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Independent-component analysis
of skin color image
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The spatial distributions of melanin and hemoglobin in human skin are separated by independent-component
analysis of a skin color image. The analysis is based on the skin color model with three assumptions: (1)
Spatial variation of color in the skin is caused by two pigments, melanin and hemoglobin; (2) the quantities
of the two pigments are mutually independent spatially; and (3) linearity holds among the quantities and
the observed color signals in the optical density domain. The results of the separation agree well with
physiological knowledge. The separated components are synthesized to simulate the various facial color im-
ages by changing the quantities of the two separated pigments. © 1999 Optical Society of America
[S0740-3232(99)00609-2]
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1. INTRODUCTION
Skin color reproduction may be considered the most im-
portant problem in the color reproduction of color film and
color television systems.1 With the recent progress in
various imaging systems2–5 such as multimedia, com-
puter graphic, and telemedicine systems, skin color be-
comes increasingly important for communication, image
reproduction on hard copy and soft copy, medical diagno-
sis, cosmetic development, and so on.

Human skin is a turbid medium with multilayered
structure.6,7 Various pigments such as melanin and he-
moglobin are contained in the medium. Slight changes
in structure and pigment construction produce rich skin
color variation.8 Therefore it is necessary to analyze skin
color on the basis of structure and pigment construction
in reproducing and discerning various skin colors.

In this paper the spatial distributions of melanin and
hemoglobin in skin are separated by independent-
component analysis (ICA) of a skin color image. ICA is a
technique that extracts the original signals from mixtures
of many independent sources without a priori information
on the sources and the process of the mixture. ICA has
been applied to various problems such as array process-
ing, communication, medical signal processing, and
speech processing.9 In the field of color image process-
ing, Inoue et al.10 proposed a technique to separate each
pigment from compound color images. Their research is
reviewed in Section 2 in this paper. However, they could
not obtain any practical results, since they assumed lin-
earity among the quantities of pigments and observed
color signals in the intensity domain, and in the intensity
domain this linearity generally will not hold in practical
applications. We improve on their technique by process-
ing color signals in the density domain and applying the
technique to analyze the skin color image. Furthermore,
we apply the result of the analysis to the separation and
synthesis of a facial color image.

In Section 2 we review the independent-component
0740-3232/99/092169-08$15.00 ©
analysis proposed in Ref. 10 for application to color image
separation. In Section 3 skin color is modeled on the ba-
sis of the two pigments melanin and hemoglobin in the
optical density domain. The results of the independent-
component analysis for skin color images are shown in
Section 4. In Section 5, separated and synthesized facial
color images are shown.

2. INDEPENDENT-COMPONENT ANALYSIS
ICA is a technique that extracts the original signals from
mixtures of many independent sources without a priori
information on the sources and the process of the mixture.
To apply ICA to color image separation, Inoue et al.10 con-
sidered that the quantities of the pigments that construct
the color are the original signals from independent
sources, the observed color signals are mixtures, and the
pure color signals of the pigments indicate the mixing
process of the quantities.10 In this section we describe
this technique as developed in Ref. 10.

Simplifying the description, we assume that the me-
dium is constructed by two pigments and that it is cap-
tured by an imaging system with two color channels.
This simplification does not prevent generalization of the
problem except when the number of pigments is larger
than the number of channels. This situation is discussed
below.

Let xl,m(1) and xl,m(2) denote the quantities of the two
pigments on the coordinates (l, m) in the digital color im-
age and a(1) and a(2)denote pure color vectors of the two
pigments per unit quantity, respectively. Inoue et al.10

assumed that a(1)and a(2) are different from each other.
They also assumed that the compound color vector el,m on
the image coordinates (l, m) can be calculated by the lin-
ear combination of pure color vectors with the quantities
xl,m(1) and xl,m(2) as

el,m 5 xl,m~1 !a~1 ! 1 xl,m~2 !a~2 !. (1)
1999 Optical Society of America
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Each element of the color vector indicates a pixel value of
the corresponding channel. Denote now by A
5 @a(1), a(2)# the constant 2 3 2 mixing matrix whose
column vectors are pure color vectors and by x l,m
5 @xl,m(1), xl,m(2)# t the quantity vector on the image co-
ordinates (l, m). We can write the signal model in vec-
tor and matrix form as follows:

el,m 5 Ax l,m . (2)

Inoue et al.10 also assumed that the elements xl,m(1) and
xl,m(2) of the quantity vector are mutually independent
for the image coordinates (l, m). Figure 1(a) shows the
process of mixing, and Fig. 1(b) is an example of the prob-
ability density distribution of xl,m(1) and xl,m(2), which
are mutually independent. Figure 1(c) shows the prob-
ability density distribution in the image, of el,m(1) and
el,m(2) which are elements of the compound color vector
el,m . It should be noted that the observed color signals
el,m(1) and el,m(2) are not mutually independent. In
Fig. 1(c), pure color vectors a(1) and a(2) are also shown
to illustrate the relationship among the parameters.

By applying ICA to the compound color vectors in the
image, we extract the relative quantity and the pure color
vector of each pigment without a priori information on
the quantity and the color vector under the assumption
that the quantities of pigments are mutually independent
for the image coordinates. Let us define the following

Fig. 1. Mixture and separation of independent signals: (a) flow
of the signals, examples of probability density distribution of (b)
xl,m(1) and xl,m(2), (c) el,m(1) and el,m(2), and (d) sl,m(1) and
sl,m(2).

Fig. 2. Schematic model of human skin with plane-parallel epi-
dermal and dermal layers.
equation by using the separating matrix H and the sepa-
rated vector sl,m as shown in Fig. 1(a):

sl,m 5 Hel,m , H 5 @h~1 !, h~2 !#,

sl,m 5 @sl,m~1 !, sl,m~2 !# t, (3)

where h(1) and h(2) are separating vectors. By finding
the appropriate separating matrix H, we can extract the
mutually independent signals sl,m(1) and sl,m(2) from
the compound color vectors in the image. Many methods
for finding separating matrix H have been proposed (for
example, Refs. 11–15), such as using the learning ability
of an artificial neural network14 and optimization tech-
niques based on the fixed-point method.12

The extracted independent signals sl,m(1) and sl,m(2)
may correspond to xl,m(2) and xl,m(1), respectively, and
it is impossible to determine the absolute quantities
xl,m(1) and xl,m(2) without an additional assumption.
Therefore the extracted independent vector sl,m is given
by

sl,m 5 RLxl,m , (4)

where R is the permutation matrix that may substitute
the elements of the vectors for each other, and L is the
diagonal matrix that relates the absolute quantities to
the relative qualities. Substituting Eqs. (2) and (3) into
Eq. (4) gives

HAxl,m 5 RLxl,m . (5)

If we take Eq. (5) in the arbitrary quantity vector, the ma-
trix HA should be equal to the matrix RL, and the mixing
matrix A is calculated by using the inverse matrix of H as
follows:

A 5 H21RL. (6)

Note that what we can obtain by ICA are relative quanti-
ties and directions of compound color vectors. In our ap-
plication of color image separation and synthesis, how-
ever, the absolute values are not required.

If the number of pigments is larger than the number of
channels, it is impossible to extract the independent com-
ponents caused by reduction of the signals. On the other
hand, if the number of pigments is smaller than the num-
ber of channels, it is possible to make the number of chan-
nels equal to the number of pigments by using principal-
component analysis (PCA).14 This technique is also used
in our analysis.

3. SKIN COLOR MODEL
A schematic model of human skin is shown in Fig. 2 with
plane-parallel epidermal and dermal layers. The epider-
mal and dermal layers are turbid media. Various pig-
ments such as melanin, hemoglobin, bilirubin, and
b-carotene are contained in the layers; in particular,
melanin and hemoglobin are predominantly found in the
epidermal and the dermal layer, respectively.

Figure 3(a) shows a skin color image with 64 3 64 pix-
els used for ICA. The image is extracted from the fore-
head of the facial image with 300 3 450 pixels taken by
a HDTV camera (Nikon HQ1500C) with 1920 3 1035
pixels. The facial image is shown in Fig. 3(b), with the
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Fig. 3. Analyzed color images: (a) skin color image with 64 3 64 pixels, (b) facial image color image with 1920 3 1035 pixels. The
skin color image is extracted from the forehead of the facial image. The extracted area is enclosed by a white square.
extracted area enclosed by a white square. The subject
was not wearing makeup or lipstick. Each pixel of these
color images has three channels: red, green, and blue.
Let rl,m , gl,m , bl,m be the pixel values in red, green, and
blue channels, respectively, of the skin color image on the
image coordinates (l, m).

Analyzing this skin color, we made four assumptions
about skin color. First, the Lambert–Beer law, or rather
the modified Lambert–Beer law,16 holds with respect to
the reflected light among the quantities and the observed
color signals. Second, the spectral distribution of the
skin is not abrupt in the sensitive spectral range of each
channel in the imaging system. Third, the spatial varia-
tions of color in the skin are caused by two pigments:
melanin and hemoglobin. Fourth, the pigment quanti-
ties are mutually independent spatially.

The first assumption ensures linearity among the ob-
served color signals and pure color signals of the pigments

Fig. 4. Skin color model in the optical density domain of three
channels.
in the spectral density domain. The second assumption
ensures linearity in the optical density domain of three
channels: 2log(rl,m),2log( gl,m),and 2log(bl,m). This is
true because the signal value of each channel is obtained
by integration of the spectral intensity with respect to the
wavelength in the sensitive spectral range of each chan-
nel in the imaging system, and the integration can be ap-
proximated as a product of the intensity at a wavelength
by a constant if the spectral distribution of the skin is ap-
proximated as flat in the sensitive spectral range. On
the basis of the linearity and the third assumption, the
color in the skin image is modeled in Fig. 4 in the optical
density domain of three channels. It is seen that the
three densities of skin color are distributed on the two-
dimensional plane spanned by the pure color vectors of
melanin and hemoglobin. We denote by cl,m the color
density vector on the image coordinates (l, m):

cl,m 5 @2log~rl,m!, 2log~ gl,m!, 2log~bl,m!# t, (7)

where @ • # t represents transposition. According to the
skin color model shown in Fig. 4, the color density vector
of skin can be expressed by

cl,m 5 ql,m~1 !c~1 ! 1 ql,m~2 !c~2 ! 1 c~3 !, (8)

where c(1) and c(2) are pure density vectors of hemoglo-
bin and melanin (or melanin and hemoglobin); ql,m(1)
and ql,m(2) are relative quantities of the pigments, re-
spectively; and c(3) is the spatially stationary vector
caused by other pigments and skin structure. The vec-
tors c(1) and c(2) are normalized as ic(1)i

5 ic(2)i 5 1, where i • i is the operation of the Euclid-
ean norm. Equation (8) is written in vector and matrix
form by using the pure color density matrix C 5 @c(1),
c(2)# and the quantity vector ql,m 5 @ql,m(1), ql,m(2)# t

as
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cl,m 5 Cq l,m 1 c~3 !. (9)

It can be easily understood that ICA as described in
Section 2 can be applied in the two-dimensional plane
spanned by c(1) and c(2) to estimate the quantity vector
q l,m from the color density vectors cl,m . PCA is used to
extract the two-dimensional plane. Figure 5 shows the
relationship between the number of principal components
used and the cumulative contribution ratio. The values
of the three channels can be adequately described by us-
ing two principal components with an accuracy of 99.3%.
Let us denote the first, second, and third principal-
component vectors as p(1), p(2),and p(3), respectively.
We note that p(1), p(2) will span the two dimensional
space spanned by c(1) and c(2).

Here we define the projection matrix PP t

5 @p(1), p(2)#@p(1), p(2)# t onto the two-dimensional
space spanned by c(1) and c(2). On the basis of the pro-
jection, the color density vector cl,m can be divided into
two components as follows:

cl,m 5 P P tcl,m 1 ~I 2 P Pt!cl,m , (10)

where matrix I denotes an identity matrix. The first
term indicates the component in the two-dimensional
subspace spanned by c(1) and c(2) or p1 and p2 . The
second term indicates the component in the one-
dimensional subspace spanned by p3 . Substituting Eq.
(9) into Eq. (10), we show in Eq. (11) that the second term
is independent of the quantities ql,m :

cl,m 5 P P t$Cq l,m 1 c~3 !% 1 ~I 2 P P t!c~3 !. (11)

4. SKIN COLOR IMAGE SEPARATION
The skin color model proposed in Section 3 is used to ex-
tract the unknown color density matrix C and the un-
known relative quantity vectors ql,m . The flow chart of
the extraction is shown in Fig. 6 with use of the compu-
tation in Section 3.

Let us define the score vector wl,m in the first term of
Eq. (11) as

wl,m 5 P t$Cq l,m 1 c~3 !% . (12)

Equation (12) is rewritten as

wl,m 5 P tCq l,m8 , (13)

where

q l,m8 5 q l,m 1 ~PtC!21P tc~3 !. (14)

To make the task of ICA easier,14 the elements in the
score vector wl,m were made zero mean by subtracting the
mean vector w̄, and they were made unit variance by
multiplying the inverse square root of the 2 3 2 diagonal
matrix D 5 diag@l(1), l(2)#,where l(1) and l(2) denote
the eigenvalues for the first and second principal compo-
nents, respectively. The whitened vector denoted by el,m
is written as

el,m 5 D21/2~P tCq l,m8 2 w̄!. (15)

Equation (15) is rewritten as
el,m 5 D21/2P tCx l,m , (16)

where

xl,m 5 q l,m8 2 ~PtC!21w̄. (17)

Here we define the A 5 D21/2PtC,and then we get Eq.
(18), which is the same as Eq. (2):

el,m 5 Axl,m . (18)

The whitened vector el,m is considered the compound
color vector in Eq. (2), and the vector xl,m in Eq. (18) is
considered the quantity vector in Eq. (2). The separation
matrix H is obtained by ICA for the normalized vectors
el,m , and the mixing matrix is calculated by Eq. (6).
Substituting A 5 D21/2P tC into Eq. (6) and solving for
the color matrix C, we calculate the estimated matrix C̃ of
pure color densities as

Fig. 5. Relationship between the number of principal compo-
nents used and the cumulative contribution ratio in skin colors of
three channels.

Fig. 6. Flow chart of preprocessing and ICA for a skin color im-
age.
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C̃ 5 ~D21/2P t!21H21RL. (19)
The diagonal matrix L was chosen to normalize the ma-
trix C̃ as ic(1)i 5 ic(2)i 5 1, and the permutation ma-
trix R is an identity matrix in this paper.

Fig. 7. Distribution of (a) observed signals el,m(1) and el,m(2)
and (b) separated signals sl,m(1) and sl,m(2).

Fig. 8. Two separated independent components of the skin color
image: (a) first and (b) second independent components. The
synthesis parameters are set as (a) K 5 diag@1, 0# and j 5 0, (b)
K 5 diag@0, 1# and j 5 0.
Each element of the separation matrix H was obtained
by minimizing Burel’s independence evaluation value11

for the elements of vector sl,m . The independence evalu-
ation value ranges from 0 to 1, and if the value is 0, the
signals are mutually independent. The minimization is
performed by quasi-Newton implementation with use of
the MATLAB toolbox.17 Figures 7(a) and 7(b) show the dis-
tribution of observed signals el,m(1) and el,m(2) and the
resultant signals sl,m(1) and sl,m(2), respectively. The
independence evaluation value for the observed signals
and resultant signals were 0.2414 and 0.0081, respec-
tively. We can conclude that sl,m(1) and sl,m(2) are
fairly independent of each other from the independence
evaluation value of 0.00811; therefore melanin and hemo-
globin were distributed independently in the skin color
image.

The quantity vector is estimated by using the esti-
mated pure color matrix C̃. Replacing the color matrix C
with the estimated matrix C̃ in Eq. (9) and solving for
quantity vector q l,m , we obtain the estimated quantity
vector q̃l,m :

q̃ l,m 5 C̃1cl,m 2 b, (20)

where C̃1 is the Moore–Penrose generalized inverse ma-
trix of C̃, and b is defined by C̃1c(3). The vector c(3) is
unknown, and therefore if we assume that the smallest
value of each element in q l,m in the skin image is zero,
then b is calculated by

b 5 min
l,m

~C̃1cl,m!, (21)

where minl,m(x) produces the smallest element of the vec-
tor x in the image and gives the elements in vector form.

According to the above analysis, the color-separation-
Fig. 9. Two separated images corresponding to (a) first and (b) second independent components. Synthesis parameters are set as (a)
K 5 diag@1, 0# and j 5 0, (b) K 5 diag@0, 1# and j 5 0.
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Fig. 10. Simulated images of facial color variation based on the independent component. The synthesis parameters are set as (a) K
5 diag@2, 1# and j 5 1, (b) K 5 diag@3, 1# and j 5 1, (c) K 5 diag@1, 2# and j 5 1, (d) K 5 diag@1, 3# and j 5 1.
and-synthesis equation is written as

cl,m8 5 C̃$K~C̃1cl,m 2 b! 1 jb% 1 j ~I 2 P P t!cl,m ,
(22)

where cl,m8 is the synthesized color, K is the diagonal ma-
trix that changes the quantities of pigments
q l,m(5C̃1cl,m 2 b), and j is the value that changes the
quantities of the stationary color vector c(3). We call K
and j the synthesis parameters.
Figures 8(a) and 8(b) show the two separated indepen-
dent components: the first and the second independent
component, respectively. We set the synthesis param-
eters as K 5 diag@1, 0# and j 5 0 in Fig. 8(a) and K
5 diag@0, 1# and j 5 0 in Fig. 8(b). It is assumed that
the first and the second independent components are
caused by hemoglobin and melanin, respectively, since
the pimples are seen in the first independent component
and are not seen in the second independent component.
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5. FACIAL COLOR IMAGE SEPARATION
AND SYNTHESIS
The main variations of facial color are caused by the
variation in the quantity of hemoglobin and melanin. It
is possible to simulate facial color variation by synthesiz-
ing the two separated components with an increase or de-
crease of each separated quantity.

We applied the color-separation-and-synthesis equa-
tion [Eq. (22)] to the facial image shown in Fig. 3(b). The
coefficients of the equation were obtained by analyzing
the skin color image shown in Fig. 3(a). Figures 9(a) and
9(b) show two separated images corresponding to the first
and the second independent component, respectively.
We set the synthesis parameters as K 5 diag@1, 0#and j
5 0 in Fig. 9(a) and as K 5 diag@0, 1# and j 5 0 in Fig.
9(b). Note that there is a little melanin at the lip region
in Fig. 9(b). This result agrees well with physiological
knowledge. However, the region of hair is mistakenly
separated into the region of hemoglobin. We considered
that the skin model does not hold for hair.

Figure 10 shows simulated results of facial color varia-
tion based on the independent component. We set the
synthesis parameters as K 5 diag@2, 1# and j 5 1 in Fig.
10(a), K 5 diag@3, 1# and j 5 1 in Fig. 10(b), K
5 diag@1, 2# and j 5 1 in Fig. 10(c), K 5 diag@1, 3# and
j 5 1 in Fig. 10(d). If the estimated quantity at a certain
point is smaller than the corresponding element of b in
Eq. (22), the parameters are set as K 5 diag@1, 1# and
j 5 1 to hold the image quality in the regions of hair,
background, and so on. It can be seen in Fig. 10(a) that
the pimples are enhanced by the increase in hemoglobin,
and in Fig. 10(b) the whole facial color becomes flushed,
as if the subject were in a high-temperature room. It is
seen in Figs. 10(c) and 10(d) that the facial colors become
more brownish, as if the subject had gotten a suntan. It
can also be seen that the highlights were emphasized in
the synthesized image in Fig. 10. This occurred because
we assumed that the smallest value of each quantity of
the skin image is zero in Eq. (21). The highlights were
caused by the geometry of the environmental illuminant
in Fig. 10(b).

6. CONCLUSION AND DISCUSSION
The skin and the facial color images were each separated
into two images by independent-component analysis
(ICA) in the optical density domain of three color chan-
nels. We believe that the images correspond to distribu-
tions of melanin and hemoglobin, because the result of
separation agreed well with physiological knowledge.
The separated components were synthesized to simulate
the various facial color images by changing the quantities
of the two separated pigments.

Many assumptions were made in the analysis: (1) lin-
earity among the quantities and the observed color sig-
nals in the optical density domain, (2) spatial color varia-
tion caused by only two pigments, (3) spatial
independence of the two pigments, and (4) zero quantity
at a certain point of the skin image. From the results of
principal-component analysis and ICA, we can conclude
that linearity, spatial color variation, and spatial inde-
pendence were confirmed in our experiments. In apply-
ing this technique to various parts of the body, however, it
will be necessary to consider the violation of these as-
sumptions depending on the area of skin image, skin
structure, skin condition, and so on. In addition to the
above assumptions, we have assumed implicitly that pure
color vectors of pigments will not change spatially. How-
ever, hemoglobin has two types of state: oxyhemoglobin
(HbO2) and deoxy-hemoglobin (Hb). The spectral ab-
sorptions are different from each other, and the ratio be-
tween HbO2 and Hb will change spatially in a large area
of skin image or in an area of skin diseases.18 When this
technique is applied to such images, ICA for skin color im-
ages should be improved by the use of an artificial neural
network that is adapted to the fluctuation of the system.

The values of the three color channels are dependent on
the imaging device. Therefore it was impossible to dis-
cuss the separated colors directly in this paper. The pro-
posed techniques should be applied to a calibrated image
or a spectral reflectance image.

In this paper, the quantities of pigments were simply
doubled and tripled in the synthesis of facial color. Vari-
ous image-processing techniques will give rich variations
in facial color image, and knowledge of physiological phe-
nomena will help to reproduce the realistic variation of fa-
cial color with these techniques.
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