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Abstract—With the development of software reliability 
research and machine learning, many machine learning models 
have been used in software reliability prediction. A long short 
term memory network (LSTM) modeling approach for software 
reliability prediction is proposed. Profit from its particular data 
flow control structure, the model overcomes the vanishing and 
exploding sensitivity of simple recursive neural network for 
software reliability prediction. Proposed approach also combines 
with layer normalization and truncate back propagation. To 
some extent, these two methods promote the effect of the 
proposed model. Compared with the simple recursive neural 
network, numerical results show that our proposed approach has 
a better performance and robustness with respect to software 
reliability prediction. 

Keywords—software reliability prediction; long short term 
memory network;  vanishing and exploding sensitivity 

I. INTRODUCTION 
Software failure data is the basis of software reliability 

estimation. For evaluate software reliability, the researchers 
usually use failure-count data and time-between failures to 
collect failure data. Failure data is the basis for software 
reliability assessment and prediction. 

This paper presents an improved long short term memory 
network model, belonging to a kind of recurrent neural network 
(RNN). After the RNN model was first used by Karunanidhi 
and Darrell in the field of reliability prediction [1], they were 
also the first research team to introduce neural network into the 
field of software reliability prediction, scholars have invented 
many variants to use. But the bottleneck of the current 
performance improvement is still the problem of gradient 
disappearance. 

II. IMPROVED  LONG SHORT TERM MEMORY NETWORK  
Training deep network always based on backward 

propagation random gradient descent method. With the 
increase in the number of layers, the lower level of the gradient 
exponent can not accept the effective training signal. The 
neural network is limited by the problem of unstable gradients. 
If the network uses the sigmoid activation function, then the 
gradient of the previous layer will vanish exponentially.  

Long short term memory network, referred to as LSTM, is 
a kind of special RNN, has the ability to learn long-term 

dependencies. LSTM was proposed by Hochreiter & 
Schmidhuber [2], and many researchers carried out a series of 
work to improve and make it flourish. LSTM can avoid the 
problem of gradient instability because of its special design of 
the architecture. LSTM has the ability to add or remove 
information about the cell state, which is controlled by a 
structure called gate. The gate is a way of selectively passing 
information. The forget gate inputs 1th −  and tx , and outputs a 

number between 0 and 1 for each element in cell state 1tC − . 
Value 1 means completely retain the information, value 0 
means completely discard the information: 
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Where tf  is the output of forget gate, σ  means sigmoid 
function, W  and b are the weights and biases need to be 
calculated. The next step is to decide which new information 
we will store in the cell state. ti ,the information we want to 
update. tC , which may be added to the cell state. 

t ti C∗  is made 

up of the new candidate value tC  multiplied by the candidate 

value of update degree ti  we decided in each state. to is the 
information we output each state. 

Back propagation (BPTT) through time is too sensitive to 
recent distractions. In a feedforward neural network, 
exponential vanish means that changes in weight in the early 
neural layers will be much less than those in late neurons. 
Williams et al. proposed the truncated back-propagation [3]. 
This operation can overcome a series of questions complete 
BPTT brings when training model. 

Inspired by batch normalization, Lei Ba et al. proposed an 
RNN performance optimization method - layer normalization 
[4] which can reduce RNN network training time and get better 
overall performance.  
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III. PERFORMANCE VALIDATION 

The sample input sequence and the corresponding desired 
output sequence are defined as follows, tx is the time-between 
failures in the training data sequence, and t is the order index: 

Input Sequence: 0 1 1 1, , , , , ,t t tx x x x x− +  

Output Sequence: 1 2 1 2, , , , , ,t t tx x x x x+ +  

We use the normalization method L. H. Tsoukalas et al. 
recommended to minimize the impact of the absolute size [5], 
the specific formula is as follows and the second formula can 
scale back the output. y  is the scaled value we feed into our 
network, x  is the actual value of scale: 
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Four datasets were used to test the performance of our 
proposed model. They are real-time control application and 
flight dynamic application data sets, SYS1: From Musa et al 
[6]. DATA-11, DATA-12, DATA-13: From Park et al [7].  

When the model is trained, its self-evaluation function is 
called loss function. ˆix is the output prediction of input ix , we 
use mean squared error (MSE) as model's loss function. Two 
commonly used measures in the software reliability research 
community are goodness-of-fit and next-step predictability [8]. 
We need to use the relative error (RE) to compare the 
difference between the actual and predicted values of the 
cumulative failure time. And we calculate the average relative 
error (AE) on test sets to do the horizontal comparison: 
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The validation experiment selected 85% prior data as train 
sets, and last 15% as test sets. We summarize the results of the 
model's horizontal comparisons, where the models that 
participate in the comparison are from Park et al. [7],  
Karunanithi et al. [8] and LIANG TIAN et al. proposed a RNN 
model approach with bayesian regularization [9]. Park et al. 
applied failure sequence as input and cumulative failure time as 
output in the feed-forward neural network (FFN). Karunanithi 
et al. applied input-output learning pair of cumulative 
execution and a corresponding number of accumulated defects 
in both feed-forward neural network (FFN) and recurrent 
neural network (RNN). The comparison shows in table 2. 

 

TABLE I.  PERFORMANCE RESULT 

Data

Sets 

Goodness-of-fit 

 (RE ≤ 5%) 

Next-Step-Predictability

(RE ≤ 5%) 

SYS1 65.23% 89.0%

DATA-11 70.3% 92.3%

DATA-12 73.6% 97.3%

DATA-13 89.32% 100%

TABLE II.  AVERAGE RELATIVE PREDICTION  ERROR (%) 

Data Sets 

Proposed 
improved 

LSTM 

 

FFN [7] 

 

RNN [8] RNN+BR 
[9] 

SYS1 2.01 2.58 2.05 1.88

DATA-11 1.87 3.32 2.97 2.10 

DATA-12 1.15 2.38 3.64 1.20 

DATA-13 0.85 1.51 2.28 0.99 

IV. CONCLUSIONS 
This paper proposed a software reliability prediction model 

based on long short term memory network and truncated back 
propagation and layer normalization were added in our model 
to improve the performance. Compared with other neural 
network models, proposed approach have better predictive 
performance and robustness. Our further step will mainly 
concentrate in how to further enhance the software reliability 
prediction accuracy and compare with traditional software 
reliability prediction methods. 
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