
Defect Analysis and Prediction by Applying the
Multistage Software Reliability Growth Model

Jieming Chi*, Kiyoshi Honda*, Hironori Washizaki*, Yoshiaki Fukazawa*
Kazuki Munakata†, Sumie Morita†, Tadahiro Uehara†, and Rieko Yamamoto†

*Waseda University, 3-4-1 Ohkubo, Shijuku-ku Tokyo, JAPAN
Email: tko@fuji.waseda.jp, khonda@ruri.waseda.jp, {washizaki, fukazawa}@waseda.jp

Fujitsu Labs Ltd., 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa 211-8588, JAPAN
Email: {munakata.kazuki, morita.sumie, uehara.tadahiro, r.yamamoto} @jp.fujitsu.com

Abstract—In software development, defects are inevitable. To
improve reliability, software reliability growth models are useful
to analyze projects. Selecting an expedient model can also help
with defect predictions, but the model must be well fitted to all the
original data. A particular software reliability growth model may
not fit all the data well. To overcome this issue, herein we use
multistage modeling to fit defect data. In the multistage model, an
evaluation is used to divide the data into several parts. Each part
is fitted with its own growth model, and the separate models are
recombined. As a case study, projects provided by a Japanese
enterprise are analyzed by both traditional software reliability
growth models and the multistage model. The multistage model
has a better performance for data with a poor fit using a
traditional software reliability growth model.

Keywords—Software Reliability; Growth Model; Multistage
Models.

I. INTRODUCTION
Software reliability is an important part of software as it

ensures both quality and stability. Because bugs accompany
software during development, it is important to establish a
method to check and evaluate software reliability. For
companies, the software reliability growth model is a good
solution because it can be used as an indicator of the number of
potential failures [1]. Therefore, in the past few years, more and
more companies tried applied software reliability growth models
to ensure software quality [2][3][4][5][6].

Developing a model curve for the ratio that bugs occur will
increase the efficiency of software development. Applying a
growth model to the actual data, which includes bug
information, is a useful method. Although numerous models
have been developed, a universal model has yet to be
established. In particular, some data may be poorly fitted by a
single software reliability growth model.

Herein we try to resolve the situation where all the actual
data about information does not fit one growth model well. We
use the multistage model as a new modeling method to fit defect
information, improving the fit when some of the data is ill fitted
using one software reliability growth model.

Specifically, we address the following questions:

RQ1: What is the most appropriate metric to evaluate the fit
of a software reliability model?

RQ2: Is the multistage model better suited for software
reliability? What metric can be used to evaluate the suitability of
the model?

Both researchers and members of the company involved in
the case study have a vested interested in this study. As
researchers, we hope to find a way to ensure software reliability
in software development and release, especially in the case
where a traditional software reliability growth model cannot
meet the required accuracy. The members of the software
development company hope to discover a process that realizes a
smoother and more economical development process using a
predictive model.

II. BACKGROUND
Ensuring software reliability is critical when developing and

releasing a project. A growth model of defects is a common
method to check and verify software reliability.

A. Software Reliablity Growth Models
For companies, a product’s software reliability is mainly

evaluated by focusing on the amount of failures found during the
testing periods [7].

Here a software reliability growth model means a single
model is used to analyze defects. (This differ from the multistage
model.) In theory, there are many basic software reliability
growth models. Examples include the Non-homogeneous
Poisson process (NHPP, a very popular growth model in various
fields), Weibull, etc. [8]. In this research, the logistic model and
the Gompertz model are used as single software reliability
growth models. Both are representative trend models that
produce an S-shaped curve.

The curve to fit data in the logistic model is expressed as

IEEE 8th International Workshop on Empirical Software Engineering in Practice

978-1-5090-6699-5/17 $31.00 © 2017 IEEE

DOI 10.1109/IWESEP.2017.16

7

The logistic model is widely applied in the scientific

community [9]. Here ����� means the number of failures that
are detected by t. When t is sufficiently long, the value of �����
is equal to a.

On the other hand, the data fitted by the Gompertz model is
given as

The Gompertz model has been applied to various science and

technology fields to model biological phenomena, economic
phenomena, etc. [10]. Similar to the logistic model, �����
indicates the number of failures detected by t, and the result also
equals a if t is big enough.

In this model we use the extracted data which includes t and
���� to get the parameters of a, b and c. We need a tool to
calculate these parameters. Here we use R Programme to
calculate them. R is a programming language and environment
for statistical computing and graphics [11]. All the parameters
and the information of curve can be calculated by R Programme.

B. Multistage Model
The multistage model does not use only one-rule or obey a

formula. Instead, it selects several ideal models and combines
them into one model. In previous works, the multistage model
has been used to solve problems about poor-fitting models
[8][15]. Although not all previous works employ the multistage
model as a solution for defect analysis, the data in these projects
are satisfied with stochastic event conditions. This model can
work well when a traditional software reliability growth model
fits poorly. Section IV describes the multistage model for
software reliability.

III. TRADITIONAL SOFTWARE RELIABILITY GROWTH MODELS
A software reliability growth model is a component of the

multistage model. The multistage model is a combination of
several traditional software reliability growth models. The
application of traditional models and an evaluation method can
also be used in multistage models. Section IV compares the
prediction capability of the multistage model to a traditional
software reliability growth model.

A. Proposal to detect the appropriate software reliability
growth model for each stage of the multistage model
The following steps are used to detect unexpected situations

or defects in a software reliability growth model.

(1) Acquire and normalize the data source from the
company.
 (2) Use R to apply a software reliability growth model to
the actual data.
 (3) Detect and analyze the results.

Although important, normalizing the data is time-consuming.
In this study, data from the company is ordered chronologically.

The data indicates only the time and type of failure. After the
normalization, the data is arranged as a list of dates, which
record how many bugs occur on a particular day.

The result after fitting can be used for the prediction. Here
we applied the software reliability growth model to Project 1. In
a well-fit model curve, the predicted amount of defects is similar
to the model’s parameter a.

In the analysis, we need to evaluate which model better fits
the actual data. If the software reliability growth model cannot
fit the actual data perfectly, then the model is not applicable for
predictions. Hence, the model needs to be altered or another
model must be used to analyze the project.

B. Results of software reliability growth models

We applied both the logistic model (Fig. 1) and the
Gompertz model (Fig. 2) to the data of Project 1. The curves
indicate that the data is reasonably well fitted by the models.
However, a visual evaluation of the models is insufficient to
determine which model is better at detecting more than 95% of
the defects. Consequently, our analysis focuses on two questions.
(1) Which model is the first (in days) to observe more than 95%
of the defects? (2) Which model is better for this project? We
used the residual sum of squares (RSS) as an evaluation tool.
Table 1 shows the results of the RSS ratio and the date that 95%
defects are found for each model.

(1)

(2)

Fig. 1. Plot of Project 1. Model curve is fitted by the logistic model. Plot
shows the actual data.

Fig. 2. Plot of Project 1. Model curve is fitted by the Gompertz model.
Plot shows the actual data.

8

The RSS ratio of the logistic model is lower than that of the
Gompertz model, indicating that the logistic curve is a better fit
for the data in Project 1 In this project, 95% of all defects are
found around the 86th day. These results imply that the company
can fix this project in 86 days when the model is well fitted to
the actual data. However, it is possible that the model does not
fit the data. In this case, the prediction using the model is
meaningless. Therefore, the logistic model is to compared the
multistage model for Project 1.

IV. MULTISTAGE MODEL

The multistage model uses more than one model. It divides
the data into stages. Then the best software reliability growth
model is applied to each stage. Next all the models are combined
to connect the stages. In the multistage model, the new model is
implemented when the previous stage ends.

To verify the most suitable model for each stage, each stage
must be evaluated before building the multistage model. In this
research, we analyzed Project 2, which is not well fitted using a
traditional software reliability growth model (Fig. 3).

A. Building and evaluating the multistage model
In this research, the multistage model contains two models:

the logistic model and the Gompertz model. Because the
multistage model is flexible and scalable, it can be extended to
include three or more models. However, it may encounter a
problem. Not all of the models have three parameters like the
logistic or the Gompertz model. For example, the Weibull model
can also be used for software reliability growth modeling [12],
but it contains four parameters. If RSS is used as an evaluation
tool to compare the logistic and Weibull model, the RSS value
for the Weibull model will be larger than that of the logistic
model. In the future we may build the multistage model with
more growth models, and these models may contain different
parameters. Therefore, we used the Akaike information criterion
(AIC) to evaluate the stage models [13].

The AIC value increases as the amount of dates becomes
larger. Here f(t) is used to present the daily normalized AIC
value, which is proposed by Akaike [14]

Here t means the date. AIC(t) means the AIC value evaluated
from the first day until this date.

To determine the best-fitted stage part, we need to find the
minimum value of f(t) because this indicates the case with the
best reliability. First, we applied two software reliability growth
models to the data. Then the f(t) value by day is listed for two
models. We assumed that t’ is the date with the minimum value,
and we reduced the data to this period as a stage model. Then we

(3)

Result

Fig.4 Flowchart of the process to create a multistage model

Reading data

Check: Is the
rest of data less
than the amount
of parameters?

Initialize
and renew
the rest of

data.

N
Y

Modeling data
with growth

models

Get both two
models’ AIC

value

Fit this part with
Gompertz and
collect results.

Fit this part with
logistic and

collect results.

Y

N Is the AIC
value of logistic

smaller?

Fig. 3. Plot picture of Project 2, fitted by logistic model. The actual data
have a poor-fit with the convergence, and it RSS value is far higher than
normal.

TABLE I. RSS RATIO AND DATE OF 95% DEFECTS LIST BETWEEN TWO
MODELS OF PROJECT 1.

 logistic Gompertz

RSS Ratio 0.69 1.00

Calculated Date 85.67 105.57

9

noted the corresponding growth model for this stage.
Afterwards, the date period from 0 to t’ is used. Next we set the
(t’+1) date as the start, and determined the second stage model.
We repeated this process until the last stage model is identified.
Figure 4 shows a flowchart of the process.

B. Result and discussion of the multistage model
Table 2 lists the stages and Fig. 5 shows the multistage

model. The red plot and black curve denote the actual data and
the optimized multistage model, respectively. The colorized
vertical lines indicate the gaps between stages.

We can infer that in the early periods, the project system is
unstable due to the many defects. The gaps are intensive and
concentrated in the early part, which means a great volatility in
this project system. After long-term maintenance, the
improvement in the defects slows, and eventually the number of
bugs converge.

The 7th stage has a long duration in the Gompertz model.
The previous software reliability predictions started in the
middle of a release [15]. This method is quite suitable for the
multistage model. Here we use the 7th stage for analysis and the
prediction.

Table 3 compares the results to the traditional software
reliability growth models. Our multistage model has a lower
AIC value, implying a higher reliability. The convergence

number of defects is 543. Thus, 95% of the defects are found on
the 205th day. The multistage model seems to have better
prediction abilities compared to the logistic and the Gompertz

models. (The Gompertz model has a higher AIC value than the
logistic model.)

V. CONCLUSION
Both the software reliability growth model and the

multistage model are successfully fitted to the data of two
projects. Moreover, we developed an evaluation and prediction
tool, allowing the company in the case study to appropriate
allocate engineers for the debugging process, conserving
resources and costs. For RQ1, we used the RSS value and the
AIC value as standards to evaluate the growth models. For RQ2,
AIC is used, demonstrating that the multistage model can
provide a good solution when a project is ill fitted with a
traditional growth model.

Although the applicability of the multistage model is
confirmed using a case study of a company, it is applicable to
other database defects with stochastic events. This method
provides a new point of view in software reliability growth
models.

Fig. 5. Final Multistage model.

TABLE III. STAGE INFORMATION OF PROJECT 2 IN THE MULTISTAGE
MODEL.

No. Period of Date Duration Fitted Model

1 1 – 22 22 logistic

2 23 – 36 14 Gompertz

3 37 – 39 3 Gompertz

4 40 – 43 4 Gompertz

5 44 – 46 3 Gompertz

6 47 – 67 21 Gompertz

7 68 – 347 280 Gompertz

TABLE II. AIC RATIO AND DATE OF THE 95% DEFECTS LIST OF
PROJECT 2.

 logistic Multistage

AIC Ratio 1.00 0.92

Calculated Date 175.95 205.10

10

In the future, we plan to expand the multistage model to
consider other growth models (e.g., the average combination of
different growth models). These new models should contribute
to software reliability and may help resolve problems that are
difficult to solve using traditional software reliability growth
models.

REFERENCES

[1] A. Wood, “Software reliablity growth models,” Technical Report 96.1,
1996, pp. 1.

[2] A. Goel, “Software reliability models: Assumptions, limitations, and
applicability,” Software Engineering, IEEE Transactions on, vol. SE11,
no. 12, pp. 1411–1423, Dec 1985.

[3] S. Yamada, M. Ohba, and S. Osaki, “S-shaped reliability growth
modeling for software error detection,” Reliability, IEEE Transactions on,
vol. R-32, no. 5, pp. 475–484, Dec 1983.

[4] S. Yamada, M. Kimura, H. Tanaka, and S. Osaki, “Software reliability
measurement and assessment with stochastic differential equations,”
IEICE transactions on fundamentals of electronics, communications and
computer sciences, vol. 77, no. 1, pp. 109–116, 1994.

[5] S. Yamada, “Recent developments in software reliability modeling and
its applications,” in Stochastic Reliability and Maintenance Modeling.
Springer, 2013, pp. 251–284.

[6] X. Cai and M. Lyu, “Software reliability modeling with test coverage:
Experimentation and measurement with a fault-tolerant software project,”
in Software Reliability, 2007. ISSRE ’07. The 18th IEEE International
Symposium on, Nov 2007, pp. 17–26.

[7] A. Wood, “Predicting software reliablity,” Computer, vol. 29, no. 11, pp.
69-77, 1996.

[8] H. Aman, A. Yamashita, T. Sasaki and M. Kawahara, “Multistage growth
model for code change events in open source software development: an
example using development of Nagios,” in Euromicro Conference on
Software Engineering and Advanced Applications (2014 IEEE), 2014, pp.
207-212.

[9] A. Tsoularis and J. Wallace, “Analysis of logistic growth models,”
Mathematical Biosciences, vol. 179, no. 1, pp. 21-55, 2002.

[10] C. P. Winsor, “The Gompertz curve as a growth curve,” in Proc. National
Academy of Sc., vol. 18, no. 1, 1932, pp 1-8.

[11] K. Honda, H. Washizaki, Y. Fukazawa, K. Munakta, S. Morita, T. Uehara
and R. Yamamoto, “Detection of unexpected situations by applying
software reliability growth models to test phases,” in 2015 IEEE
International Symposium on Software Reliability Engineering Workshops
(ISSREW 2015), 2015, pp 2-5.

[12] S. Yamada, J. Hishitani, and S. Osaki, “Software reliability growth with
a Weibull test-effort: a model and application,” IEEE Trans. Reliability,
vol. 42, no. 1, pp. 100-106, 1993.

[13] H. Akaike, “A new look at the statistical model identification,” IEEE
Trans. Automatic Control, vol. 19, no. 6, pp. 716-723, 1974.

[14] H. Akaike, "Information theory and an extension of the maximum
likelihood principle," in 2nd International Symposium on Information
Theory, Petrov, B. N., and Caski, F. (eds.), Budapest: Akadimiai Kiado,
pp. 267–281, 1973.

[15] K. Okumoto, “Customer-perceived software reliability predictions:
beyond defect prediction models,” Stochastic Reliability and
Maintenance Modeling, vol. 9, no. 11, pp. 219-249, 2013.

11

