
Journal of Cloud Computing:
Advances, Systems and Applications

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems
and Applications (2017) 6:6
DOI 10.1186/s13677-017-0075-2

RESEARCH Open Access

Optimal and suboptimal resource
allocation techniques in cloud computing
data centers
Mohamed Abu Sharkh* , Abdallah Shami and Abdelkader Ouda

Abstract

Cloud service providers are under constant pressure to improve performance, offer more diverse resource
deployment options, and enhance application portability. To achieve these performance and cost objectives,
providers need a comprehensive resource allocation system that handles both computational and network resources.
A novel methodology is introduced to tackle the problem of allocating sufficient data center resources to client Virtual
Machine (VM) reservation requests and connection scheduling requests. This needs to be done while achieving the
providers’ objectives and minimizing the need for VM migration. In this work, the problem of resource allocation in
cloud computing data centers is formulated as an optimization problem and solved. Moreover, a set of heuristic
solutions are introduced and used as VM reservation and connection scheduling policies. A relaxed suboptimal
solution based on decomposing the original problem is also presented. The experimentation results for a diverse set
of network loads show that the relaxed solution has achieved promising levels for connection request average
tardiness. The proposed solution is able to reach better performance levels than heuristic solutions without the
burden of long hours of running time. This makes it a feasible candidate for solving problems with a much higher
number of requests and wider data ranges compared to the optimal solution.

Keywords: Clouds, Resource allocation, Analytical models, Systems simulation, Communication system traffic,
Communication system operations and management, Web and internet services, Virtual machines, Systems
solution design

Introduction
The appeal of cloud computing for clients comes from the
promise of transforming computing infrastructure into a
commodity or a service that organizations pay for exactly
as much as they use. This idea is an IT corporation exec-
utive’s dream. As Gartner analyst Daryl Plummer puts
it: “Line-of-business leaders everywhere are bypassing IT
departments to get applications from the cloud .. and pay-
ing for them like they would a magazine subscription. And
when the service is no longer required, they can cancel that
subscription with no equipment left unused in the corner”
[1]. The idea that centralized computing over the network
is the future, was clear to industry leaders as early as 1997.
None other than Steve Jobs said:“I don’t need a hard disk

*Correspondence: mabusha@uwo.ca
Department of Electrical and Computer Engineering, Western University,
London, Canada

in my computer if I can get to the server faster .. carry-
ing around these non-connected computers is byzantine
by comparison” [1]. This applies as well to organizations
purchasing and planning large data centers.
However, performance remains the critical factor. If -

at any point- doubts are cast over a provider’s ability to
deliver the service according to the Service Level Agree-
ments (SLAs) signed, clients will consider moving to
other providers. They might even consider going back to
the buy-and-maintain model. Providers are under con-
stant pressure to improve performance, offer more diverse
resource deployment options, improve service usability,
and enhance application portability. A main weapon here
is an efficient resource allocation system. As in Fig. 1,
in the cloud scenario, clients are able to rent Virtual
Machines (VMs) from cloud providers. Providers offer
several deployment models where VM configuration dif-
fers in computing power, memory, storage capacity and

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-017-0075-2&domain=pdf
http://orcid.org/0000-0002-6565-6612
mailto: mabusha@uwo.ca
http://creativecommons.org/licenses/by/4.0/

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:6 Page 2 of 17

Fig. 1 Cloud simulated environment and components

platform just to name a few factors. During the rental
period, clients require network capabilities. Clients will
have data frequently exchanged between client head-
quarters (or private clouds) and VMs or between two
client VMs. The aim here for a scheduler is to schedule
VM reservation requests and connection requests in the
fastest possible way while using the data center resources
optimally. This task is getting even harder with the emer-
gence of the big data concepts. IBM summarized big data
challenges into 4 different dimensions referred to as the
4 Vs: Volume, Velocity, Variety, and Veracity [2]. With
most companies owning at least 100 TB of data stored and
with 18.6 billion network connections estimated to exist
now [2], resource allocation efficiency has never been so
important.
When faced by the task of designing a resource alloca-

tion methodology, many external and internal challenges
should be considered. An attempt to summarize these
challenges can be found in [3]. External challenges include
regulative and geographical challenges as well as client
demands related to data warehousing and handling. These
limitations result in constraints on the location of the
reserved VMs and restrictions to the data location and
movements. External challenges also include optimizing
the chargingmodel in such a way that generatesmaximum
revenue. Internal challenges discussed in [3] include also
data locality issues. The nature of an application in terms
of being data intensive should be considered while plac-
ing the VMs and scheduling connections related to this
application.
To achieve these performance and cost objectives, cloud

computing providers need a comprehensive resource allo-
cation system that manages both computational and net-
work resources. Such an efficient system would have
a major financial impact as excess resources translate
directly into revenues.
The following sections are organized as follows: a

discussion of the related research efforts is intro-
duced in the following section leading to this paper’s
contribution. Detailed model description is given in

“Model description” section. “Mathematical formulation”
section presents the mathematical formulation of the
problem. The heuristic methods are presented in “Heuris-
tic solution” section. The suboptimal solution is presented
in “Suboptimal solution” section. Results are shown
and analyzed in “Results” section. Finally, “Conclusion”
section concludes the paper and conveys future work.

Related work
Previous attempts were made to optimize a diverse set
of cloud resources. In [4], Dastjerdi and Buyya propose a
framework to simplify cloud service composition. Their
proposed technique optimizes the service composition on
the basis of deployment time, cost and reliability preferred
by users. The authors exploit a combination of evolution-
ary algorithms and fuzzy logic composition optimization
with the objective of minimizing the effort of users while
expressing their preferences. Despite including a wide
range of user requirements in the problem modeling and
providing an optimization formulation along with a fuzzy
logic heuristic, [4] tackles the problem from the user’s
prospective rather than the provider’s. The main goal is
to provide the best possible service composition which
gives the problem a brokering direction instead of the
focus on cloud data center performance. SLA conditions
are considered an input guaranteed by the cloud provider
regardless of how they are achieved.
Wei et al. [5] address Quality of Service (QoS) con-

strained resource allocation problem for cloud computing
services. They present a game-theoretic method to find
an approximate solution of this problem. Their proposed
solution executes in two steps: (i) Step 1: Solving the inde-
pendent optimization for each participant of game theory;
(ii) Step 2: Modifying the multiplexed strategies of the
initial solution of different participants of Step 1 taking
optimization and fairness into consideration. The model
in [5] represents a problem of competition for resources
in a cloud environment. Each system/node/machine rep-
resents a resource that has a corresponding cost and
execution time for each task. More granularity is needed

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:6 Page 3 of 17

in terms of considering the multiple degrees of compu-
tational and network resources when scheduling. Mem-
ory, storage, computational powers and bandwidth (at
least) should be considered separately in an ideal model.
Moreover, network resource impact is not considered
thoroughly in [5]. Also, no detailed discussion for Virtual-
ization scenarios was given.
In [6], Beloglazov et al. define an architectural

framework in addition to resource allocation princi-
ples for energy efficient cloud computing. They develop
algorithms for energy efficient mapping of VMs to
suitable physical nodes. They propose scheduling algo-
rithms which take into account QoS expectations and
power usage characteristics of data center resources. This
includes, first, allocating VMs using modified best fit
decreasing method and then optimizing the current VM
allocation using VM migration. Considering challenges
migration might cause in terms of performance hiccups
caused by copying andmoving delays and scheduling chal-
lenges along with provider vulnerability for SLA violations
[7], a solution that minimizes the need for VM migration
is a preferable one. In addition, no deadline for tasks is
considered in that work.
Duan et al. [8] formulate the scheduling problem

for large-scale parallel work flow applications in hybrid
clouds as a sequential cooperative game. They propose a
communication and storage-aware multi-objective algo-
rithm that optimizes execution time and economic cost
while fulfilling network bandwidth and storage require-
ments constraints. Here, the computation time is modeled
as a direct function of the computation site location and
the task instead of using a unified unit for task size. Mem-
ory was not used as a resource. Task deadlines are not
considered. The goal is to complete a set of tasks that rep-
resent a specific application. This model is closer to job
execution on the grid rather than the model more com-
mon in the cloud which is reserving a VM with specific
resource requirements and then running tasks on them.
Moreover, the assumption presented is that data exchange
requests can run concurrently with the computation with-
out any dependency.
One more variation can be seen in [9] in which

two scheduling algorithms were tested, namely , green
scheduling and round robin. The focus was energy effi-
ciency again but the model offered contains detailed
network modeling as it was based on NS-2 network sim-
ulator. The user requests are modeled as tasks. Tasks are
modeled as unit requests that contain resource specifica-
tion in the form of computational resource requirements
(MIPs, memory and storage) in addition to data exchange
requirements (these include values representing the pro-
cess files to be sent to the host the task is scheduled on
before execution, data sent to other servers during exe-
cution and output data sent after execution). There was

no optimizationmodel offered. In [10], an energy-efficient
adaptive resource scheduler for Networked Fog Centers
(NetFCs) is proposed. The role of the scheduler is to
aid real-time cloud services of Vehicular Clients (VCs)
to cope with delay and delay-jitter issues. These sched-
ulers operate at the edge of the vehicular network and
are connected to the served VCs through Infrastructure-
to-Vehicular (I2V) TCP/IP-based single-hop mobile links.
The goal is to exploit the locally measured states of the
TCP/IP connections, in order to maximize the overall
communication-plus-computing energy efficiency, while
meeting the application-induced hard QoS requirements
on the minimum transmission rates, maximum delays
and delay-jitters. The resulting energy-efficient scheduler
jointly performs: (i) admission control of the input traf-
fic to be processed by the NetFCs; (ii) minimum-energy
dispatching of the admitted traffic; (iii) adaptive reconfig-
uration and consolidation of the Virtual Machines (VMs)
hosted by the NetFCs; and, (iv) adaptive control of the
traffic injected into the TCP/IP mobile connections.
In [11], an optimal minimum-energy scheduler for the

dynamic online joint allocation of the task sizes, comput-
ing rates, communication rates and communication pow-
ers in virtualized Networked Data Centers (NetDCs) that
operates under hard per-job delay-constraints is offered.
The referred NetDCs infrastructure is composed from
multiple frequency-scalable Virtual Machines (VMs), that
are interconnected by a bandwidth and power-limited
switched Local Area Network (LAN). A two step method-
ology to analytically compute the exact solution of the
CCOP is proposed. The resulting optimal scheduler is
amenable of scalable and distributed online implementa-
tion and its analytical characterization is in closed-form.
Actual performance is tested under both randomly time-
varying synthetically generated and real-world measured
workload traces.
Some of the more recent works include the FUGE solu-

tion [12]. The authors present job scheduling solution that
aims at assigning jobs to the most suitable resources, con-
sidering user preferences and requirements. FUGE aims
to perform optimal load balancing considering execu-
tion time and cost. The authors modified the standard
genetic algorithm (SGA) and used fuzzy theory to devise
a fuzzy-based steady-state GA in order to improve SGA
performance in terms of makespan. The FUGE algorithm
assigns jobs to resources by considering virtual machine
(VM) processing speed, VM memory, VM bandwidth,
and the job lengths. A mathematical proof is offered
that the optimization problem is convex with well-known
analytical conditions (specifically, KarushKuhnTucker
conditions).
In [13], the problem of energy saving management

of both data centers and mobile connections is tack-
led. An adaptive and distributed dynamic resource

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:6 Page 4 of 17

allocation scheduler with the objective of minimizing
the communication-plus-computing energy consumption
while guaranteeing user Quality of Service (QoS) con-
straints is proposed. The scheduler is evaluated for the
following metrics: execution time, goodput and band-
width usage.
When looking at the solutions available in the literature,

it is evident that each experiment focuses on a few aspects
of the resource allocation challenges faced in the area. We
try to summarize the different aspects in Table 1.
An ideal solution would combine the features/para-

meters in Table 1 to build a complete solution. This would
include an optimization formulation that covers compu-
tational and network resources at a practical granularity
level. Dealing with bandwidth as a fixed commodity is
not enough. Routing details of each request are required
to reflect the hot spots in the network. That applies for
computational resources as well. CPU, memory and stor-
age requirements constitute a minimum of what should
be considered. Moreover, A number of previous efforts
concentrate on processing resources while some focus
on networking resources. The question arising here is:
How can we process client VM reservation requests keep-
ing in mind their data exchange needs? The common
approach is to perform the VM placement and the con-
nection scheduling separately or in two different consecu-
tive steps. This jeopardizes the QoS conditions and forces
the provider to take mitigation steps when the VM’s com-
putational and network demands start colliding. These
steps include either over provisioning as a precaution or
VM migration and connection preemption after issues
like network bottlenecks start escalating. Minimizing VM
migration incidents is a major performance goal. Off-line
VM migration, however fast or efficient it may be, means
there is a downtime for clients. This does not really com-
ply with a demanding client environment where five 9’s
availability (99.999% of the time availability) is becom-
ing an expectation. As for online migration, it pauses a
loadwithmore copying/redundancy required. These chal-
lenges associated with VMmigration cause cloud comput-
ing solution architects to welcome any solution that does
not include migration at all.
This shortcoming calls for a resource allocation solu-

tion that considers both demands at the same time. This
solution would consider the VM future communication
demands along with computational demands before plac-
ing the VM. In this case, the network demands include
not only the bandwidth requirements as a flat or a chang-
ing number, but also the location of the source/destination
of the requested connection. This means the nodes/VMs
that will (most probably) exchange data with the VM.
As these closely tied VMs are scheduled relatively near
each other, network stress is minimized and the need to
optimize the VM location is decreased dramatically.

In this work, we aim to tackle the problem of allo-
cating client VM reservation and connection scheduling
requests to corresponding data center resources while
achieving the cloud provider’s objectives. Our main con-
tributions include the following:
1- Formulate the resource allocation problem for cloud

data centers in order to obtain the optimal solution. This
formulation takes into consideration the computational
resource requirements at a practical granularity while
considering the virtualization scenario common in the
cloud. It also considers conditions posed by the con-
nection requests (request lifetime/deadline, bandwidth
requirements and routing) at the same time. An important
advantage of this approach over approaches used in pre-
vious efforts is considering both sets of resource require-
ments simultaneously before making the scheduling
decision. This formulation is looked at from the providers’
perspective and aims at maximizing performance.
2- Make the formulation generic in a way that it does not

restrict itself to the limited environment of one data center
internal network. The connection requests received can
come from one of many geographically distributed pri-
vate or public clouds. Moreover, the scheduler is given the
flexibility to place the VMs in any of the cloud provider’s
data centers that are located in multiple cities. These data
centers (clouds) represent the network communicating
nodes. The complete problem is solved using IBM ILOG
CPLEX optimization library [14].
3- Introduce multiple heuristic methods to preform the

two phases of the scheduling process. Three methods
are tested for the VM reservation step. Two methods
are tested for scheduling connections. The performance of
these methods is investigated and then compared to some
of the currently available methods mentioned earlier.
4- Introduce a suboptimal method to solve the same

problem for large scale cases. This method is based on a
technique of decomposing the original problem into two
separate sub-problems. The first one is referred to as mas-
ter problem which performs the assignment of VMs to
data center servers based on a VM-node relation func-
tion. The second one, termed as subproblem, performs
the scheduling of connection requests assigned by master
problem. This suboptimal method achieves better results
than the heuristic methods while getting these results
in more feasible time periods in contrast to the optimal
formulation.

Model description
We introduce a model to tackle the resource alloca-
tion problem for a group of cloud user requests. This
includes the provisioning of both computational and net-
work resources of data centers. The model consists of a
network of data centers nodes (public clouds) and client
nodes (private clouds). These nodes are located in varying

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:6 Page 5 of 17

Ta
b
le

1
A
co
m
pa

ris
on

of
cl
ou

d
re
so
ur
ce

al
lo
ca
tio

n
ef
fo
rt
s

Re
fe
re
nc
e/

Fe
at
ur
e

[4
]

[5
]

[6
]

[7
]

[8
]

Pr
op

os
ed

so
lu
tio

n

O
pt
im

iz
at
io
n
m
od

el
of
fe
re
d

Ye
s

Ye
s

N
o

Ye
s

N
o

Ye
s

Pe
rs
pe

ct
iv
e

U
se
r/
br
ok
er

Pr
ov
id
er

Pr
ov
id
er

Pr
ov
id
er

Pr
ov
id
er

Pr
ov
id
er

C
om

pu
ta
tio

n
re
so
ur
ce
s

VM
ty
pe

s
(g
en

er
ic
)

C
om

pu
ta
tio

na
ln
od

e
(n
o
m
em

or
y)

C
PU

,M
em

or
y
an
d
St
or
ag
e

C
om

pu
ta
tio

na
ln
od

e
(n
o
m
em

or
y)

C
PU

,M
em

or
y
an
d
St
or
ag
e

C
PU

,M
em

or
y
an
d

St
or
ag
e

N
et
w
or
k
re
so
ur
ce
s

am
ou

nt
s
of

da
ta

D
oe

s
no

t
af
fe
ct

ex
ec
ut
io
n

tim
e

N
o

BW
&
am

ou
nt
s
of

da
ta

BW
,s
ou

rc
e
&
de

st
in
at
io
n

BW
,s
ou

rc
e
&

de
st
in
at
io
n

Sc
he

du
lin
g
co
ns
id
er
s
bo

th
ne

tw
or
k

&
co
m
pu

ta
tio

na
lr
es
ou

rc
es

N
o

N
o

N
o

Ye
s

N
o

Ye
s

Re
qu

es
td

ea
dl
in
e/

lif
et
im

e
N
o

Ye
s

N
o

N
o

Ye
s

Ye
s

VM
m
od

el
in
g

VM
s
&
VM

ap
pl
ia
nc
es

of
fe
re
d

N
o

VM
pl
ac
em

en
t&

m
ig
ra
tio

n
co
ns
id
er
ed

N
o

VM
pl
ac
em

en
t&

m
ig
ra
tio

n
co
ns
id
er
ed

VM
pl
ac
em

en
t

co
ns
id
er
ed

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:6 Page 6 of 17

cities or geographic points as in Fig. 2. They are connected
using a network of bidirectional links. Every link in this
network is divided into a number of equal lines (flows).
It is assumed that this granularity factor of the links can
be controlled. We also assume that each data center con-
tains a number of servers connected through Ethernet
connections. Each server will have a fixed amount of
memory, computing units and storage space. As an ini-
tial step, when clients require cloud hosting, they send
requests to reserve a number of VMs. All of these VMs
can be of the same type or of different types. Each cloud
provider offers multiple types of VMs for their clients to
choose from. These types vary in the specification of each
computing resource like memory, CPU units and stor-
age. We will use these three types of resources in our
experiment. Consequently, each of the requested VMs is
allocated on a server in one of the data centers. Also, the
client sends a number of requests to reserve a connec-
tion. There are two types of connection [15, 16] requests:
1- A request to connect a VM to another VM where both
VMs were previously allocated space on a server in one
of the data centers (public clouds). 2- A request to con-
nect a VM to a client node. Here, the VM located in a
data center node connects to the client headquarters or
private cloud. The cloud provider-client network is illus-
trated in Fig. 2. For every request, the client defines the
source, destination, start time and duration of the connec-
tion. Thus, the objective becomes to minimize the average
tardiness of all connection requests. A sample of client
requests is shown in Table 2. Requests labeled “Res” are
VM reservation requests. Requests labeled “Req con” are
connection requests between a VM and a client node or
between 2 VMs. An example of the VM configuration is
shown in Table 3 [17, 18].

Mathematical formulation
To solve the problem of resource scheduling in cloud com-
puting environment, we introduce an analytical model
where we formulate the problem as a mixed integer linear
problem. We model the optimization problem of mini-
mizing the average tardiness of all reservation connection
requests while satisfying the requirements for virtual con-
nection requests of different clients. This model is solved
using IBM ILOG CPLEX software for a small set of
requests.

Notations
Environment and network parameters are described
below. The set of VMs and the set of servers
are represented by VM and Q respectively. Mqm
represents the amount of resources (e.g. mem-
ory) available on a server where q ∈ Q and
m ∈ {memory(mem),CPU unit(cu), storage(sg)} such
that Mqm = 30 indicates that available memory on
server q is 30 GB assuming that m denotes a specific
type of required resource, i.e., memory on a server. Kvm
is used to represent the amount of resources needed for
every requested VM such that Kvm = 7 indicates that
the VM v ∈ VM requires 7 GB of memory assuming
that m denotes memory resource on a server. The set of
network paths and the set of links are represented by P
and L respectively. alp is a binary parameter such that
alp = 1 if link l ∈ L is on path p ∈ P; 0 otherwise. In
our formulation, fixed alternate routing method is used
with a fixed size set of paths available between a node and
any other node. These paths represent the alternate paths
a request could be scheduled on when moving from a
server residing in the first node to a server residing in the
other node. bqcp is a binary parameter such that bqcp = 1

Fig. 2 An example of a cloud provider-client network: clients can connect from their private clouds, their headquarters or from a singular machine
on the Internet. The provider data centers represent public clouds

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:6 Page 7 of 17

Table 2 An example of a set of resource allocation requests

Client Request Type Start Duration Source Destination

C-1 Res VM1 High-CPU T=10 125 - -

C-2 Res VM2 High-Storage T=15 400 - -

C-1 Res VM3 Standard T=20 150 - -

C-2 Res VM4 High-Memory T=10 70 - -

C-1 Req con VM-VM T=15 10 VM1 VM3

C-1 Req con VM-C T=18 20 VM3 C1

C-2 Req con VM-VM T=25 8 VM4 VM2

C-2 Req con VM-C T=30 30 VM4 C2

if path p ∈ P is one of the alternate paths from server,
q ∈ Q to server, c ∈ Q; 0 otherwise. I represents a set
of connection requests. Every connection request, i ∈ I
is specified by a source (si), a destination (di), requested
start time (ri) and connection duration (ti). TARD rep-
resents the allowed tardiness (accepted delay) for each
connection request. The formulation covers scenarios in
which networks can divide a link into shares or streams
to allow more flexibility with the formulation and cover a
wide set of situations. The set of shares (wavelengths in
the case of an optical network) could contain any number
of wavelengths based on the problem itself. The set λ is
the set of all available wavelengths in the network. The
parameter h used in constraint 6 indicates a large number
that helps to ensure the solution is derived according to
the conditions in the constraint. In addition, the binary
parameter Wij indicates if request i is scheduled before
request j. Using this parameter ensures constraint 6 is
tested only once for each pair of requests.

Decision variables
Fi is an integer decision variable which represents the
scheduled starting time for connection request, i ∈ I. Xvq
is a binary decision variable such that Xvq = 1 if v ∈ VM is
scheduled on server q ∈ Q. Yipw is a binary decision vari-
able such that Yipw = 1 if request, i ∈ I is scheduled on
path, p ∈ P and wavelength, w ∈ λ.

Objective function
The problem is formulated as a mixed integer linear pro-
gramming (MILP) problem. The objective of the MILP

Table 3 VM configuration for the 3 instance (VM) types used in
the experiment as offered by Amazon EC2 [17]

Instance type Standard extra High memory extra High CPU extra
large (SXL) large (MXL) large (CXL)

Memory 15 GB 17 GB 7 GB

CPU (EC2 units) 8 6.5 20

Storage 1690 GB 490 GB 1690 GB

is minimizing the average tardiness of client connection
requests to and from VMs. Tardiness here is calculated
as the difference between the requested start time by the
client (represented by ri) and the scheduled start time by
the provider (represented by Fi). The solver looks for the
solution that satisfies clients in the best way while not
harming other clients’ connections. The solution works
under the assumption that all clients requests have the
same weight/importance to the provider. The objective
function of the problem is as follows:

MIN
∑

i
(Fi − ri) i ∈ I, (1)

Constraints
The objective function is subjected to the following con-
straints:

∑

q∈Q
Xvq = 1, v ∈ VM, (2)

∑

p∈P

∑

w∈λ

Yipw = 1, i ∈ I, (3)

∑

v∈VM
Xvq × Kvm < = Mqm, q ∈ Q,m ∈ {m, c, s}, (4)

Yipw + (Xsiq + Xdic − 3bqcp) <= 2, (5)

i ∈ I, q ∈ Q, c ∈ Q, p ∈ P,w ∈ λ,
∑

p∈P
[(ti × alp × Yipw) + (h × alp × Yipw) + (h × alp × Yjpw)]

(6)

+Fi − Fj + h × Wij < = 3h, i, j ∈ I, l ∈ L,w ∈ λ,

Wij + Wji = 1, i, j ∈ I, (7)

Xvq,Yipw,Wij ∈ {0, 1}, (8)

Fi − ri > = 0, i ∈ I, (9)

Fi − ri < = TARD, i ∈ I, (10)

Fi, ri > = 0, i ∈ I. (11)

In Eq. (2), we ensure that a VM will be assigned exactly
to one server. In (3), we ensure that a connection request
will be assigned exactly on one physical path and one
wavelength (stream/share of a link). In (4), we guarantee
that VM will be allocated on servers with enough capac-
ity of the computational resources required by the VMs.
In (5), we ensure that a connection is established only on
one of the alternate legitimate paths between a VM and
the communicating partner (another VM or client node).
In (6), we ensure that at most one request can be sched-
uled on a certain link at a time on each wavelength and
that no other requests will be scheduled on the same link
and wavelength until the duration is finished. Constraint
(7) ensures constraint 6 will only be tested once for each

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:6 Page 8 of 17

pair of requests. It indicates that request i will start before
request j. In Eqs. (9) and (10), we ensure that the scheduled
time for a request is within the tardiness window allowed
in this experiment.

Heuristic solution
Heuristic model
The proposed model in this paper tackles the resource
allocation challenges faced when provisioning computa-
tional resources (CPU, memory and storage) and net-
work resources. A central controller manages these
requests with the objective of minimizing average tardi-
ness and request blocking. The solution aims at solving
the provider’s cost challenges and the cloud applications
performance issues.
For every request, the client defines the source, destina-

tion, start time and duration of the connection. Thus, this
problem falls under the advance reservation category of
problems.
The central controller (could be a Software Defined

Networking controller (SDN) [19, 20] for example) keeps
the data tables of the available network paths, available
server resources and connection expiration times in order
to handle newly arriving requests. The controller then
allocates the requested VMs on servers according to the
method or policy used. It updates the resource availability
tables accordingly. After that, the controller schedules and
routes connection requests to satisfy the client require-
ments. Network path availability tables are also updated.
As an initial objective, the controller aims at minimizing
the average tardiness of all the advance reservation con-
nection requests. Also, a second objective is minimizing
the number of the blocked requests. This objective is to
be reached regardless of what path is used. Heuristic poli-
cies/techniques proposed aim at getting good, although
not mathematically optimal, performance metric values
while providing this feasible solution within acceptable
amounts of time.

Heuristic techniques for minimizing tardiness
The allocation process is divided into two consecutive
steps:
1- Allocation of VMs on data center servers. Here, all

the VM reservation requests are served based on server
resource availability before any connection request is
served.
2- Scheduling of connection requests on the available

network paths. This happens after all VMs have been
allocated resources and started operation on the servers.
For the first subproblem, three heuristic techniques

were evaluated. For the second step (subproblem), two
heuristic techniques were tested. For a complete experi-
ment, one heuristic for each subproblem is used. These
heuristics are divided as follows.

VM reservation heuristic techniques
a) Equal Time Distribution Technique (ED):

In this heuristic, TMi is the total time reserved by
connection requests from the virtual machine VMi
(sum of the connection durations). Next, the share of
one server is calculated by dividing the total time
units all the VMs have requested by the number of
servers. This is based on the assumption that all
servers have the same capacity (for computational
and network resources). Then, for each server, VMs
are allocated computation resources on the
corresponding servers one by one. When the server
is allocated a number of VMs that cover/consume
the calculated server share, the next VM is allocated
resources on the following server and the previous
steps are repeated. The algorithm is described in
pseudo code in Fig. 3.

b) Node Distance Technique (ND):
First, the average distance between each two nodes is
calculated. The two nodes furthest from each other
(with maximum distance) are chosen. Then, the
maximum number of VMs is allocated on the servers
of these two nodes. Next, the remaining nodes are
evaluated, the node with maximum average distance
to the previous two nodes is chosen. The same
process is repeated until all the VMS are scheduled.

Fig. 3 Equal time distribution heuristic technique

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:6 Page 9 of 17

The algorithm is described in pseudo code in Fig. 4.
fillNode is a function that basically tries to schedule
as many VMs as possible on the called node until the
node’s resources are exhausted. fillNode is illustrated
in Fig. 5.

c) Resource Based Distribution Technique (RB):
In this heuristic, the choice of the server is based on
the type of VM requested. As shown in Table 3, three
types of VMs are used in the experiment: i) High
Memory Extra Large (MXL) has high memory
configuration; ii) High CPU Extra Large (CXL) has a
high computing power; iii) Standard Extra large
(SXL) is more suited to typical applications that need
a lot of storage space. Depending on the type of VM
requested by the client, the heuristic picks the server
with the highest amount of available corresponding
resources. The VM then is allocated resources on
that server. This causes the distribution to be more
balanced.

Connection reservation heuristic techniques
a) Duration Priority Technique (DP):

Fig. 4 Node distance heuristic technique

Fig. 5 Function: fillNode

In this heuristic, connections with the shortest
duration are given the priority. First, connection
requests are sorted based on the requested duration.
The following step is to pick the connection with the
shortest duration and schedule it on the shortest
path available. This step is repeated until all
connection requests are served. The algorithm is
described in pseudo code in Fig. 6.

b) Greedy Algorithm (GA):
In this heuristic, illustrated in Fig. 7, scheduling is
based on the connection Requested Start Time
(RST). Connection requests with earlier RST are
scheduled on the first path available regardless of the
path length.

Complexity analysis of the heuristic solutions
The resource allocation problem in a cloud data center
is a variation of the well known knapsack problem. The
knapsack problem has two forms. In the decision form –

Fig. 6 Duration priority heuristic technique

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:6 Page 10 of 17

Fig. 7 Greedy heuristic technique

which is considered less difficult - as it is NP-Complete-
the question is: Can an objective value of at least K
be achieved without exceeding a specific weight W? The
optimization form of the problem – which is the form
we try to solve in this work - tries to optimize the possible
objective value. The optimization form is NP-Hard. This
means it is at least as hard as all the NP problems. There
is no current solution in polynomial time for this form.
This motivated the introduction of the heuristic algo-

rithms. It might be of interest to the reader to visit the
complexity of the introduced heuristic algorithms.
First, we revisit the variables covered in this analysis.

VM represent the VM set, N represent the set of nodes,
S is the set of servers, R is the set of connection requests,
T is the allowed tardiness per request and D is the aver-
age duration of a connection. This analysis is offered
with the sole purpose of being an approximation of the
time complexity to show that these algorithms run within
polynomial time and in turn- can be practically used by
large scale cloud networks. Looking at the introduced
algorithms one by one, we find that Equal time distribu-
tion has a complexity of O(|VM||R| + |S|). Node distance
algorithms runs in O(|N3|+|S|+|V |). Resource based dis-
tribution runs in O(|V ||S|) which constitutes the quickest
among the 3 VM placement algorithms we introduced. As
for connection scheduling heuristics algorithms, Duration
priority runs in O(|R|.lg|R|+ |R|.T .D) or O(|R|.(1+ lg|R|+
T .D). Finally, the greedy connection scheduling algorithm
runs in O(R.T .D). Therefore, all the mentioned algorithms
run in polynomial times and can yield a result for large
scale problem in practical time periods.

Suboptimal solution
Although an optimal solution can be obtained using the
formulation in “Mathematical formulation” section, this is
only feasible for small scale problems. Even when using
a 5-node network with 4 servers and 7 links connect-
ing them, the number of optimization variables can be as
big as 5000 variables when scheduling 50 requests that
belong to 5 VMs. On the other hand, heuristic methods
achieve feasible solution in relatively quick times but the
solution quality cannot be proven. This motivates us to
move to the next step which is finding a method that
achieves a suboptimal solution. The method introduced
here is based on a decomposition technique. We illustrate
the method in Fig. 8. The steps go as follows.
1- In Step 1, a set of known connection requests are pre-

processed to generate interdependency measurements.
This is figured out by calculating the frequency of com-
munications between each two points in the network. To
bemore specific, the frequency of the connection requests
between each VMi and VMj is calculated as well as the
frequency of connection requests betweenVMi and nodek
which represent a private cloud. This gives us an indica-
tion of which direction most of the VM’s connections go.
This is closely correlated with the dependencies this VM
has and should ideally affect where it is scheduled.

Fig. 8 The suboptimal method step by step

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:6 Page 11 of 17

2- In the second step, a utility function is constructed
based on the connection frequency values generated in
step 1. The utility function serves as the objective function
of the master problem that allocates VMs on hosts.
3- Next, a master problem in which we handle the

assignment of VMs to servers and connections to spe-
cific paths without scheduling them is generated. In other
words, we solve for the decision variable Xvq without
considering any scheduling constraints. This produces
a feasible assignment for VMs that aims at scheduling
interdependent VMs close to each other.
4- After getting the VM assignment locations, A sub-

problem in which we try to find the optimal scheduling
for the input connections under these specific VM assign-
ment conditions. In other words, we solve for the decision
variable Yipw, Fi in the subproblem. The minimum tar-
diness produced from the subproblem is the objective
value we are looking for. As in any decomposition based
optimization, the success of the decomposition technique
depends on the way the solution of the master prob-
lem is chosen. We formulate the master problem and the
subproblem as follows.

Master problem formulation
We first introduce Distance function. It represents the dis-
tance between two nodesmeasured by the number of links
in the shortest path between them. A frequency func-
tion based on connection duration is also added. This
is a function where the connection duration is preferred
as dominant factor. The frequency function is a value
that will represent interdependency between two VMs or
between a VM and a private cloud (client node). Another
alternative here is depending on the number of connec-
tions requested between these two points rather than
the total amount of connection time. Once we calcu-
late the frequency function values, the utility function is
constructed as:

MIN
∑

v∈VM

∑

u∈VM

∑

s∈Q

∑

q∈Q
(Freqvu×Distancesq×Xvs×Xuq),

(12)

Subject to

(2), (4). (13)

The master problem finds the VM allocation that maxi-
mizes the value of point to point interdependency.

Subproblem
As the subproblem focuses on scheduling, its objective
function is the same as in the optimal form, i.e., mini-
mizing the average connection tardiness. In this case, the
final value of the relaxed objective will come directly from
the solution of the subproblem. The difference is that the

subproblem already knows where the VMs are allocated
and is scheduling connections accordingly. The objective
of the sub-problem is as follows.

MIN
∑

i
(Fi − ri) i ∈ I, (14)

Subject to

(3), (5) − (11). (15)

Results
Simulation environment
The problem is simulated using a discrete event based
simulation program and solved on a more practical scale
using the heuristic search techniques discussed in the pre-
vious sections. The network used for the experiment is
the NSF network (in Fig. 9). It consists of 14 nodes of
which 3 are data center nodes and the rest are considered
client nodes [21]. Nodes are connected using a high speed
network with a chosen link granularity that goes up to 3
lines (flows) per link. Fixed alternate routing method is
used with 3 paths available between a node and any other
node. Server configuration and request data parameters
are detailed in Table 4. Preemption of connection requests
is not allowed in this experiment.

Heuristics
As explained in the previous sections, every experiment
includes two phases and hence two heuristics are needed:
one to schedule VMs on servers and the other to sched-
ule connection requests. The five techniques explained
earlier yield 6 possible combinations. However, We chose
to show the results from the best 4 combinations (best
4 full-solutions). This is due to space constraints. The 4
chosen combinations cover all the 5 heuristics. The simu-
lation scenarios and combined heuristics used for the two
subproblems are as follows.

1-ED-GA: Equal Time Distribution technique and
Greedy algorithm.
2-RB-DP: Resource Based Distribution technique
and Duration Priority technique.
3-ED-DP: Equal Time Distribution technique and
Duration Priority technique.
4-ND-DP: Node Distance technique and Greedy
algorithm.

In Figs. 10 and 11, the 4 methods’ performances are
compared in terms of the blocking percentage. This
is measured as the request load increases. Figure 10
shows a comparison of the percentage of blocked requests
(requests that could not be scheduled) where the allowed
tardiness parameter value is very small (1 time unit). This
means that this scenario resembles request requirements

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:6 Page 12 of 17

Fig. 9 The NSF network of 14 nodes [29]

imposing close to real time scheduling. The x axis repre-
sents request load which is measured by λ/μ. λ represents
the arrival rate andμ represents the service rate. Figure 11
shows the same comparison when the allowed tardiness
per request is large (30000 time units). In both scenarios,
it is noticed that ED-DP and RB-DP methods have shown
a clear advantage by scoring consistently lower blocked
requests. The common factor for these 2 methods is using
DP to schedule connections. Therefore, this indicates a
clear advantage of using DP over GA when scheduling
connection requests in tight or real time conditions. In
addition, As seen in Fig. 11, RB-DP has shown a decent
advantage over ED-DP in terms of blocking percentage.

Table 4 Experiment parameter configuration

Parameter Value

Total number of servers 132

Servers/ data center 44

VM reservation requests 200

Connection requests 10000

RST distribution Poisson with Lambda = 10

Connection duration distribution Normal with mean = 200 time units

Source and destination distribution Uniform

Allowed tardiness per request ranging from 1 to 500 time units

Total experiment time 70,000 time units

Regarding the other performance metric, average tardi-
ness per request, the measurements are shown in Fig. 12.
The figure shows a comparison of the average tardi-
ness per request produced when using the four meth-
ods. Allowed tardiness in that experiment is small (25
time unit). Once more, ED-DP and RB-DP methods have
shown a clear advantage by scoring consistently lower
tardiness per request. Also, it is noticed from the figure
the ED-DP produces slightly better results (less average

Fig. 10 Request Blocking results for scheduling methods (allowed
tardiness/request =1 time units)

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:6 Page 13 of 17

Fig. 11 Request Blocking results for scheduling methods (allowed
tardiness/request =30,000 time units)

tardiness) than RB-DP. Therefore, using RB-DP method is
more suitable to scenarios where there is an emphasis on
serving the largest number of requests. On the other hand,
using ED-DP is more suitable to scenarios where the indi-
vidual request performance or service level is prioritized
over serving more requests.

Relaxed solution results
With regards to the network we tested on, a 5-node net-
work was used in these tests with 2 as data center nodes
and the rest as client nodes (private clouds). Four servers
were used in the tests with 2 servers in each data center.
To connect the nodes in the physical network, 7 links were
used and 20 different paths were defined. Two alternate
routing paths were defined for each couple of nodes. The

Fig. 12 Request average tardiness results for scheduling methods
(allowed tardiness/request =25 time units)

input contained data corresponding to 5 VM instances.
The choice of this network is due to two factors. First, con-
densing requests in an architecture with limited resources
puts the network under high load to eliminate the effect
the network capacity would have on the result. This would
allow more control by eliminating any factors related to
network design or node distribution that might ease the
pressure on the scheduling algorithm. This way, the prob-
lem size is controlled directly using only the parameters
we are testing for which are the number of requests, their
specification and their distribution. Second, it makes it
easier to compare results and execution times of relaxed
solution to those of the optimal solution.
For the connection requests coming from the clients, as

in [22], their arrival rate values were set according to a
Poisson process. The connection request lifetime (dura-
tion) was normally distributed with an average of 100 time
units and the total number of connection requests was
gradually increased from 20 up to 3000 requests. Every
connection request is associated with a source, a destina-
tion, a requested start time and a duration. The source
nodes/VMs were uniformly distributed.
To evaluate the optimal and relaxed solutions, we used

the IBM ILOG CPLEX optimization studio v12.4. Both
the optimal and relaxed solution were programmed using
Optimization Programming Language (OPL) and multi-
ple testing rounds were performed. Both solutions were
tested for multiple values of normalized network load.
Table 5 shows a comparison between the objective val-

ues obtained using the optimal scheme vs. the values
obtained from the relaxed (decomposed) scheme for small
scale problems (up to 200 requests). While the optimal
solution was able to schedule all requests without any
delay (tardiness), the relaxed solution achieved an accept-
able average tardiness in comparison. As noticed from
the table, the execution times for the optimal scheme are
slightly better for small data sets, but as the number of
requests grows, the difference in execution times becomes
evident. This goes on until the optimal solution becomes
infeasible while the relaxed solution still executes in a rela-
tively short period. The maximum number of requests the
optimal solution is able to solve depends on the machines
used and the network load parameters used to generate
the input data.
Concerning large scale problems, the experimental

results shown in Table 6 illustrate that the relaxed solution
has achieved an acceptable average tardiness in compar-
ison to the optimal solution. The effect of increasing the
problem size on the value of average tardiness when using
the relaxed solution is evident. The average tardiness
achieved is less than 10% of the average request duration
(lifetime). This is well within the bound set in [23] for
acceptable connection tardiness which is half (50%) the
lifetime or requested duration of the connection. This is

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:6 Page 14 of 17

Table 5 Optimal vs. relaxed solution values and execution times

Number of requests Network load Optimal solution Relaxed solution

Average tardiness value Execution time Average tardiness value Execution time

30 0.86 0 3 s 5.73 8.14 s

50 0.86 0 7 s 10.12 9 s

200 0.86 0 2 min 24 s 10.785 1 min 2 s

also a considerable improvement over the performance of
the heuristic solution which is shown in the same table
(average tardiness values around 20% of request lifetime).
The table also shows an increase in the average tardiness
when increasing the number of requests (problem size).
This is due to the fact that tardiness accumulates as pri-
ority is given to the request arriving earlier. In terms of
execution time, as the number of requests grow, the differ-
ence in execution time between the optimal and relaxed
solutions becomes evident. The optimal solution becomes
infeasible while the relaxed solution still executes in a rel-
atively short period scheduling 3000 requests in around
in a period between 8–11 minutes depending on the
network load.
To illustrate the impact of the allowed tardiness param-

eter on the request acceptance ratio, the results in Table 7
are presented. Using the heuristic solution with the com-
bination RB-DP, the table shows the increase in the
acceptance ratio as we increase the allowed tardiness per
request for a specific network load.
To measure the acceptance ratio, we introduced a max-

imum waiting period parameter (or allowed tardiness as
discussed in previous sections). This parameter represents
the period of time a connection request will wait to be
served before it is considered blocked. For that, an ideal
value is the same value used in [23], namely, half the
request lifetime. In other words, If the connection waited
for more than 50% of its duration and it was not scheduled
then it is blocked or not served. Table 6 shows the accep-
tance ratio and the average tardiness for requests with an
average duration of 100 time units.
Considering this scenario where requests with high tar-

diness are blocked presents a trade off between average

Table 6 Execution times & average tardiness for connection
requests for large scale problems when increasing the average
connection duration to 100 Time units

Network
load

Heuristic solution
(RB-DP) Average
tardiness (percentage
of duration/lifetime)

Relaxed solution
average tardiness

Relaxed solution
execution time

0.86 19.81% 2.88% 8 min 21 s

0.93 21.18% 6.36% 8 min 54 s

1 22.54% 9.08% 11 min 31 s

connection tardiness and the percentage (or number) of
blocked connections. It is noticed that the average tar-
diness decreases as we remove the requests with high
tardiness and consider them blocked. An average tardi-
ness of less than 2% of a request lifetime can be guaranteed
if we are willing to sacrifice 13% of the requests as blocked.
Deciding weather to use this scenario or not is up to the

cloud solution architects. This depends on the client sen-
sitivity to the precision/quality vs. the speed of achieving
results.

Comparison with previous solutions
When planning the comparison between the proposed
solution and solutions available in the literature, we are
faced with a challenge. As discussed in detail in “Related
work” section, the available solutions are diverse in terms
of the parameters considered and the covered dimen-
sions of the cloud resource allocation problem. This limits
the number of solutions that can realistically be used to
solve this particular flavor of the problem. However, we
were able to use the algorithms implemented in [6] (Mod-
ified best fit decreasing method) and [24, 25] (GREEN
scheduling) to solve the same problem and compare their
performance to the method we developed. The focus was:
network capacity (minimizing blocking percentage) and
performance (when blocking is not an issue, minimizing
the average tardiness per served request is a priority). This
comparison was performed for a smaller network first,
in order to explore the stress effect on a cloud network.
Then, the same comparison is performed for a larger
more realistic network scenario. As in the previous exper-
iments, the tests were performed for different problem
sizes and various levels of allowed tardiness per requests.

Small network results
Figure 13 compares the three algorithms’ performance
in terms of request blocking percentage for different

Table 7 Connection requests acceptance rate for different
network loads using the relxed solution

Allowed tardiness (percentage of
request lifetime or duration)

50% 200% 1000%

Acceptance rate 86% 87% 100%

Average tardiness for accepted
requests

1.98% 16.72% 219.767%

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:6 Page 15 of 17

Fig. 13 Request blocking percentage results for 3 scheduling
algorithms measured for 4 different allowed tardiness cases

scenarios as the allowed tardiness level increases. The
figure shows that our technique (RB-DP) performs con-
sistently better (lower blocking percentage) than Green
scheduling algorithm. It also shows that RB-DP performs
at the same level as MBFD for low allowed tardiness
levels before showing an advantage for high allowed tar-
diness. Figure 14 presents results for the other metric,
average request tardiness. Figure 14 shows that RB-DP
starts by performing on the same level of the other two
algorithms and while we increase the allowed tardiness
level for requests, RB-DP shows clear advantage (as seen
in the last case of allowed tardiness =1000 time units).
The effect of increasing the allowed tardiness is basi-
cally eliminating the need to schedule each request as
soon as it arrives (to avoid blocking requests) Instead, it
focuses the experiment on showing the algorithm that can
serve/schedule requests in the most efficient way and this,
in turn, decreases the average tardiness per requests.

Large network results
The same trends carry on while testing on large scale net-
works (the NSF network). In Fig. 15, blocking percentage
is shown for the three algorithms for different problem
sizes. Problem size here is represented by the number
of requests submitted to the central controller per cycle

Fig. 14 Request average tardiness results for 3 scheduling algorithms
measured for 4 different allowed tardiness cases

Fig. 15 Request blocking percentage results for scheduling methods
with allowed tardiness=5 units (very low)

(arrival rate). These results are shown for allowed tar-
diness level = 5 time units (very low level) which adds
extra pressure to serve requests within a short period of
their arrival and focuses the algorithms work on serving
the highest number of requests not on tardiness levels. In
Fig. 16, the same results are shown for a higher number of
requests ranging from 3000 to 10,000 requests per cycle.
This confirms that our experimental results are consistent
when the network is exposed to higher load that is close to
or exceeds its capacity. Looking at both figures, they show
that our technique (RB-DP) performs consistently better
than the other two algorithms under high loads.
Figure 17 explores the performance of the algorithms in

the specific case of high allowed tardiness levels.
RB-DP offers clear advantage in terms of the blocking

percentage metric for various allowed tardiness levels.
Moving to the second metric, Fig. 18 shows the perfor-

mance of the three algorithms in terms of average request
tardiness while changing the allowed tardiness levels (or
request lifetime). RB-DP performs on a comparable level
to the other two algorithms for small allowed tardiness
levels and then exceeds the performance of MBFD start-
ing medium levels of request lifetimes and then clearly

Fig. 16 Request blocking percentage results for 3 scheduling
algorithms for a large number of requests per cycle (1–10k)

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:6 Page 16 of 17

Fig. 17 Request blocking percentage results for scheduling methods
while changing allowed tardiness levels

exceeds both algorithms with the higher levels starting
400 time units.
These results prove the potential our solution has in

terms achieving better performance in both blocking per-
centage (more accepted connection requests and less net-
work congestion) and average tardiness (better Quality of
Service conditions for cloud users).

Conclusion
We introduced a comprehensive solution to tackle the
problem of resource allocation in a cloud computing data
center [26]. First, the problem was formulated as a mixed
integer linearmodel. This formulation was solved using an
optimization library for a small data set. However, finding
the optimal solution for larger more practical scenarios is
not feasible using the optimal mathematical formulation.
Therefore, we introduced 5 heuristic methods to tackle

Fig. 18 Request average tardiness results for scheduling methods
(allowed tardiness/request = 25 time units)

the two sides of the problem, namely VM reservation and
connection scheduling. The performance of these tech-
niques was analyzed and compared. Although the solution
scale issue is solved, a heuristic solution does not offer
optimality guarantees. This constituted the motivation to
introduce a suboptimal solution. The solution contained
4 steps that exploited the VM interdependency as a domi-
nant factor in the VM allocation process. This allows us to
solve the scheduling phase optimally in the following step
which causes the solution to improve considerably. The
relaxed solution achieved results matching with parame-
ters preset in the literature for average connection tardi-
ness. The results were also shown for the scenario where
request blocking is allowed. Results were achieved with-
out sacrificing the computational feasibility which shows
our method to be a valid solution for reaching acceptable
connection tardiness levels. Furthermore, the proposed
solution was compared to two of the prominent algo-
rithms in the literature. The proposed solution was shown
to be advantageous in terms of minimizing both aver-
age request tardiness and blocking percentage formultiple
cloud network scenarios. This makes it a strong candidate
to be used in cloud scenarios where the focus is onmetrics
like more accepted connection requests and less network
congestion or request average tardiness (better quality of
service conditions for cloud users).
In the future, we plan to use our scheme to experiment

with other important objectives of the cloud provider
[27, 28]. Maintaining privacy while processing and com-
municating data through cloud resources is a critical chal-
lenge. Privacy is a major concern for users in the cloud
or planning to move to the cloud. Improving data privacy
metrics is not only important to clients, but also criti-
cal for conforming with governmental regulations that are
materializing quickly. This means that a resource alloca-
tion system should extend its list of priorities to include
privacy metrics in addition to typical performance and
costmetrics. Constraints on the data handling, datamove-
ment and on scheduling locations should be seen. The
privacy extends to data on resources required by the cloud
clients. We have investigated some of the topic’s chal-
lenges at length in [3]. Our next step is to extend our
model to explore these possibilities. This would add a
different dimension to give a competitive advantage to
cloud providers which offer the expected level of privacy
to prospective clients.

Acknowledgments
The authors would like to thank Dr. Rejaul Choudry for his contribution to the
code implementation and related work section. The authors would also like to
thank Dr. Daehyun Ban from Samsung for his insightful feedback.

Funding
This work is supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC-STPGP 447230) and Samsung Global
Research Outreach (GRO) award.

Abu Sharkh et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:6 Page 17 of 17

Authors’ contributions
Dr. Mohamed Abu Sharkh reviewed the state of the art of the field, did the
analysis of the current resource allocation techniques and their limitations. He
formulated the problem in optimal and suboptimal forms, implemented the
simulator presented in this paper, and performed the experiments as well as
analysis. Prof. Abdallah Shami initiated and supervised this research, lead and
approved its scientific contribution, provided general input, reviewed the
article and issued his approval for the final version. Dr. Abdelkader Ouda
provided general input and reviewed the article. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 28 July 2016 Accepted: 22 January 2017

References
1. Mckendrick J 12 Most Memorable Cloud Computing Quotes from 2013,

Forbes Magazine, [Online]. Available: https://www.forbes.com/sites/
joemckendrick/2013/12/08/12-most-memorable-cloud-computing-
quotes-from-2013/#7c88fe2330af. Accessed Feb 2017

2. IBM’s The big data and analytics hub, The 4 Vs of the Big Data, IBM,
[Online]. Available: http://www.ibmbigdatahub.com/infographic/four-vs-
big-data. Accessed Feb 2017

3. Abu Sharkh M, Jammal M, Ouda A, Shami A (2013) Resource Allocation In
A Network-Based Cloud Computing Environment: Design Challenges.
IEEE Commun Mag 51(11):46–52

4. Dastjerdi AV, Buyya R (2014) Compatibility-aware Cloud Service
Composition Under Fuzzy Preferences of Users. IEEE Trans Cloud Comput
2(1):1–13

5. Wei G, Vasilakos AV, Zheng Y, Xiong N (2010) A game-theoretic method
of fair resource allocation for cloud computing services. J Supercomput
54(2):252–269

6. Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing.
Futur Gener Comput Syst, Elsevier 28(5):755–768

7. Abu Sharkh M, Kanso A, Shami A, hln P (2016) Building a cloud on earth: a
study of cloud computing data center simulators. Elsevier Comput Netw
108:78–96

8. Duan R, Prodan R, Li X (2014) Multi-objective game theoretic scheduling
of bag-of-tasks workflows on hybrid clouds. IEEE Trans Cloud Comput
2(1):29–42

9. Guzek M, Kliazovich D, Bouvry P (2013) A holistic model for resource
representation in virtualized cloud computing data centers. In: proc
CloudCom, vol. 1. IEEE. pp 590–598

10. Shojafar M, Cordeschi N, Baccarelli E (2016) Energy-efficient adaptive
resource management for real-time vehicular cloud services. IEEE Trans
Cloud Comput PP(99):1rgy

11. Cordeschi N, Shojafar M, Baccarelli E (2013) Energy-saving self-configuring
networked data centers. Comput Netw 57(17):3479–3491

12. Shojafar M, Javanmardi S, Abolfazli S, Cordeschi N (2015) FUGE: A joint
meta-heuristic approach to cloud job scheduling algorithm using fuzzy
theory and a genetic method. Clust Comput:1–16. http://link.springer.
com/article/10.1007/s10586-014-0420-x

13. Shojafar M, Cordeschi N, Abawajy JH (2015). In: Proc. of IEEE Global
Communication Workshop (GLOBECOM) Workshop. IEEE. pp 1–6

14. IBM IBM CPLEX Optimizer [Online]. Available: http://www-01.ibm.com/
software/commerce/optimization/cplex-optimizer/. Accessed Feb 2017

15. Kantarci B, Mouftah HT (2012) Scheduling advance reservation requests
for wavelength division multiplexed networks with static traffic demands.
In: proc. IEEE ISCC. IEEE. pp 806–811

16. Wallace TD, Shami A, Assi C (2008) Scheduling advance reservation
requests for wavelength division multiplexed networks with static traffic
demands. IET Commun 2(8):1023–1033

17. Amazon Amazon Elastic Compute Cloud (Amazon EC2), [Online].
Available: https://aws.amazon.com/ec2/. Accessed Feb 2017

18. Maguluri S, Srikant R, Ying L (2012) Stochastic Models of Load Balancing
and Schedulingin Cloud Computing Clusters. In: proc. IEEE INFOCOM.
IEEE. pp 702–710

19. Jammal M, Singh T, Shami A, Asal R, Li Y (2014) Software defined
networking: State of the art and research challenges. Elsevier Comput
Netw 72:74–98

20. Hawilo H, Shami A, Mirahmadi M, Asal R (2014) NFV: state of the art,
challenges, and implementation in next generation mobile networks
(vEPC). IEEE Network 28(6):18–26

21. Abu Sharkh M, Shami A, Ohlen P, Ouda A (2015) Simulating high
availability scenarios in cloud data centers: a closer look. In: 2015 IEEE 7th
Int Conf Cloud Comput Technol Sci (CloudCom). IEEE. pp 617–622

22. Abu Sharkh M, Ouda A, Shami A (2013) A Resource Scheduling Model for
Cloud Computing Data Centers. In: Proc. IWCMC. pp 213–218

23. Chowdhury M, Rahman MR, Boutaba R (2012) Vineyard: virtual network
embedding algorithms with coordinated node and link mapping.
IEEE/ACM Trans Netw 20(1):206–219

24. Kliazovich D, Bouvry P, Khan SU (2013) Simulation and performance
analysis of data intensive and workload intensive cloud computing data
centers. In: Kachris C, Bergman K, Tomkos I (eds). Optical Interconnects for
Future Data Center Networks. Springer-Verlag, New York. ISBN:
978-1-4614-4629-3, Chapter 4

25. Kliazovich D, Bouvry P, Khan SU (2011) GreenCloud: a packet level
simulator of energy-aware cloud computing data centers. J Supercomput
16(1):65–75. Special issue on Green Networks

26. Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G,
Patterson D, Rabkin A, Stoica I, Zaharia M (2009) Above the Clouds: A
Berkeley View of Cloud Computing. Tech. Rep. UCB/EECS-2009–28. EECS
Department, UC Berkeley

27. Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud Computing and Grid
Computing 360-Degree Compared. In: proc. GCE Workshop. IEEE. pp 1–10

28. Kalil M, Meerja KA, Refaey A, Shami A (2015) Virtual Mobile Networks in
Clouds. Adv Mob Cloud Comput Syst:165

29. Miranda A, et al. (2014) Wavelength assignment using a hybrid
evolutionary computation to reduce cross-phase modulation. J Microw
Optoelectron Electromagn Appl 13(1). So Caetano do Sul http://dx.doi.
org/10.1590/S2179-10742014000100001

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

https://www.forbes.com/sites/joemckendrick/2013/12/08/12- most-memorable-cloud-computing-quotes-from-2013/#7c88fe2330af
https://www.forbes.com/sites/joemckendrick/2013/12/08/12- most-memorable-cloud-computing-quotes-from-2013/#7c88fe2330af
https://www.forbes.com/sites/joemckendrick/2013/12/08/12- most-memorable-cloud-computing-quotes-from-2013/#7c88fe2330af
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://link.springer.com/article/10.1007/s10586-014-0420-x
http://link.springer.com/article/10.1007/s10586-014-0420-x
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://aws.amazon.com/ec2/
http://dx.doi.org/10.1590/S2179-10742014000100001
http://dx.doi.org/10.1590/S2179-10742014000100001

	Abstract
	Keywords

	Introduction
	Related work
	Model description
	Mathematical formulation
	Notations
	Decision variables
	Objective function
	Constraints

	Heuristic solution
	Heuristic model
	Heuristic techniques for minimizing tardiness
	VM reservation heuristic techniques
	Connection reservation heuristic techniques

	Complexity analysis of the heuristic solutions

	Suboptimal solution
	Master problem formulation
	Subproblem

	Results
	Simulation environment
	Heuristics
	Relaxed solution results
	Comparison with previous solutions
	Small network results
	Large network results

	Conclusion
	Acknowledgments
	Funding
	Authors' contributions
	Competing interests
	References

