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Abstract—In software development, defects are inevitable. To 
improve reliability, software reliability growth models are useful 
to analyze projects. Selecting an expedient model can also help 
with defect predictions, but the model must be well fitted to all the 
original data. A particular software reliability growth model may 
not fit all the data well. To overcome this issue, herein we use 
multistage modeling to fit defect data. In the multistage model, an 
evaluation is used to divide the data into several parts. Each part 
is fitted with its own growth model, and the separate models are 
recombined. As a case study, projects provided by a Japanese 
enterprise are analyzed by both traditional software reliability 
growth models and the multistage model. The multistage model 
has a better performance for data with a poor fit using a 
traditional software reliability growth model. 

Keywords—Software Reliability; Growth Model; Multistage 
Models. 

 

I.  INTRODUCTION 
Software reliability is an important part of software as it 

ensures both quality and stability. Because bugs accompany 
software during development, it is important to establish a 
method to check and evaluate software reliability. For 
companies, the software reliability growth model is a good 
solution because it can be used as an indicator of the number of 
potential failures [1]. Therefore, in the past few years, more and 
more companies tried applied software reliability growth models 
to ensure software quality [2][3][4][5][6]. 

Developing a model curve for the ratio that bugs occur will 
increase the efficiency of software development. Applying a 
growth model to the actual data, which includes bug 
information, is a useful method. Although numerous models 
have been developed, a universal model has yet to be 
established. In particular, some data may be poorly fitted by a 
single software reliability growth model. 

Herein we try to resolve the situation where all the actual 
data about information does not fit one growth model well. We 
use the multistage model as a new modeling method to fit defect 
information, improving the fit when some of the data is ill fitted 
using one software reliability growth model. 

Specifically, we address the following questions: 

RQ1: What is the most appropriate metric to evaluate the fit 
of a software reliability model? 

RQ2: Is the multistage model better suited for software 
reliability? What metric can be used to evaluate the suitability of 
the model?  

Both researchers and members of the company involved in 
the case study have a vested interested in this study. As 
researchers, we hope to find a way to ensure software reliability 
in software development and release, especially in the case 
where a traditional software reliability growth model cannot 
meet the required accuracy. The members of the software 
development company hope to discover a process that realizes a 
smoother and more economical development process using a 
predictive model. 

 

II. BACKGROUND 
Ensuring software reliability is critical when developing and 

releasing a project. A growth model of defects is a common 
method to check and verify software reliability. 

 

A. Software Reliablity Growth Models 
For companies, a product’s software reliability is mainly 

evaluated by focusing on the amount of failures found during the 
testing periods [7]. 

Here a software reliability growth model means a single 
model is used to analyze defects. (This differ from the multistage 
model.) In theory, there are many basic software reliability 
growth models. Examples include the Non-homogeneous 
Poisson process (NHPP, a very popular growth model in various 
fields), Weibull, etc. [8]. In this research, the logistic model and 
the Gompertz model are used as single software reliability 
growth models. Both are representative trend models that 
produce an S-shaped curve. 

The curve to fit data in the logistic model is expressed as 
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The logistic model is widely applied in the scientific 

community [9]. Here ����� means the number of failures that 
are detected by t. When t is sufficiently long, the value of ����� 
is equal to a. 

On the other hand, the data fitted by the Gompertz model is 
given as  

 
The Gompertz model has been applied to various science and 

technology fields to model biological phenomena, economic 
phenomena, etc. [10]. Similar to the logistic model, ����� 
indicates the number of failures detected by t, and the result also 
equals a if t is big enough. 

In this model we use the extracted data which includes t and 
���� to get the parameters of a, b and c. We need a tool to 
calculate these parameters. Here we use R Programme to 
calculate them. R is a programming language and environment 
for statistical computing and graphics [11]. All the parameters 
and the information of curve can be calculated by R Programme.  

B. Multistage Model 
The multistage model does not use only one-rule or obey a 

formula. Instead, it selects several ideal models and combines 
them into one model. In previous works, the multistage model 
has been used to solve problems about poor-fitting models 
[8][15]. Although not all previous works employ the multistage 
model as a solution for defect analysis, the data in these projects 
are satisfied with stochastic event conditions. This model can 
work well when a traditional software reliability growth model 
fits poorly. Section IV describes the multistage model for 
software reliability. 

 

III. TRADITIONAL SOFTWARE RELIABILITY GROWTH MODELS 
A software reliability growth model is a component of the 

multistage model. The multistage model is a combination of 
several traditional software reliability growth models. The 
application of traditional models and an evaluation method can 
also be used in multistage models. Section IV compares the 
prediction capability of the multistage model to a traditional 
software reliability growth model. 

A. Proposal to detect the appropriate software reliability 
growth model for each stage of the multistage model 
The following steps are used to detect unexpected situations 

or defects in a software reliability growth model.  

(1) Acquire and normalize the data source from the 
company. 
 (2) Use R to apply a software reliability growth model to 
the actual data. 
 (3) Detect and analyze the results. 

Although important, normalizing the data is time-consuming. 
In this study, data from the company is ordered chronologically. 

The data indicates only the time and type of failure. After the 
normalization, the data is arranged as a list of dates, which 
record how many bugs occur on a particular day.  

The result after fitting can be used for the prediction. Here 
we applied the software reliability growth model to Project 1. In 
a well-fit model curve, the predicted amount of defects is similar 
to the model’s parameter a. 

In the analysis, we need to evaluate which model better fits 
the actual data. If the software reliability growth model cannot 
fit the actual data perfectly, then the model is not applicable for 
predictions. Hence, the model needs to be altered or another 
model must be used to analyze the project. 

B. Results of software reliability growth models 

We applied both the logistic model (Fig. 1) and the 
Gompertz model (Fig. 2) to the data of Project 1. The curves 
indicate that the data is reasonably well fitted by the models. 
However, a visual evaluation of the models is insufficient to 
determine which model is better at detecting more than 95% of 
the defects. Consequently, our analysis focuses on two questions. 
(1) Which model is the first (in days) to observe more than 95% 
of the defects? (2) Which model is better for this project? We 
used the residual sum of squares (RSS) as an evaluation tool. 
Table 1 shows the results of the RSS ratio and the date that 95% 
defects are found for each model. 

 

 

 

 

 

 

 

 

 

(1)

(2) 

 

Fig. 1.  Plot of Project 1. Model curve is fitted by the logistic model. Plot 
shows the actual data.

 

Fig. 2.  Plot of Project 1. Model curve is fitted by the Gompertz model. 
Plot shows the actual data. 
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The RSS ratio of the logistic model is lower than that of the 
Gompertz model, indicating that the logistic curve is a better fit 
for the data in Project 1 In this project, 95% of all defects are 
found around the 86th day. These results imply that the company 
can fix this project in 86 days when the model is well fitted to 
the actual data. However, it is possible that the model does not 
fit the data. In this case, the prediction using the model is 
meaningless. Therefore, the logistic model is to compared the 
multistage model for Project 1.   

 

IV. MULTISTAGE MODEL 
 

The multistage model uses more than one model. It divides 
the data into stages. Then the best software reliability growth 
model is applied to each stage. Next all the models are combined 
to connect the stages. In the multistage model, the new model is 
implemented when the previous stage ends.  

To verify the most suitable model for each stage, each stage 
must be evaluated before building the multistage model. In this 
research, we analyzed Project 2, which is not well fitted using a 
traditional software reliability growth model (Fig. 3). 

 

A. Building and evaluating the multistage model 
In this research, the multistage model contains two models: 

the logistic model and the Gompertz model. Because the 
multistage model is flexible and scalable, it can be extended to 
include three or more models. However, it may encounter a 
problem. Not all of the models have three parameters like the 
logistic or the Gompertz model. For example, the Weibull model 
can also be used for software reliability growth modeling [12], 
but it contains four parameters. If RSS is used as an evaluation 
tool to compare the logistic and Weibull model, the RSS value 
for the Weibull model will be larger than that of the logistic 
model. In the future we may build the multistage model with 
more growth models, and these models may contain different 
parameters. Therefore, we used the Akaike information criterion 
(AIC) to evaluate the stage models [13]. 

 

The AIC value increases as the amount of dates becomes 
larger. Here f(t) is used to present the daily normalized AIC 
value, which is proposed by Akaike [14] 

 

Here t means the date. AIC(t) means the AIC value evaluated 
from the first day until this date. 

 

To determine the best-fitted stage part, we need to find the 
minimum value of f(t) because this indicates the case with the 
best reliability. First, we applied two software reliability growth 
models to the data. Then the f(t) value by day is listed for two 
models. We assumed that t’ is the date with the minimum value, 
and we reduced the data to this period as a stage model. Then we 

(3)

 

Result 

Fig.4 Flowchart of the process to create a multistage model 
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Fig. 3.  Plot picture of Project 2, fitted by logistic model. The actual data 
have a poor-fit with the convergence, and it RSS value is far higher than 
normal. 

TABLE I. RSS RATIO AND DATE OF 95% DEFECTS LIST BETWEEN TWO 
MODELS OF PROJECT 1. 

 logistic Gompertz

RSS Ratio 0.69 1.00 

Calculated Date 85.67 105.57
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noted the corresponding growth model for this stage. 
Afterwards, the date period from 0 to t’ is used. Next we set the 
(t’+1) date as the start, and determined the second stage model. 
We repeated this process until the last stage model is identified. 
Figure 4 shows a flowchart of the process.  

B. Result and discussion of the multistage model 
Table 2 lists the stages and Fig. 5 shows the multistage 

model. The red plot and black curve denote the actual data and 
the optimized multistage model, respectively. The colorized 
vertical lines indicate the gaps between stages. 

We can infer that in the early periods, the project system is 
unstable due to the many defects. The gaps are intensive and 
concentrated in the early part, which means a great volatility in 
this project system. After long-term maintenance, the 
improvement in the defects slows, and eventually the number of 
bugs converge.   

The 7th stage has a long duration in the Gompertz model. 
The previous software reliability predictions started in the 
middle of a release [15]. This method is quite suitable for the 
multistage model. Here we use the 7th stage for analysis and the 
prediction.  

Table 3 compares the results to the traditional software 
reliability growth models. Our multistage model has a lower 
AIC value, implying a higher reliability. The convergence 

number of defects is 543. Thus, 95% of the defects are found on 
the 205th day. The multistage model seems to have better 
prediction abilities compared to the logistic and the Gompertz 

models. (The Gompertz model has a higher AIC value than the 
logistic model.) 

 

 

V. CONCLUSION 
Both the software reliability growth model and the 

multistage model are successfully fitted to the data of two 
projects. Moreover, we developed an evaluation and prediction 
tool, allowing the company in the case study to appropriate 
allocate engineers for the debugging process, conserving 
resources and costs. For RQ1, we used the RSS value and the 
AIC value as standards to evaluate the growth models. For RQ2, 
AIC is used, demonstrating that the multistage model can 
provide a good solution when a project is ill fitted with a 
traditional growth model.   

Although the applicability of the multistage model is 
confirmed using a case study of a company, it is applicable to 
other database defects with stochastic events. This method 
provides a new point of view in software reliability growth 
models. 

 
 

Fig. 5.  Final Multistage model. 

TABLE III.   STAGE INFORMATION OF PROJECT 2 IN THE MULTISTAGE 
MODEL. 

No. Period of Date Duration Fitted Model

1 1 – 22 22 logistic

2 23 – 36 14 Gompertz

3 37 – 39 3 Gompertz

4 40 – 43 4 Gompertz

5 44 – 46 3 Gompertz

6 47 – 67 21 Gompertz

7 68 – 347 280 Gompertz

TABLE II.  AIC RATIO AND DATE OF THE 95% DEFECTS LIST OF 
PROJECT 2. 

 logistic Multistage 

AIC Ratio 1.00 0.92

Calculated Date 175.95 205.10
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In the future, we plan to expand the multistage model to 
consider other growth models (e.g., the average combination of 
different growth models). These new models should contribute 
to software reliability and may help resolve problems that are 
difficult to solve using traditional software reliability growth 
models. 
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