem. Provided we employ ℓ_1 or ℓ_∞-norm and there are no quadratic constraints in \mathcal{B}, then it is a linear program.

4. Interval-valued data

Interval regression was intensively investigated in the recent decades. The possibilistic concept for interval data was originally developed by Tanaka et al. [9] (see also [10, 29]) and it has been applied in a number of practical problems.

There are different methods used for possibilistic regression. The basic one employs a linear programming formulation [45, 28, 10, 11]. It is quite simple and requires small computational effort. However, this method suffers from several undesirable properties. Often some of the estimated regression parameters tend to be crisp while it simultaneously produces a few of unexpectedly wide interval parameters [25, 49, 27, 29]. The second undesirable property is non-centrality discussed in Section 3.2.

To overcome these drawbacks, various alternative methods have been proposed. A quadratic programming model was proposed in Tanaka & Lee [29]. Boukezzoula et al. [50] suggest the midpoint-radius representation of interval parameters. Recently, a lot of effort was done in interval regression analysis using support vector machines [51, 52, 53, 25, 49, 54, 55, 56]. In [21], a tolerance based approach was presented: It not only overcomes the above mentioned drawbacks, but also is efficiently computable. That is why our method is based on this approach.

First we consider the crisp-input-interval-output case (y, X). Then we turn the interval-input-interval-output case (y, X).

4.1. Crisp-input-interval-output model

Feasibility. Let a dataset (y, X) be given with interval $y = [\underline{y}, \overline{y}]$. Now, an interval vector $b \in \mathbb{R}^p$ is feasible for the problem (y, X) if $(\forall i) (\forall \overline{y}_i \in y_i) (\exists b \in b) \ y_i = x_i^T b$, or $y \subseteq Xb$ for short. As in Theorem 5, feasibility can be easily verified.
Theorem 9. Let $B = \{ b : |Ub| \leq z, ||Cb - d|| \leq g \}$. The interval vector b is feasible iff

\begin{align*}
Xb^c - |X|b^A & \leq \underline{y}, \\
Xb^c + |X|b^A & \geq \overline{y}, \\
Ub^c + |U|b^A & \leq z, \\
Cb^c + |C|b^A - d & \leq h, \\
-Cb^c + |C|b^A + d & \leq h, ||h|| \leq g.
\end{align*}

Finding a solution: General discussion. One of the first approaches [45, 28, 10, 11] was to solve the LP problem

\[
\min_{b^c, b^A} \sum_{i=1}^{n} |x_i^T b^A| \quad \text{s.t.} \quad \underline{y}_i \geq x_i^T b^c - |x_i^T b^A|, \quad i = 1, \ldots, n,
\]

\[
\overline{y}_j \leq x_j^T b^c + |x_j^T b^A|, \quad i = 1, \ldots, n,
\]

and it is not surprising that the non-centrality problem is here analogous to the discussion of Section 3.2. Again, we resolve it by the tolerance approach.

Tolerance approach. Let a crisp estimate \overline{b}^c be given; say for example that it results from centralized least squares $\overline{b}^c = (X^T X)^{-1} X^T \overline{y}^c$. Let the vector of tolerances $\overline{c} \geq 0, \overline{c} \neq 0$ be given. We are to find the minimum tolerance quotient δ^* such that $b^{\delta^*} = [\overline{b}^c - \delta^* \overline{c}, \overline{b}^c + \delta^* \overline{c}]$ is feasible for (\overline{y}, X). This question can be reduced to the crisp-data case. (We do not discuss feasibility of b^{δ^*} in B any more since feasibility can be tested by Theorem 9.)

Theorem 10 ([21]). For $i = 1, \ldots, n$ let

\[
z_i := \begin{cases}
\underline{y}_i, & \text{if } |\underline{y}_i - x_i^T \overline{b}^c| \geq |\overline{y} - x_i^T \overline{b}^c|, \\
\overline{y}_i & \text{otherwise}.
\end{cases}
\]

Compute δ^* from (6) with data (z, X). Then, δ^* is the optimal tolerance quotient for (\overline{y}, X).

4.2. Interval-input-interval-output model

Feasibility. In the possibilistic approach to regression, feasibility corresponds to existence of an interval vector $b \in IR^p$ such that $(\forall i)(\forall X \in X)(\forall y \in y)(\exists b \in B) y_i = x_i^T b$. Said informally, b must cover every data point $X \in X$ and $y \in y$. 4

\[10\]
Theorem 11. Let \(B = \{ b \mid Ub \leq z, \|Cb-d\| \leq g\} \). Then an interval vector \(b \) is feasible if and only if

\[
\begin{align*}
\bar{y}_i & \leq \sum_j d_{ij}, \\
\underline{y}_i & \leq \sum_j d_{ij}, \\
d_{ij} & \leq X_{ij} b^c_j - |X_{ij}| b^d_j, \\
d_{ij} & \leq X_{ij} b^c_j - |X_{ij}| b^d_j, \\
d_{ij} & \leq 0 \text{ if } 0 \in X_{ij}, \\
\underline{y}_i & \geq \sum_j g_{ij}, \\
g_{ij} & \geq X_{ij} b^c_j + |X_{ij}| b^d_j, \\
g_{ij} & \geq X_{ij} b^c_j + |X_{ij}| b^d_j, \\
g_{ij} & \geq 0 \text{ if } 0 \in X_{ij}, \\
Ub + |U| b^\Delta & \leq z, \\
Cb + |C| b^\Delta - d & \leq h, \\
-Cb + |C| b^\Delta + d & \leq h, \\
\|h\| & \leq g,
\end{align*}
\]

is feasible.

Proof. The interval vector \(b \) is feasible if and only if \(b \subseteq B \) and

\[
y \subseteq Xb \quad \forall X \in X.
\]

The latter can be expressed as

\[
\bar{y} \leq \underline{X}b, \quad \underline{y} \geq Xb, \quad \forall X \in X.
\]

Since \(\underline{X}b = Xb^c + |X| b^\Delta \), we can write the first inequality as \(\bar{y} \leq Xb^c + |X| b^\Delta \forall X \in X \). The function \(Xb^c + |X| b^\Delta \) is piecewise linear, so its minimum is attained at \(X_{ij} \in \{\underline{X}_{ij}, \overline{X}_{ij}, 0\} \). Introducing an auxiliary vector of variables \(d_{ij} \), we can equivalently write the inequality as

\[
\begin{align*}
\bar{y}_i & \leq e^T d_i, \quad d_{ij} \leq X_{ij} b^c_j + |X_{ij}| b^d_j, \\
d_{ij} & \leq X_{ij} b^c_j + |X_{ij}| b^d_j, \\
d_{ij} & \leq 0 \text{ if } 0 \in X_{ij},
\end{align*}
\]

where \(e = (1, \ldots, 1)^T \). Similarly we proceed for the other inequalities. Eventually, the condition \(b \subseteq B \) is handled as in the proof of Theorem 5. \(\square \)

The system (9) is linear, so its feasibility can be checked by means of linear programming. Notice, however, that the system has a large number of variables \((d_{ij}, g_{ij}, h_k \text{ and possibly } b^c, b^\Delta) \), similarly to (5)). That is why a computationally cheaper method might be desirable. Below, we propose simpler approach, but we pay for the lower computational cost by strength since it works as a sufficient condition only.
Theorem 12. Let $\mathfrak{B} = \{b \mid Ub \leq z, \|Cb - d\| \leq g\}$. Then an interval vector b is feasible if

\begin{align*}
\mathcal{A} & \geq c b c - \mathcal{B} |c b c| - (|c| + \mathcal{A})b \geq y, \quad (10a) \\
X c b c + \mathcal{B} |c b c| + (|c| + \mathcal{A})b & \leq y, \quad (10b) \\
U b c + |U|b & \leq z, \quad (10c) \\
C b c + |C|b - d & \leq h, \quad (10d) \\
-C b c + |C|b + d & \leq h, \quad (10e)
\end{align*}

is feasible.

Proof. We already know that the interval vector b is feasible if and only if

\begin{align*}
\mathcal{A} & \geq c b c - \mathcal{B} |c b c| - (|c| + \mathcal{A})b \geq y, \quad \forall X \in \mathcal{X}
\end{align*}

Utilizing the estimates

\begin{align*}
X b c & \geq X c b c - \mathcal{B} |c b c|, \quad |X|b \leq (|c| + \mathcal{A})b, \\
\mathcal{A} & \geq c b c - \mathcal{B} |c b c| - (|c| + \mathcal{A})b.
\end{align*}

we replace $\mathcal{A} \leq X b c - |X|b$ by the stronger condition

\begin{align*}
\mathcal{A} & \geq c b c - \mathcal{B} |c b c| - (|c| + \mathcal{A})b.
\end{align*}

Analogously we process the remaining constraints. \square

The system (10) is obviously much smaller than (9). On the other hand, if b^c, b^Δ serve as variables, then the system (10) is nonlinear due to the absolute value. Good news is that we can equivalently reformulate it avoiding the absolute value:

\begin{align*}
X c b c - \mathcal{A} d - (|c| + \mathcal{A})b & \geq y, \\
X c b c + \mathcal{A} d + (|c| + \mathcal{A})b & \leq y, \\
b^c & \leq d, \\
-b^c & \leq d, \\
U b c + |U|b & \leq z, \\
C b c + |C|b - d & \leq h, \\
-C b c + |C|b + d & \leq h, \quad ||h|| \leq g.
\end{align*}

Now we have a linear system consisting of only $3p$ variables (b^c, b^Δ, d).

Tolerance approach. In [21], the authors designed the following reduction of the “interval-input, interval-output” case to the crisp case. Notice that it can slightly overestimate the optimal interval vector b, but it is efficient. It can be proved the overestimation does not occur in some natural situations, e.g., when

$$0 \not\in b_i, \quad i = 1, \ldots, p.$$ \hspace{1cm} (11)
Let the tolerance vector \(c \geq 0, c \neq 0 \) and the central estimator \(b^c \) be given (for example, \(b^c \) can be obtained from the central least squares \(b^c = [(X^c)^T X^c]^{-1} (X^c)^T y^c \)). The method constructs two auxiliary crisp-input-crisp-output models
\[
(y^1, X^1) \quad \text{and} \quad (y^2, X^2)
\]
and computes their optimal tolerance quotients \(\delta^1, \delta^2 \), respectively, where
\[
y^1_i := y_i, \quad x^1_{ij} = \begin{cases} \tau_{ij} & \text{if } b^c_i \geq 0, \\ \frac{x_{ij}}{c} & \text{if } b^c_i < 0, \end{cases}
y^2_i := y_i, \quad x^2_{ij} = \begin{cases} \tau_{ij} & \text{if } b^c_i \geq 0, \\ \frac{x_{ij}}{c} & \text{if } b^c_i < 0 \end{cases}
\]
for \(i = 1, \ldots, n \) and \(j = 1, \ldots, p \). The resulting tolerance quotient \(\delta^* = \max\{\delta^1, \delta^2\} \) is minimal only under additional assumptions, such as the sign invariancy assumption (11).

5. Fuzzy-valued data: Crisp-input-fuzzy-output model

First we study the case of crisp-input data \((\tilde{y}, X)\). We apply the tolerance approach developed for interval-output data on the level of \(\alpha \)-cuts of \(\tilde{y} \).

Again we assume that the central crisp estimate \(b^c \) of regression coefficients and the tolerance vector \(c \geq 0, c \neq 0 \) are given. We are to construct a fuzzy vector \(\tilde{b}^{\alpha} \), which is a feasible solution of \((\tilde{y}, X)\) and is of the form
\[
b^{\alpha} = [b^c - \delta^*(\alpha)c, b^c + \delta^*(\alpha)c]
\]
for every \(\alpha \), where \(\delta^*(\alpha) \) is the optimal tolerance quotient for the interval-output problem \((y^{\alpha}, X)\).

Discussion: how to choose \(b^c \). To get the initial crisp-value estimate \(b^c \), any usual defuzzification method for \(\tilde{y} \) can be used, e.g. taking the centroids \(y^* \). Then, crisp-data estimators for \((y^*, X)\) yield the initial value \(b^c \).

5.1. Properties of the fuzzy regression coefficients.

To prove correctness—that \(\tilde{b} \) is a well-defined unimodal fuzzy number—it suffices to observe that \(\delta^*(\alpha) \) is a non-increasing function of \(\alpha \).

The following property shows that whenever we work in the class of piecewise linear fuzzy numbers, then our method produces also fuzzy regression coefficients in this class.

Theorem 13. If the fuzzy numbers in \(\tilde{y} \) are piecewise linear, then so are the fuzzy numbers in \(\tilde{b} \).

Proof. We must prove that \(\delta^*(\alpha) \) is a piecewise linear function of \(\alpha \). The absolute value in (6) can be without loss of generality omitted, depending on the sign of \(y_i - x^T b^c \). Therefore, if the endpoints \(\underline{y}_i^\alpha, \overline{y}_i^\alpha \) of \(\alpha \)-cuts of \(\tilde{y} \) are piecewise linear functions of \(\alpha \), then \(\delta^* \) is a maximum of linear functions, so it is piecewise linear. \(\square \)
A similar property holds for the class of convex-shaped fuzzy numbers.

Theorem 14. If the fuzzy numbers in \(\tilde{y} \) are convex-shaped, then so are the fuzzy numbers in \(\tilde{b} \).

Proof. Similarly as in the proof of Theorem 13, the absolute value in (6) can be omitted, depending on the sign of \(y_i - x_i^T b^c \). Therefore, if the endpoints \(\tilde{y}^0, \tilde{y}^1 \) are piecewise linear functions of \(\alpha \) are convex functions of \(\alpha \), then \(\delta^\alpha \) is maximum of convex functions, so it is convex as well.

As a consequence of the above results, when the fuzzy numbers in \(\tilde{y} \) are triangular, then the fuzzy numbers in \(\tilde{b} \) are piecewise linear and convex-shaped. The following results shows that it may happen that even the elements in \(\tilde{b} \) are triangular provided some strong but quite natural assumptions hold.

Recall that the symmetric triangular fuzzy number \(\tilde{y} = (y - y^\Delta, y, y + y^\Delta) \) is defined by its \(\alpha \)-cut as \(y^\alpha = [y - (1 - \alpha)y^\Delta, y + (1 - \alpha)y^\Delta] \).

Theorem 15. If \(\tilde{y}_i \) is triangular \(\tilde{y}_i = (y_i - y_i^\Delta, y_i, y_i + y_i^\Delta) \) with radius \(y_i^\Delta = |x_i^T|c \), then the elements of \(\tilde{b} \) are triangular, too.

Proof. According to the formula (6), the function \(\delta^\alpha(\alpha) \) is maximum of linear functions. By the assumptions, all these linear functions have the same slope, so they cannot intersect (or coincide). Therefore, the maximum is attained for a certain \(i \) constantly for all \(\alpha \in [0, 1] \).

5.2. Piecewise linear fuzzy numbers: Explicit construction of the fuzzy regression parameters.

Suppose that the fuzzy numbers in \(\tilde{y} \) are piecewise linear. As we observed, the fuzzy numbers in \(\tilde{b} \) are piecewise linear, too. We show a construction how to compute the break points of the piecewise linear function \(\mu_{\tilde{y}_i} \). For the sake of simplicity, we present the construction for the case \(\tilde{y}_i \) is a triangular fuzzy number \(\tilde{y}_i = (y_i - y_i^\Delta, y_i, y_i + y_i^\Delta) \); a generalization is straightforward.

Suppose that \(y_i \geq Xb^c \); if \(y_i < x_i^T b^c \) for some \(i \), then multiply the \(i \)th row by \(-1\) (this is just for the simplification of exposition, no change of data is necessary). Then \(\delta^\alpha(\alpha) \) can be expressed as

\[
\delta^\alpha(\alpha) = \max_{i : |x_i^T|c > 0} \frac{\alpha y_i^\Delta + y_i - x_i^T b^c}{|x_i^T|c}.
\]

Let the maximum be attained at \(i^* \) for \(\alpha = 1 \); if there are more possibilities, take that one with the largest slope \(y_i^\Delta /(|x_i^T|c) \). If \(i^* \) is not the maximizer for all \(\alpha \in [0, 1] \), then there must exist the equilibrium

\[
\frac{\alpha y_i^\Delta + y_i - x_i^T b^c}{|x_i^T|c} = \frac{\alpha y_i^\Delta + y_{i^*} - x_{i^*}^T b^c}{|x_{i^*}^T|c}.
\]
for some $i \neq i^*$. By an easy algebraic treatment we have that the equilibrium

$$
\alpha = \frac{(y_i - x_i^T b^c)|x_i^T|c - (y_{i^*} - x_{i^*}^T b^c)|x_{i^*}^T|c}{y_{i^*}^3|x_{i^*}^T|c - y_i^3|x_i^T|c}.
$$

(12)

As long as $\alpha \not\in (0, 1)$, we do not need to consider i any more. So for all admissible

$i \neq i^*$ we take that one which corresponds to the maximal α. This gives us the

break point of the fuzzy numbers in \hat{b}, and analogously we proceeds further until

we come up to $\alpha = 0$.

The computational cost is $O(n^2p)$ since in the worst case we have to compute

α from (12) for each pair of indices $j, j' \in \{1, \ldots, n\}$. Denoting ℓ the number of

resulting break-points, we can express the computational cost also as $O(n\ell p)$.

Since the number of break-points is usually very mild, this bound gives more

accurate estimation.

5.3. Discussion: Other approaches to the construction of \hat{b}.

In general, it is hard to say anything about the shape of the fuzzy regres-

sion parameters computed by more complicated optimization problems as other

authors often do (recall [45, 28, 10, 29, 11]). Nevertheless, it can be shown

that piecewise linearity of \hat{b} (assuming piecewise linearity of \hat{y}) is still preserved

when α-cuts of \hat{b} are expressible as linear programs (5). (But note that these

α-cuts need not be nested; it means that generally it is not guaranteed that (5)

produces a well-defined fuzzy numbers in \hat{b}.)

Theorem 16. If the fuzzy numbers in \hat{y} are piecewise linear, then so are the

fuzzy numbers in \hat{b} provided α-cut interval regression problems are computed by

(5) and the result gives well-defined fuzzy numbers in \hat{b}.

Proof. Denote the system (4) as $Az \leq a$, where z is a vector of variables con-

taining b^c and b^α, A is the constraint matrix, and a is the right-hand side vector

containing y, among others. It is known that an optimal solution is attained at

a vertex taking the form of $z = A_B^{-1}a_B$, where B is an optimal basis and the

expressions A_B, a_B stand for the restriction to basic rows. Now, when $\hat{y}^\alpha, \bar{y}^\alpha$

are piecewise linear functions of α, then so is z and therefore an optimal solution

also moves piecewise linearly. (The breakpoint can be also occur when a basis

is changed.) Since the midpoint and the radius of b^α changes piecewise linearly,

the fuzzy vector \hat{b} has piecewise linear shape. \hfill \Box

Since the breakpoints can occur when an optimal basis is changed, their

number can potentially be very high (or, at least the proof does not indicate a

nontrivial bound).

5.4. Example.

In this section we illustrate the tolerance approach by adaptation of an

example from [29], where the quadratic trend

$$
y_i = b_1 + b_2x_i + b_3x_i^2, \quad i = 1, \ldots, n := 8
$$

15
is modeled. Here, \(x_i = 1, \ldots, 8 \) are crisp inputs and the values of the output variable \(y \) are expert-given: each value is given as a triplet \(y^1_i, y^2_i, y^3_i \), corresponding to a pessimistic, modal and optimistic estimate of outcome. Particular values of this example are summarized in Table I.

Model I: We model \(\tilde{y}_i \) as the triangular fuzzy number \((y^1_i, y^2_i, y^3_i) \).

Model II: We model \(\tilde{y}_i \) as the asymmetric Gaussian fuzzy number with membership

\[
\mu_{\tilde{y}_i}(\xi) = \begin{cases}
\exp\left(-\frac{(\xi-y^2_i)^2}{2(\xi-y^1_i)^2}\right) & \text{if } \xi \leq y^2_i, \\
\exp\left(-\frac{(\xi-y^3_i)^2}{2(\xi-y^2_i)^2}\right) & \text{if } \xi > y^2_i.
\end{cases}
\]

The data are depicted in Figure 1, together with the reference parabola \(y = b^c_1 + b^c_2 x + b^c_3 x^2 \), where

\[
b^c = (X^T X)^{-1} X^T y^2 = (26.91, -5.72, 1.68)^T
\]

was calculated by the least squares from the modal estimates \(y^2 \).

Relative tolerances. The choice \(c = |b^c| \) is called relative tolerance; here, the widths should be proportional to the absolute values of \(b^c \).

Absolute tolerances. The choice \(c = (1, 1, 1)^T \) is called absolute tolerance; here, the widths have equal weights.

The resulting membership functions of \(\tilde{b} \), for both absolute and relative tolerances, are depicted in Figure 2 (solid lines: triangular \(\tilde{y}_i \), dashed lines: Gaussian \(\tilde{y}_i \)). Recall that they have the following property: given \(\alpha \), the \(\alpha \)-cut of \(\tilde{b} \) covers the \(\alpha \)-cut of \(\tilde{y}_i \) for all \(i \) and is the minimal one with this property with respect to the prescribed tolerance vector \(c \). Moreover, the central tendency around \(b^c \) — the natural least-squares estimator — is guaranteed.

Moreover, we can see that the membership functions are piecewise linear and convex-shaped if \(\tilde{y}_i \) are triangular (see Theorems 13, 14).

Restriction of the parameter space. The Gaussian fuzzy numbers are unbounded. But the triangular fuzzy numbers are bounded; we can see that in the triangular case, \(\tilde{b} \) are bounded by

\[
b^\alpha_{\text{relative}} = [16.4, 37.1] \times [-7.88, -3.55] \times [1.04, 2.32]
\]

for relative tolerances and by

\[
b^\alpha_{\text{absolute}} = [23.29, 30.54] \times [-9.34, -2.10] \times [-1.94, 5.31]
\]

for absolute tolerances. Recall that if the parameter space \(\mathcal{B} \) is restricted, then

\[
\frac{\partial}{\partial b^i} \left(\frac{1}{2} e^{-\frac{1}{2}(y^i_2 - y^i_1)^2} \right) = e^{-\frac{1}{2}(y^i_2 - y^i_1)^2} \left(-\frac{y^i_2 - y^i_1}{\sqrt{2\pi}} \right)
\]

is defined and the resulting membership function of \(\tilde{b} \) is given by

\[
\mu_{\tilde{b}^i}(\xi) = \exp\left(-\frac{(\xi-y^2_i)^2}{2(\xi-y^1_i)^2}\right)
\]

if \(\xi \leq y^2_i \) and

\[
\mu_{\tilde{b}^i}(\xi) = \exp\left(-\frac{(\xi-y^3_i)^2}{2(\xi-y^2_i)^2}\right)
\]

if \(\xi > y^2_i \).
the model is said to be feasible if $b^{α=0} \subseteq B$. The most natural restriction of our model is $B = \{ b \in \mathbb{R}^3 \mid b_3 \geq 0 \}$. We can immediately see that the model with relative tolerances is feasible, while the model with absolute tolerances is not. This shows that the former model is more suitable than the latter.

6. Fuzzy-valued data: Fuzzy-input-fuzzy-output model

Now we consider the most general case (\tilde{y}, \tilde{X}) where all data can be fuzzy. Recall that the notion of feasibility of \tilde{b} w.r.t. $(\tilde{y}, \tilde{X}, B)$ was formalized in Definition 4.

6.1. Tolerance approach.

We construct the vector \tilde{b} by reduction to the interval-input-interval-output case via $α$-cuts.

Assume again that we are given an initial crisp estimate b^c of regression coefficients (say, obtained by crisp least squares from defuzzified (\tilde{y}, \tilde{X})), whose central tendency should be preserved, and a tolerance vector $c \geq 0$, $c \neq 0$. We are to construct the fuzzy vector \tilde{b}, which is a feasible solution of (\tilde{y}, \tilde{X}), and is
Relative tolerances:

![Relative tolerances graph]

Absolute tolerances:

![Absolute tolerances graph]

Figure 2: Example 5.4. The fuzzy regression coefficients \tilde{b} for relative tolerances (upper triplet) and absolute tolerances (bottom triplet). The results for triangular \tilde{y} are depicted by solid lines and the results for Gaussian \tilde{y} are depicted by dashed lines.

Theorem 17. If the fuzzy numbers in \tilde{y}, \tilde{X} are piecewise linear, then the fuzzy numbers in \tilde{b} are piecewise hyperbolic.

Proof. For each $\alpha \in [0, 1]$, the α-cut reduces the problem to interval-input-interval-output regression. The tolerance quotient is then computed by a formula of type (6) since even the interval regression is solved by a reduction to a double crisp regression model. Clearly, $y^\alpha_i, x^\alpha_{ij}, x^\alpha_{ij}$ depend piecewise linearly on α, so the function (6) is a maximum of fractions of piecewise linear functions. Geometrically it is of a piecewise hyperbolic shape.

6.2. Application.

We consider a model of consumption expenditures as a function of disposable income and expected inflation. The idea behind the model is: (i) the higher disposable income (of a household, say), the higher consumption expenditures can be expected; (ii) the higher expected inflation, the higher consumption can
be expected. For example, if high inflation is expected, then deferral of consumption into a future period would lead to a higher price of the good to be consumed and thus an agent’s utility is better if the consumption expenditure is made immediately. And, vice versa, expected deflation leads to savings (instead of consumption) and deferral of the consumption expenditure to future periods when the goods are expected to be cheaper. (This is sometimes referred to as the “intertemporal substitution in consumption”. The example with expected deflation is sometimes referred to as “deflationary death spiral” when the deferrals of expenditures occur in the long run.)

It has been repeatedly demonstrated that consumption expenditures of households are better explained by subjectively perceived inflation or inflation expectations, rather than the true reported inflation by official statistics or inflation predictions published by authorities, banks or experts. (More on measurement of subjective expectations can be found e.g. in [57].) Subjectively perceived inflation often differs significantly from the official inflation rate because different households have a different structure of consumption. For example, regular suburban commuters are often more sensitive to inflation driven by prices of fuels (since fuels have a significant weight in their individual market basket) than urban residents. Another example: a household may be sensitive to inflation driven by currency deprecation if imports have a significant weight in its individual market basket, while other households may be insensitive to changes in exchange rates. Generally, the structure of consumption differs among regions, age cohorts and also reflect individual optimism of pessimism.

We consider the cross-sectional model

\[y_i = \beta_1 + \beta_2 M_i + \beta_3 \pi_i + \varepsilon_i, \]

where we have a sample of \(n = 20 \) households. For \(i \)th household, \(y_i \) stands for consumption expenditures, \(M_i \) stands for disposable income and \(\pi_i \) stands for subjective perception of future inflation. The data \(y_i \) and \(M_i \) are crisp. The subjective inflation \(\pi_i \) has been measured as a triplet of values \((\pi^1_i, \pi^2_i, \pi^3_i)\): each household has been asked to give an optimistic \((\pi^1_i)\), modal \((\pi^2_i)\) and pessimistic \((\pi^3_i)\) subjective prediction of inflation for the next period.

Table 2: Data for regression model (13).
Figure 3: Membership functions of fuzzy input data (Section 6.2): subjectively perceived inflation expectations \(\tilde{\pi}_i \) modeled as triangular fuzzy numbers (solid lines) and asymmetric Gaussian fuzzy numbers (dotted lines).
Figure 4: Fuzzy regression coefficients \tilde{b} for model (13) with triangular inputs $\tilde{\pi}_i$ (solid line) and Gaussian inputs $\bar{\pi}_i$ (dashed line).
Model I. We model π_i as the triangular fuzzy number $\tilde{\pi}_i = (\pi^1_i, \pi^2_i, \pi^3_i)$.

Model II. We model π_i as the asymmetric Gaussian fuzzy number $\tilde{\pi}_i$ with

$$\mu_{\tilde{\pi}_i}(\xi) = \begin{cases}
 \exp \left(-\frac{(\xi-\pi^2_i)^2}{2(\pi^3_i-\pi^2_i)^2} \right) & \text{if } \xi \leq \pi^2_i, \\
 \exp \left(-\frac{(\xi-\pi^2_i)^2}{2(\pi^1_i-\pi^2_i)^2} \right) & \text{if } \xi > \pi^2_i.
\end{cases} \quad (14)$$

Data are summarized in Table II and the membership functions of $\tilde{\pi}_1, \ldots, \tilde{\pi}_n$ are depicted in Figure 3 for both Models I and II.

The initial crisp estimate

$$b^c = (8.11, 0.41, 3.1)^T$$

was obtained by least squares from modal values π^2_i. It shows that on average, each point of subjectively perceived inflation contributes to consumption expenditures by 3.1. Now we construct the fuzzy regression coefficients \tilde{b} with two choices: relative tolerances $c = |b^c| = (b^c)$ and absolute tolerances $c = (1, 1, 1)^T$.

The resulting fuzzy coefficients are depicted in Figure 4.

6.3. Generalization of the example.

Now we extend the example from the previous section to the case when also the output variable \tilde{y} is fuzzy.

Model I. Let \tilde{y}_i be the triangular fuzzy number $(y_i - 5k, y_i, y_i + 5k)$, where y_i are taken from Table II and $k = 0, 1, \ldots, 4$. The resulting regression coefficients \tilde{b}, for both relative and absolute tolerances, are depicted in Figure 5. We can see that the more uncertainty in y, the wider are the estimated coefficients \tilde{b}. This illustrates that the width of the regression coefficients \tilde{b} can be understood as a measure of uncertainty in data.

Model II. Now we consider \tilde{y}_i to be the Gaussian fuzzy number constructed from the triplet $(y_i - 5k, y_i, y_i + 5k)$ in the same manner as in (14), for $k = 0, \ldots, 4$. The resulting regression coefficients are depicted in Figure 6.

6.4. Conclusions.

We have adapted the tolerance approach for possibilistic linear regression with fuzzy-valued inputs and/or outputs. The method is applicable to any class of unimodal fuzzy numbers, not necessarily with a bounded support: in illustrative examples we used both triangular fuzzy data (which are bounded) and asymmetric Gaussian fuzzy data (which are unbounded). The method constructs fuzzy regression coefficients \tilde{b} respecting the central tendency of a crisp-data estimator applied to defuzzified data, and is minimal with respect to a user-given tolerance vector c. If the data are piecewise linear fuzzy numbers, then the resulting coefficients are piecewise-linear (in the crisp-input-fuzzy-output model) or piecewise-hyperbolic (in the fuzzy-input-fuzzy-output model). Moreover, the method is computationally very “cheap”, and thus can be used for large datasets.
Figure 5: Fuzzy regression coefficients \tilde{b} for model (13) with triangular inputs $\tilde{\pi}_i$ and triangular outputs $\tilde{y}_i = (y_i - 5k, y_i, y_i + 5k)$ with $k = 0, 1, \ldots, 4$.

Figure 6: Model II: Gaussian inputs $\tilde{\pi}_i$ and Gaussian outputs with $k = 0, 1, \ldots, 4$.
The method constructs reductions fuzzy model → interval model → crisp model. With the basic idea in mind, it is straightforward to go further to type-k fuzzy numbers (if a reader considers it to be useful): type-k fuzzy model → type-$(k – 1)$ fuzzy model → ··· → type-1 fuzzy model → interval model → crisp model.

It would be also interesting for further research to overcome the standard concept of intervals, and consider utilization of various extended concepts, such as improper or extended gradual intervals [58].

Acknowledgment

The work was supported by the Czech Science Foundation under Grant 16-00408S.

References

24

