
A Software Reliability Prediction Model
Using Improved Long Short Term Memory Network

Fu Yangzhen, Zhang Hong, Zeng Chenchen and Feng Chao
Science and Technology on Reliability and Environmental Engineering Laboratory

School of Reliability and Systems Engineering, Beihang University
Beijing, P.R. China

fuyangzhen@buaa.edu.cn, zh@buaa.edu.cn, zengcengceng@foxmail.com, fengchao9286@126.com

Abstract—With the development of software reliability
research and machine learning, many machine learning models
have been used in software reliability prediction. A long short
term memory network (LSTM) modeling approach for software
reliability prediction is proposed. Profit from its particular data
flow control structure, the model overcomes the vanishing and
exploding sensitivity of simple recursive neural network for
software reliability prediction. Proposed approach also combines
with layer normalization and truncate back propagation. To
some extent, these two methods promote the effect of the
proposed model. Compared with the simple recursive neural
network, numerical results show that our proposed approach has
a better performance and robustness with respect to software
reliability prediction.

Keywords—software reliability prediction; long short term
memory network; vanishing and exploding sensitivity

I. INTRODUCTION
Software failure data is the basis of software reliability

estimation. For evaluate software reliability, the researchers
usually use failure-count data and time-between failures to
collect failure data. Failure data is the basis for software
reliability assessment and prediction.

This paper presents an improved long short term memory
network model, belonging to a kind of recurrent neural network
(RNN). After the RNN model was first used by Karunanidhi
and Darrell in the field of reliability prediction [1], they were
also the first research team to introduce neural network into the
field of software reliability prediction, scholars have invented
many variants to use. But the bottleneck of the current
performance improvement is still the problem of gradient
disappearance.

II. IMPROVED LONG SHORT TERM MEMORY NETWORK
Training deep network always based on backward

propagation random gradient descent method. With the
increase in the number of layers, the lower level of the gradient
exponent can not accept the effective training signal. The
neural network is limited by the problem of unstable gradients.
If the network uses the sigmoid activation function, then the
gradient of the previous layer will vanish exponentially.

Long short term memory network, referred to as LSTM, is
a kind of special RNN, has the ability to learn long-term

dependencies. LSTM was proposed by Hochreiter &
Schmidhuber [2], and many researchers carried out a series of
work to improve and make it flourish. LSTM can avoid the
problem of gradient instability because of its special design of
the architecture. LSTM has the ability to add or remove
information about the cell state, which is controlled by a
structure called gate. The gate is a way of selectively passing
information. The forget gate inputs 1th − and tx , and outputs a

number between 0 and 1 for each element in cell state 1tC − .
Value 1 means completely retain the information, value 0
means completely discard the information:

1

1

1

1

1

([,])

([,])

tanh([,])

([,])
tanh()

t f t t f

t i t t i

t c t t c

t t t t t

t o t t o

t t t

f W h x b
i W h x b

C W h x b

C f C i C
o W h x b
h o C

σ
σ

σ

−

−

−

−

−

= ⋅ +

= ⋅ +

= ⋅ +

= ∗ + ∗
= ⋅ +
= ∗

 (1)

Where tf is the output of forget gate, σ means sigmoid
function, W and b are the weights and biases need to be
calculated. The next step is to decide which new information
we will store in the cell state. ti ,the information we want to
update. tC , which may be added to the cell state.

t ti C∗ is made

up of the new candidate value tC multiplied by the candidate

value of update degree ti we decided in each state. to is the
information we output each state.

Back propagation (BPTT) through time is too sensitive to
recent distractions. In a feedforward neural network,
exponential vanish means that changes in weight in the early
neural layers will be much less than those in late neurons.
Williams et al. proposed the truncated back-propagation [3].
This operation can overcome a series of questions complete
BPTT brings when training model.

Inspired by batch normalization, Lei Ba et al. proposed an
RNN performance optimization method - layer normalization
[4] which can reduce RNN network training time and get better
overall performance.

2017 IEEE International Conference on Software Quality, Reliability and Security (Companion Volume)

978-1-5386-2072-4/17 $31.00 © 2017 IEEE

DOI 10.1109/QRS-C.2017.115

614

2017 IEEE International Conference on Software Quality, Reliability and Security (Companion Volume)

978-1-5386-2072-4/17 $31.00 © 2017 IEEE

DOI 10.1109/QRS-C.2017.115

614

III. PERFORMANCE VALIDATION

The sample input sequence and the corresponding desired
output sequence are defined as follows, tx is the time-between
failures in the training data sequence, and t is the order index:

Input Sequence: 0 1 1 1, , , , , ,t t tx x x x x− +

Output Sequence: 1 2 1 2, , , , , ,t t tx x x x x+ +

We use the normalization method L. H. Tsoukalas et al.
recommended to minimize the impact of the absolute size [5],
the specific formula is as follows and the second formula can
scale back the output. y is the scaled value we feed into our
network, x is the actual value of scale:

max

max min max min

max min max

0.80.8 (0.9)

0.9 ()
0.8

xxy
x x x x
yx x x x

= + −
− −

−= − +

 (2)

Four datasets were used to test the performance of our
proposed model. They are real-time control application and
flight dynamic application data sets, SYS1: From Musa et al
[6]. DATA-11, DATA-12, DATA-13: From Park et al [7].

When the model is trained, its self-evaluation function is
called loss function. ˆix is the output prediction of input ix , we
use mean squared error (MSE) as model's loss function. Two
commonly used measures in the software reliability research
community are goodness-of-fit and next-step predictability [8].
We need to use the relative error (RE) to compare the
difference between the actual and predicted values of the
cumulative failure time. And we calculate the average relative
error (AE) on test sets to do the horizontal comparison:

2

1

1

1 ˆ()

ˆ

ˆ1 100

n

i i
i

t t

t

n
i i

i i

MSE x x
n

x xRE
x

x xAE
n x

=

=

= −

−=

−= ×

 (3)

The validation experiment selected 85% prior data as train
sets, and last 15% as test sets. We summarize the results of the
model's horizontal comparisons, where the models that
participate in the comparison are from Park et al. [7],
Karunanithi et al. [8] and LIANG TIAN et al. proposed a RNN
model approach with bayesian regularization [9]. Park et al.
applied failure sequence as input and cumulative failure time as
output in the feed-forward neural network (FFN). Karunanithi
et al. applied input-output learning pair of cumulative
execution and a corresponding number of accumulated defects
in both feed-forward neural network (FFN) and recurrent
neural network (RNN). The comparison shows in table 2.

TABLE I. PERFORMANCE RESULT

Data

Sets

Goodness-of-fit

 (RE ≤ 5%)

Next-Step-Predictability

(RE ≤ 5%)

SYS1 65.23% 89.0%

DATA-11 70.3% 92.3%

DATA-12 73.6% 97.3%

DATA-13 89.32% 100%

TABLE II. AVERAGE RELATIVE PREDICTION ERROR (%)

Data Sets

Proposed
improved

LSTM

FFN [7]

RNN [8] RNN+BR
[9]

SYS1 2.01 2.58 2.05 1.88

DATA-11 1.87 3.32 2.97 2.10

DATA-12 1.15 2.38 3.64 1.20

DATA-13 0.85 1.51 2.28 0.99

IV. CONCLUSIONS
This paper proposed a software reliability prediction model

based on long short term memory network and truncated back
propagation and layer normalization were added in our model
to improve the performance. Compared with other neural
network models, proposed approach have better predictive
performance and robustness. Our further step will mainly
concentrate in how to further enhance the software reliability
prediction accuracy and compare with traditional software
reliability prediction methods.

REFERENCES
[1] Karunanithi N, Whitley D, Malaiya Y K. Using neural network in

reliability prediction[J]. IEEE Software, 1992, 9(4): 53-59.
[2] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural

computation, 1997, 9(8): 1735-1780.
[3] Williams R J, Zipser D. Gradient-based learning algorithms for recurrent

networks and their computational complexity[J]. Backpropagation:
Theory, architectures, and applications, 1995, 1: 433-486.

[4] Ba J L, Kiros J R, Hinton G E. Layer normalization[J]. arXiv preprint
arXiv:1607.06450, 2016.

[5] L. H. Tsoukalas and R. E. Uhrig, Fuzzy and Neural Approaches in
Engineering (John Wiley & Sons, New York, 1996), pp. 385-405.

[6] J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability:
Measurement, Prediction, Application, McGraw-Hill Series in Software
Engineering and Technology. (McGraw-Hill, 1987).

[7] J. Y. Park, S. U. Lee and J. H. Park, Neural network modeling for
software reliability prediction from failure time data, J. Electrical
Engineering and Information Science 4(4) (1999) 533-538.

[8] N. Karunanithi, D. Whitley and Y. K. Malaiya, Prediction of software
reliability using connectionist models, IEEE Trans. Software
Engineering 18(7)(1992) 563-574.

[9] Tian L, Noore A. Software reliability prediction using recurrent neural
network with Bayesian regularization[J]. International Journal of Neural
Systems, 2004, 14(03): 165-174.

615615

