
Curriculum Learning

Yoshua Bengio1, Jérôme Louradour1, Ronan Collobert2 and Jason Weston2

(1) Dept. IRO, U. Montreal, (2) NEC Laboratories America

26/01/2009, Technical Report 1330, Dept. IRO, U. Montreal

Abstract

Humans and animals learn much better when the examples are not ran-
domly presented but organized in a meaningful order which illustrates grad-
ually more concepts, and gradually more complex ones. Here, we formalize
such training strategies in the context of machine learning, and call them
“curriculum learning”. In the context of recent research studying the dif-
ficulty of training in the presence of non-convex training criteria (for deep
deterministic and stochastic neural networks), we explore curriculum learn-
ing in various set-ups. The experiments show that significant improvements
in generalization can be achieved. We hypothesize that curriculum learning
has both an effect on the speed of convergence of the training process to a
minimum and, in the case of non-convex criteria, on the quality of the lo-
cal minima obtained: curriculum learning can be seen as a particular form
of continuation method (a general strategy for global optimization of non-
convex functions).

1 Introduction
Humans need about two decades to be trained as fully functional adults of our
society. That training is highly organized, based on an education system and a
curriculum which introduces different concepts at different times, exploiting pre-
viously learned concepts to ease the learning of new abstractions. By choosing
which examples to present and in which order to present them to the learning sys-
tem, one can guide training and remarkably increase the speed at which learning
can occur. This idea is routinely exploited in animal training where it is called
shaping (Skinner, 1958; Peterson, 2004).

1

Previous research (Elman, 1993; Rohde & Plaut, 1999) at the intersection of
cognitive science and machine learning has raised the following question: can
machine learning algorithms benefit from a similar training strategy? The idea of
training a learning machine with a curriculum can be traced back at least to El-
man (1993). The basic idea is to start small, learn easier aspects of the task or
easier sub-tasks, and then gradually increase the difficulty level. The experimen-
tal results and discussion presented by Elman (1993) suggested that successful
learning of grammatical structure depends, not on innate knowledge of grammar,
but on starting with a limited architecture that is at first quite restricted in com-
plexity, but then expands its resources gradually as it learns. Such conclusions
are important for developmental psychology, because they illustrate the adaptive
value of starting, as human infants do, with a simpler initial state, and then build-
ing on that to develop more and more sophisticated representations of structure.
Elman (1993) makes the statement that this strategy could make it possible for
humans to learn what might otherwise prove to be unlearnable. However, these
conclusions have been seriously questioned in Rohde and Plaut (1999). These
authors did a similar set of learning simulations in which pseudo-languages were
learned better without a curriculum than with a curriculum.

Therefore it remains to be shown clearly when a learning algorithm can ben-
efit (if at all) from a curriculum or “starting small” strategy. Here we contribute
to this question by showing several cases - involving vision and language tasks
- in which very simple multi-stage curriculum strategies give rise to improved
generalization and faster convergence. We also contribute to this question with
the introduction of a hypothesis which may help to explain some of the advan-
tages of a curriculum strategy. This hypothesis is essentially that a well chosen
curriculum strategy can act as a continuation method (Allgower & Georg, 1980),
i.e., can help to find better local minima of a non-convex training criterion. In
addition, the experiments reported here suggest that (like other strategies recently
proposed to train deep deterministic or stochastic neural networks) the curriculum
strategies appear on the surface to operate like a regularizer, i.e., their beneficial
effect is most pronounced on the test set. Furthermore, experiments on convex
criteria also show that a curriculum strategy can speed the convergence of training
towards the global minimum.

2

2 On the difficult optimization problem of training
deep neural networks

To test the hypothesis that a curriculum strategy could help to find better local
minima of a highly non-convex criterion, we turn our attention to training of deep
architectures, which have been shown to involve good solutions in local minima
that are almost impossible to find by random initialization (Erhan et al., 2009).
Deep learning methods attempt to learn feature hierarchies. Features at higher lev-
els are formed by the composition of lower level features. Automatically learning
multiple levels of abstraction may allow a system to induce complex functions
mapping the input to the output directly from data, without depending heavily
on human-crafted features. A theoretical motivation for deep architectures comes
from complexity theory: some functions can be represented compactly with an ar-
chitecture of depth k, but require an exponential size architecture when the depth
is restricted to be less than k (Hastad & Goldmann, 1991; Bengio, 2007). How-
ever, training deep architectures involves a potentially intractable non-convex op-
timization problem (Bengio, 2007), which complicates their analysis. There were
no good algorithms for training fully-connected deep architectures before 2006,
when Hinton et al. (2006) introduced a learning algorithm that greedily trains
one layer at a time. It exploits an unsupervised generative learning algorithm for
each layer: a Restricted Boltzmann Machine (RBM) (Freund & Haussler, 1994).
It is conceivable that by training each layer one after the other, one first learns
the simpler concepts (represented in the first layer), then slightly more abstract
concepts (represented in the second layer), etc. Shortly after, strategies for build-
ing deep architectures from related variants were proposed (Ranzato et al., 2007;
Bengio et al., 2007). These works showed the advantage of deep architectures
over shallow ones and of the unsupervised pre-training strategy in a variety of
settings. Since then, deep architectures have been applied with success not only
in classification tasks (Ranzato et al., 2007; Bengio et al., 2007; Larochelle et al.,
2007; Ranzato et al., 2008; Vincent et al., 2008), but also in regression (Salakhut-
dinov & Hinton, 2008), dimensionality reduction (Hinton & Salakhutdinov, 2006;
Salakhutdinov & Hinton, 2007), natural language processing (Collobert & We-
ston, 2008; Weston et al., 2008), and collaborative filtering (Salakhutdinov et al.,
2007).

Nonetheless, training deep architectures is a difficult problem. Erhan et al.
(2009) and Larochelle et al. (2007) studied this question experimentally in an at-
tempt to clarify why deeper networks can sometimes generalize much better and

3

why some strategies such as unsupervised pre-training can make this possible. Er-
han et al. (2009) found that unsupervised pre-training makes it possible to start the
supervised optimization in a region of parameter space corresponding to solutions
that were not much better in terms of final training error but substantially better
in terms of test error. This suggested a dual effect of unsupervised pre-training,
both in terms of helping optimization (starting in better basins of attraction of the
descent procedure in parameter space) and as a kind of regularizer.

The experiments presented here suggest that pre-training with a curriculum
strategy might act similarly to unsupervised pre-training, acting both as a way to
find better local minima and as a regularizer. They also suggest that they help to
reach faster convergence to a minimum of the training criterion.

3 A curriculum as a continuation method
Continuation methods (Allgower & Georg, 1980) are optimization strategies for
dealing with minimizing non-convex criteria. Although these global optimiza-
tion methods provide no guarantee that the global optimum will be obtained,
they have been particularly useful in computational chemistry to find approxi-
mate solutions of difficult optimization problems involving the configurations of
molecules (Coleman & Wu, 1994; More & Wu, 1996; Wu, 1997). The basic idea
is to first optimize a smoothed objective and gradually consider less smoothing,
with the intuition that a smooth version of the problem reveals the global picture.
One defines a single-parameter family of cost functions Cλ(θ) such that C0 can
be optimized easily (maybe convex in θ), while C1 is the criterion that we actu-
ally wish to minimize. One first minimizes C0(θ) and then gradually increases λ
while keeping θ at a local minimum of Cλ(θ). Typically C0 is a highly smoothed
version of C1, so that θ gradually moves into the basin of attraction of a dominant
(if not global) minimum of C1. Applying a continuation method to the problem
of training, i.e., of minimizing a training criterion, involves a sequence of training
criteria, starting from one that is easier to optimize, and ending with the training
criterion of interest.

At an abstract level, a curriculum can also be seen as a sequence of training
criteria. Here, each training criterion in the sequence is associated with a different
set of weights on the training examples, or more generally, on a reweighting of
the training distribution. Initially, the weights favor the “easiest” examples, or
examples illustrating the simplest concepts, that can be learned most easily. The
next training criterion involves a slight change in the weighting of examples that

4

increases the probability of sampling slightly more difficult examples. At the end
of the sequence, the reweighting of the examples is uniform and we train on the
target training set or the target training distribution.

One way to formalize this idea is the following. Let z be a random variable
representing an example for the learner (possibly an (x, y) pair for supervised
learning). Let P (z) be the target training distribution from which the learner
should ultimately learn a function of interest. Let 0 ≤ Wλ(z) ≤ 1 be the weight
applied to example z at step λ in the curriculum sequence, with 0 ≤ λ ≤ 1, and
W1(z) = 1. The corresponding training distribution at step λ is

Qλ(z) ∝ Wλ(z)P (z) ∀z (1)

such that
∫
Qλ(z)dz = 1. Then we have

Q1(z) = P (z) ∀z. (2)

Consider a monotonically increasing sequence of λ values, starting from λ = 0
and ending at λ = 1.

Definition We call the corresponding sequence of distributions Qλ (following
eqns 1 and 2) a curriculum if the entropy of these distributions increases

H(Qλ) < H(Qλ+ε) ∀ ε > 0 (3)

and Wλ(z) is monotonically increasing in λ, i.e.,

Wλ+ε(z) ≥ Wλ(z) ∀ z, ∀ ε > 0. (4)

To illustrate this definition, consider the simple setting where Qλ is concentrated
on a finite set of examples, and increasing λ means adding new examples to that
set: the support of Qλ increases with λ, and the sequence of training distributions
corresponds to a sequence of embedded training sets, starting with a small set
of easy examples and ending with the target training set. We want the entropy
to increase so as to increase the diversity of training examples, and we want the
weights of particular examples to increase as they get “added” into the training
set.

In the experiments below the sequence of training sets is always discrete. In
fact the curriculum strategy worked in some of our experiments with a sequence
of just two steps: first a set of easy examples, and then the target training set. At
the other extreme, if training proceeds in a stochastic manner by sampling train-
ing examples from a distribution, then one could imagine a continuous sequence

5

of sampling distributions which gradually gives more weight Wλ(z) to the more
difficult examples, until all examples have an equal weight of 1.

Up to now we have not defined what “easy examples” meant, or equivalently,
how to sort examples into a sequence that illustrates the simpler concepts first. In
the following experiments we explore a few simple ways to define a curriculum,
but clearly a lot more work is needed to explore different curriculum strategies,
some of which may be very specific to particular tasks.

4 Toy Experiments with a Convex Criterion

4.1 Cleaner Examples May Yield Better Generalization Faster
One simple way in which easy examples could help is by being less “noisy”, as
shown theoretically (Derényi et al., 1994) in the case of a Teacher-Learner pair
of Perceptrons. In the supervised classification setting, an example is considered
noisy if it falls on the incorrect side of the decision surface of the Bayes classifier.
Noisy examples can slow down convergence, as illustrated with the following toy
experiment. Two-dimensional inputs are generated from a different Gaussian for
each one of the two classes. We define class targets y = 1 and y = −1 respec-
tively. The Gaussian mean for class y is at (y/

√
2, y/
√

2) and both Gaussians
have standard deviation 1. Starting from random initial parameters (50 times),
we train a linear SVM with 50 training examples. Let w be the weight vector of
the Bayes classifier. We find that training only with “easy” examples (for which
yw′x > 0) gives rise to lower generalization error: 16.3% error vs 17.1% error
(average over 50 runs), and the difference is statistically significant.

In principle one could argue that difficult examples can be more informative
than easy examples. Here the difficult examples are probably not useful because
they confuse the learner rather than help it establish the right location of the de-
cision surface. This experiment does not involve a curriculum strategy yet, but
it may help to understand why easier examples could be useful, by avoiding to
confuse the learner.

4.2 Introducing Gradually More Difficult Examples Speeds-up
Online Training

We train a Perceptron from artificially generated data where the target is y =
sign(w′xrelevant) and w is sampled from a Normal(0,1). The training pairs are

6

(x, y) with x = (xrelevant, xirrelevant), i.e., some of the inputs are irrelevant, not
predictive of the target class. Relevant inputs are sampled from a Uniform(0,1)
distribution. Irrelevant inputs can either be set to 0 or to a Uniform(0,1). The num-
ber of irrelevant inputs that is set to 0 varies randomly (uniformly) from example
to example, and can be used to sort examples from the easiest (with all irrelevant
inputs zeroed out) to the most difficult (with none of the irrelevant inputs zeroed
out). Another way to sort examples is by the margin yw′x, with easiest examples
corresponding to larger values. The learning rate is 1 (it does not matter since
there is no margin and the classifier output does not depend on the magnitude
of w′x but only on its sign). Initial weights are sampled from a Normal(0,1). We
train the Perceptron with 200 examples (i.e., 200 Perceptron updates) and measure
generalization error at the end. Figure 1 shows average estimated generalization
error measured at the end of training and averaged across 500 repetitions from dif-
ferent initial conditions and different random sampling of training examples. We
compare a no curriculum setting (random ordering), with a curriculum setting
in which examples are ordered by easiness, starting with the easiest examples, and
two easiness criteria (number of noisy irrelevant inputs, margin yw′x). All error
rate differences between the curriculum strategy and the no-curriculum are statis-
tically significant (differences of more than .01 were all statistically significant at
5% under a t-test).

5 Experiments on shape recognition
The task of interest here is to classify geometrical shapes into 3 classes (rectangle,
ellipse, triangle), where the input is a 32×32 image (1024 grey-scale pixels). As
shown in Figure 2, two different datasets were generated: whereas GeomShapes
data consist in images of rectangles, ellipses and triangles, BasicShapes data
only include special cases of the above: squares, circles and equilateral triangles.
In other words, the difference between BasicShapes data and GeomShapes data
is that BasicShapes images do not exhibit variability in elongations. Other de-
grees of variability which are present in both sets are the following: object posi-
tion, object size, object orientation, and also the grey levels of the foreground and
background. Besides, some geometrical constraints are also added so as to ensure
that any shape object fits entirely within the image, and a minimum size and min-
imum contrast (difference in grey levels) between foreground and background is
imposed.

Note that the above “easy distribution” occupying a very small volume in input

7

0.1

0.15

0.2

0.25

0.3

15 25 35 45 55

A
ve
ra
ge
 te

st
 e
rr
or

Input dimension

Easiness based on number of noisy inputs

no curriculum

curriculum

0.1

0.15

0.2

0.25

0.3

0.35

15 25 35 45 55

A
ve
ra
ge
 te

st
 e
rr
or

Input dimension

Easiness based on margin

no curriculum

curriculum

Figure 1: Average error rate of Perceptron, with or without the curriculum. Top:
the number of nonzero irrelevant inputs determines easiness. Bottom: the margin
yw′x determines easiness.

space compared to the target distribution does not contradict condition 4. Indeed,
the non-zero weights (on easy examples) can initially be very small, so that their
final weight in the target distribution can be very small.

The experiments were carried out on a multi-layer neural network with 3 hid-
den layers, trained by stochastic gradient descent, an architecture which is known
to involve a difficult non-convex optimization problem (Erhan et al., 2009). An
epoch is a stochastic gradient descent pass through a training set of 10 000 exam-
ples. The curriculum consists in a 2-step schedule:

1. Perform gradient descent on the BasicShapes training set, for a certain
number of epochs.

8

Figure 2: Sample inputs from BasicShapes (top) and GeomShapes (bot-
tom). Images are shown here with a higher resolution than in
the actual dataset (32x32 pixels). Data can be downloaded at
http://URL-removed-to-preserve-anonymity.

2. After the “switch epoch”, perform gradient descent on the GeomShapes

training set and estimate generalization error on the GeomShapes test set.

The “switch epoch” refers to the index of the epoch when the training data is
switched to GeomShapes training set. The baseline corresponds to training the
network only on the GeomShapes training set (for the same number of training
epochs), and corresponds to “switch epoch”=0. In our experiments, there is a total
of 10 000 examples in both training sets, and 5 000 examples for validation, 5 000
for testing. All datasets are available at http://URL-removed-to-preserve-anonymity.

The hyper-parameters are the following: learning rate of stochastic gradient
descent and number of hidden units. The selection of hyper-parameters is simpli-
fied using the following heuristic: all hyper-parameters were chosen so as to have
the best baseline performance on the GeomShapes validation set without curricu-
lum. These hyper-parameter values are then used for the curriculum experiments.

Experimental results are presented in Fig. 3, showing the distribution of test
errors over 20 different random seeds, for different values of the “switch epoch”:
0 (the baseline with no curriculum) and the powers of 2 until 128. After switching
to the target training distribution, training continues either until 256 epochs or
until validation set error reaches a minimum (early stopping). The figure shows
the distribution of test error (after early stopping) as a function of the “switch
epoch”. Clearly, the best generalization is obtained by doing a 2-stage curriculum
where the first half of the total allowed training time (of 256 epochs) is spent on
the easier examples rather than on the target examples.

One potential issue with this experiment is that the curriculum-trained model
overall saw more examples than the no-curriculum examples, although in the sec-
ond part of training (with the target distribution) both types of models converge (in
the sense of early stopping) to a local minimum with respect to the error on the tar-

9

|

0 2 4 8 16 32 64 128

0
.1

5
0
.1

6
0
.1

7
0
.1

8
0
.1

9
0
.2

0
0
.2

1

switch epoch

b
e
s
t
v
a
lid

a
ti
o
n
 c

la
s
s
if
ic

a
ti
o
n
 e

rr
o
r

Figure 3: Box plot of the distribution of test classification error as a function of
the “switch epoch”, with a 3-hidden-layers neural network trained by stochastic
gradient descent. Each box corresponds to 20 seeds for random generators that
initialize the network free parameters. The horizontal line inside the box repre-
sents the median (50th percentile), the borders of the box the 25th and the 75th
percentile and the ends of the bars the 5th and 95th percentiles.

get training distribution, suggesting that different local minima are obtained. Note
also that the easy examples have less variability than the hard examples (only a
subset of the shape variations are shown, e.g. only squares instead of all kinds of
rectangles).

6 Experiments on language modeling
We are interested here in training a language model, a particular task of natural
language processing. We considered the case of predicting the best word which
can follow a given context of words in a correct English sentence. Following Col-
lobert and Weston (2008) we only try to compute a score for the next word that
will have a large rank compared to the scores of other words, and we compute
the score with the architecture of Figure 4. Whereas other language models prior
to Collobert and Weston (2008) optimized the log-likelihood of the next word, the
ranking approach does not require computing the score over all the vocabulary

10

words during training, as shown below. Instead it is enough to sample a nega-
tive example. In Collobert and Weston (2008), the main objective is to learn an
embedding for the words as a side-effect of learning to compute this score. The
authors showed how to use these embeddings in several language modeling tasks,
in a form of multi-task learning, yielding improved results.

Given any fixed size window of text s, we consider a language model f(s)
which produces a score for these windows of text. We want the score of a correct
window of text s to be larger, with a margin of 1, than any other word sequence
sw where the last word has been replaced by another word w of the vocabulary.
This corresponds to minimizing the expected value of the following ranking loss
over sequences s sampled from a dataset S of valid English text windows:

Cs =
∑
w∈D

1

|D|
Cs,w =

∑
w∈D

1

|D|
max(0, 1− f(s) + f(sw)) (5)

where D is the considered word vocabulary and S is the set of training word
sequences. Note that a stochastic sample of the gradient with respect to Cs can
be obtained by sampling a counter-example word w uniformly from D. For each
word sequence s we then compute f(s) and f(sw) and the gradient of max(0, 1−
f(s) + f(sw)) with respect to model parameters.

6.1 Architecture
The architecture of our language model (Figure 4) follows the work introduced
by Bengio et al. (2001) and Schwenk and Gauvain (2002), and closely resembles
the one used in Collobert and Weston (2008),. Each word i ∈ D is embedded into
a d-dimensional space using a look-up table LTW (·):

LTW (i) = Wi ,

where W ∈ Rd×|D| is a matrix of parameters to be learnt, Wi ∈ Rd is the ith

column of W and d is the embedding dimension hyper-parameter. In the first
layer an input window {s1, s2, . . . sn} of n words in D is thus transformed into
a series of vectors {Ws1 , Ws2 , . . . Wsn} by applying the look-up table to each of
its words.

The feature vectors obtained by the look-up table layer are then concatenated
and fed to a classical linear layer. A non-linearity (like tanh(·)) follows and the
score of the language model is finally obtained after applying another linear layer
with one output.

11

The cost (5) is minimized using stochastic gradient descent, by iteratively sam-
pling pairs (s, w) composed of a window of text s from the training set S and a
random word w, and performing a step in the direction of the gradient of Cs,w
with respect to the parameters, including the matrix of embeddings W .

6.2 Experiments
We chose the training set S as all possible windows of text of size n = 5 from
Wikipedia (http://en.wikipedia.org), obtaining 631 million windows
processed as in Collobert and Weston (2008). We chose as a curriculum strategy
to grow the vocabulary size: the first pass over Wikipedia was performed using
the 5, 000 most frequent words in the vocabulary, which was then increased by
5, 000 words at each subsequent pass through Wikipedia. At each pass, any win-
dow of text containing a word not in the considered vocabulary was discarded.
The training set is thus increased after each pass through Wikipedia. We compare
against no curriculum, where the network is trained using the final desired vocab-
ulary size of 20, 000. The evaluation criterion was the average of the log of the
rank of the last word in each test window, taken in a test set of 10, 000 windows of
text not seen during the training, with words from the most 20, 000 frequent ones
(i.e. from the target distribution). We chose the word embedding dimension to be
d = 50, and the number of hidden units as 100.

Comparative results are shown in Figure 5. We observe that the log rank on
the target distribution with the curriculum strategy crosses the error of the no-
curriculum strategy after about 1 billion updates, shortly after switching to the
target vocabulary size of 20,000 words, and the difference keeps increasing after-
wards. The final test set average log-ranks are 2.786 and 2.832 respectively, and
the difference is statistically significant.

7 Discussion and Future Work
We started with the following question left from previous cognitive science re-
search (Elman, 1993; Rohde & Plaut, 1999): can machine learning algorithms
benefit from a curriculum strategy? Our experimental results in many different
settings bring evidence towards a positive answer to that question. It is plausi-
ble that some curriculum strategies work better than others, that some are actually
useless for some tasks (as in Rohde and Plaut (1999)), and that better results could
be obtained on our data sets with more appropriate curriculum strategies. After

12

all, the art of teaching is difficult and humans do not agree among themselves
about the order in which concepts should be introduced to pupils.

From the machine learning point of view, once the success of some curriculum
strategies has been established experimentally, the important questions are: why?
and how? This is important to help us devise better curriculum strategies and
maybe automate that process to some extent. Here we proposed a number of
hypotheses to explain the potential advantages of a curriculum strategy:

• faster training in the online setting (i.e. faster both from an optimization and
statistical point of view, as seen even in the convex criterion setting) because
the learner wastes less time with noisy or harder to predict examples (when
it is not ready to incorporate them),

• guiding training towards better regions in parameter space, i.e. into basins
of attraction of the descent procedure (and corresponding local minima)
associated with better generalization. Here a curriculum can be seen as a
particular continuation method.

An appropriate curriculum strategy therefore both acts to help the training process
and to regularize (by giving rise to lower generalization error for the same training
error). Like in the case of unsupervised pre-training (Erhan et al., 2009), it is
not yet clear why one would expect this optimization strategy to yield improved
generalization.

The way we have defined curriculum strategies leaves a lot to be defined by
the teacher. It would be nice to understand general principles that make some cur-
riculum strategies work better than others, and this clearly should be the subject of
future work on curriculum learning. In particular, to reap the advantages of a cur-
riculum strategy while minimizing the amount of human (teacher) effort involved,
it is natural to consider a form of active selection of examples similar to what
humans (and in particular children) do. At any point during the “education” of
a learner, some examples can be considered “too easy” (not helping much to im-
prove the current model), while some examples can be considered “too difficult”
(no small change in the model would allow to capture these examples). It would
be advantageous for a learner to focus on “interesting” examples, which would
be standing near the frontier of the learner’s knowledge and abilities, neither too
easy nor too hard. Such an approach could be used to at least automate the pace
at which a learner would move along a predefined curriculum. In the experiments
we performed, that pace was fixed arbitrarily. This kind of strategy is clearly con-
nected to active learning (Cohn et al., 1995), but with a view that is different from

13

the standard one: instead of focusing on the examples near the decision surface to
quickly infer its location, we think of the set of examples that the learner succeeds
to capture and gradually expand that set by preferentially adding examples near
its border (in input space).

Machine learning research on curriculum strategies are also connected to trans-
fer (or multi-task) learning. Curriculum learning strategies can be seen as a special
form of transfer learning where the initial tasks are used to guide the learner so
that it will perform better on the final task. Whereas the traditional motivation
for multi-task learning is to improve generalization by sharing across tasks, cur-
riculum learning adds the notion of guiding the optimization process, either to
converge faster or towards better basins of attraction of descent procedures.

References
Allgower, E. L., & Georg, K. (1980). Numerical continuation methods. an introduction.

No. 13 in Springer Series in Computational Mathematics. Springer-Verlag.

Bengio, Y. (2007). Learning deep architectures for AI (Technical Report 1312). U.
Montréal, dept. IRO.

Bengio, Y., Ducharme, R., & Vincent, P. (2001). A neural probabilistic language model.
Advances in NIPS 13 (pp. 932–938). MIT Press.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise train-
ing of deep networks. Advances in NIPS 19.

Cohn, D., Ghahramani, Z., & Jordan, M. I. (1995). Active learning with statistical models.
Advances in NIPS 7. Cambridge MA: MIT Press.

Coleman, T. F., & Wu, Z. (1994). Parallel continuation-based global optimization for
molecular conformation and protein folding (Technical Report). Cornell University,
Department of Computer Science.

Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing:
Deep neural networks with multitask learning. ICML.

Derényi, I., Geszti, T., & Györgyi, G. (1994). Generalization in the programed teaching
of a perceptron. Physical Review E, 50, 3192–3200.

Elman, J. L. (1993). Learning and development in neural networks: The importance of
starting small. Cognition, 48, 781–799.

14

Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., & Vincent, P. (2009). The difficulty
of training deep architectures and the effect of unsupervised pre-training. Proceedings
of the Eleventh International Conference on Artificial Intelligence and Statistics, April
16-19, 2009, Florida.

Freund, Y., & Haussler, D. (1994). Unsupervised learning of distributions on binary
vectors using two layer networks (Technical Report UCSC-CRL-94-25). University of
California, Santa Cruz.

Hastad, J., & Goldmann, M. (1991). On the power of small-depth threshold circuits.
Computational Complexity, 1, 113–129.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep
belief nets. Neural Computation, 18, 1527–1554.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with
neural networks. Science, 313, 504–507.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. (2007). An empirical
evaluation of deep architectures on problems with many factors of variation. ICML
2007: Proceedings of the Twenty-fourth International Conference on Machine Learning
(pp. 473–480). Corvallis, OR: Omnipress.

More, J., & Wu, Z. (1996). Smoothing techniques for macromolecular global optimiza-
tion. In G. D. Pillo and F. Giannessi (Eds.), Nonlinear optimization and applications.
Plenum Press.

Peterson, G. B. (2004). A day of great illumination: B. F. Skinner’s discovery of shaping.
Journal of the Experimental Analysis of Behavior, 82, 317–328.

Ranzato, M., Boureau, Y.-L., & LeCun, Y. (2008). Sparse feature learning for deep belief
networks. In J. Platt, D. Koller, Y. Singer and S. Roweis (Eds.), Advances in neural
information processing systems 20. Cambridge, MA: MIT Press.

Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2007). Efficient learning of sparse
representations with an energy-based model. Advances in Neural Information Process-
ing Systems 19. MIT Press.

Rohde, D., & Plaut, D. (1999). Language acquisition in the absence of explicit negative
evidence: How important is starting small? Cognition, 72, 67–109.

Salakhutdinov, R., & Hinton, G. (2007). Learning a nonlinear embedding by preserving
class neighbourhood structure. Proceedings of AISTATS 2007. San Juan, Porto Rico:
Omnipress.

15

Salakhutdinov, R., & Hinton, G. (2008). Using deep belief nets to learn covariance ker-
nels for gaussian processes. In J. C. Platt, D. Koller, Y. Singer and S. Roweis (Eds.),
Advances in neural information processing systems 20. Cambridge, MA: MIT Press.

Salakhutdinov, R., Mnih, A., & Hinton, G. (2007). Restricted Boltzmann machines for
collaborative filtering. ICML ’07: Proceedings of the 24th international conference on
Machine learning (pp. 791–798). New York, NY, USA: ACM.

Schwenk, H., & Gauvain, J.-L. (2002). Connectionist language modeling for large vocab-
ulary continuous speech recognition. International Conference on Acoustics, Speech
and Signal Processing (pp. 765–768). Orlando, Florida.

Skinner, B. F. (1958). Reinforcement today. American Psychologist, 13, 94–99.

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and com-
posing robust features with denoising autoencoders. ICML 2008: Proceedings of the
Twenty-fifth International Conference on Machine Learning (pp. 1096–1103).

Weston, J., Ratle, F., & Collobert, R. (2008). Deep learning via semi-supervised embed-
ding. Proceedings of the Twenty-fifth International Conference on Machine Learning
(ICML 2008).

Wu, Z. (1997). Global continuation for distance geometry problems. SIAM Journal of
Optimization, 7, 814–836.

16

Input Window

the cat sat on the

word to score

s(1) s(2) s(3) s(4) s(5)

text

indices

Lookup Table

LTw

Tanh

Linear

Linear

50

250 (concatenation)

Score

100

context

Figure 4: Architecture of the deep neural network computing the score of the next
word given the previous ones.

17

2.75

3

3.25

3.5

0 500 1000 1500

lo
g(
ra
nk

 n
ex
t w

or
d)

million
updates

curriculum

no‐curriculum

Figure 5: Ranking language model trained with vs without curriculum on
Wikipedia. “Error” is log of the rank of the next word (within the final 20k-word
vocabulary). In its first pass through Wikipedia, the curriculum-trained model
skips examples with words outside of 5k most frequent words (down to 270 mil-
lion from 631 millions), then skips examples outside of 10k-word most frequent
vocabulary (doing 370 million updates), etc. The drop in rank occurs when the
vocabulary size is increased, as the curriculum-trained model quickly gets better
on the new words.

18

