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Structured abstract

Purpose A Wearable Expert System (WES) is an expert system designed and imple-
mented to obtain input from and give outputs to wearable devices. Among
its distinguishing features are the direct cooperation between domain ex-
perts and users, and the interaction with a knowledge maintenance sys-
tem devoted to dynamically update the knowledge base taking care of the
evolving scenario.

Design/Methodology approach The WES development method is based on the KAFKA framework. KAFKA
employs multiple Knowledge Artifacts, each devoted to the acquisition and
management of a specific kind of knowledge. The KAFKA framework is in-
troduced from both the conceptual and computational points of view. An
example is given which demonstrates the interaction, within this frame-
work, of Taxonomies, Bayesian Networks and Rule Based Systems. An ex-
perimental assessment of the framework usability is also given.

Findings The most interesting characteristic of WESs is their capability to evolve over
time, due both to the measurement of new values for input variables and
to the detection of new input events, that can be used to modify, extend
and maintain knowledge-bases and to represent domains characterized by
variability over time.

Originality/value Wearable Expert System is a new and challenging concept, dealing with the
possibility for a user to develop his/her own decision support systems and
update them according to new events when they arise from the environ-
ment. The system fully supports domain experts and users with no particu-
lar skills in knowledge engineering methodologies, to create, maintain and
exploit their expert systems, everywhere and when necessary.

Keywords: Wearable Expert System, Knowledge-Based Systems, Wearable de-
vices, Knowledge Acquisition Bottleneck, Knowledge Artifact
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2 F. Sartori and R. Melen

1 Introduction

The terms wearable technology, wearable devices, and wearables all refer to elec-
tronic technologies or computers that are incorporated into items of clothing
and accessories which can be worn comfortably on the body. Wearable tech-
nology usually provides sensory and scanning features not typically seen in
mobile and laptop devices, such as biofeedback and tracking of physiological
function.

Thus, they could be profitably used in a number of applications, being im-
portant sources of data for reasoning. In particular wearables could be exploited
in the design and implementation of a new breed of expert systems. An ex-
pert system is a computer system that emulates the decision-making ability of
a human expert (Jackson, 1998). Expert systems are designed to solve complex
problems by reasoning about knowledge, represented primarily as if-then rules
rather than through conventional procedural code. A generic rule-based system
consists of an inference engine and a knowledge base made of rules and facts
to be analyzed.

In the Knowledge Engineering (KE) field, expert systems development has
been always conceived as an offline process, characterized by intense Knowl-
edge Acquisition and Representation phases, conducted by the knowledge en-
gineer in order to make explicit the knowledge involved in a decision making
process, which is tacitly owned by human experts. This is not a simple task: as
a matter of fact, the knowledge acquisition bottleneck (KAB) is a well-known and
still unresolved problem (Gaines, 2013).

This paper deals with development of wearable expert systems (WES). A WES
is an expert system designed and implemented to obtain input from and give
outputs to wearable devices. To interact with wearables, an expert system should
be able to recognize how new data coming from them should be interpreted, in
dynamically evolving scenarios.

We assume that a WES features the following distinguishing characteristics
with respect to traditional expert systems:

– agile development cycle;
– scalable and time-evolving knowledge bases;
– interaction with a centralized, possibly cloud-based, knowledge mainte-

nance system based on the knowledge artifact notion.

Agility principles can be a starting point to solve the KAB problem, given
that traditional expert systems development is not agile by definition, due to
the need for three distinct roles: the user, the domain expert and the knowledge
engineer. WES development, instead, will be centered on domain experts and
users cooperating directly in the system development process, evaluating its ef-
fectiveness on the field and modifying and updating it quickly when necessary.
Here we find the typical features of agile system development: the focus on
incorporating user requirement changes during the project life-cycle (Lee and
Xia, 2010) as well as rapidly creating and embracing changes, learning from
them (Conboy, 2009).
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Wearable Expert Systems 3

As stated above, WESs will be able to update automatically their knowledge
bases according to new observations on the field. To do so, knowledge bases
will be able to handle events, refining the more general concept of fact typical of
traditional rule-based systems. Informally, while a fact can be described simply
as the value assumed by a variable, without making explicit reference to time,
an event occurs or materializes at a specific point in time, and the semantics
of an event-based system depends strictly on the (partial) time ordering of the
events handled. The flow of new events not only will cause the firing of knowl-
edge base rules, but will also feed a knowledge maintenance process, consisting
in the updating of existing rules or in the generation of new rules to take care
of the evolving situation.

This automatic knowledge base maintenance will be accomplished by a so-
phisticated back-office system, based on a model which must be flexible and
complete enough to comprise all the knowledge kinds involved in the deci-
sion making process. The Knowledge Acquisition Framework based on Knowledge
Artifact (KAFKA) has been designed and implemented to this scope. The main
characteristic of KAKFA is its non-monolithic approach: it features the definition
and correlation of several different conceptual and computational tools for the
acquisition and management of specific kinds of knowledge, depending on the
domain.

In addition to that, the knowledge engineer and domain expert roles are
unified into the Knowledge Artifact Developer (KA-Developer) actor, while the
user is substituted by the Knowledge Artifact User (KA-User). A main goal of
KAKFA is then reducing knowledge complexity and potential inaccuracy by
eliminating the knowledge engineer role.

The rest of the paper is organized as follows: section 2 will review the liter-
ature about knowledge artifacts and other important research topics concern-
ing the development of WESs. The conceptual model of Knowledge Artifact in
KAFKA will be presented in sections 3. Section 4 will discuss about the imple-
mentation of wearable expert systems, focusing both on their architectural char-
acteristics and on the algorithm implemented to interact with wearables. Sec-
tion 5 will present a small application example to show in practice how a wear-
able expert system can be created exploiting KAKFA. Section 6 will evaluate
the practical applicability of KAFKA, showing the results of experiments con-
ducted on different groups of students: in particular, the scalability and agility
level of expert systems developed in KAFKA will be evaluated, to demonstrate
that they can be considered WESs. Finally, the paper will conclude with some
considerations about future work.

2 Related Work

In a fundamental paper about the crisis of rule-based systems Clancey (1983)
Clancey studied the knowledge representation in MYCIN, pointing out the dif-
ferent nature and roles of the rules encoded in its knowledge base. Clancey’s
analysis on MYCIN was crucial to highlight how the development of expert
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4 F. Sartori and R. Melen

systems is not a mere translation of expert reasoning processes into sequences
of rules, but a complex expert knowledge modeling activity, aiming at making
a computer able to reason as a human expert.

Different kinds of knowledge require different methods and tools to acquire
them: Knowledge Acquisition is indeed the most crucial step of every knowl-
edge engineering process. As widely demonstrated in the past, failures in ac-
quiring knowledge are the main cause of unsatisfactory knowledge-based sys-
tems development. The possible causes of the KAB are many (Wagner, 2004),
and knowledge inaccuracy is indeed the most difficult to detect and solve among
them. It can be caused both by experts and knowledge engineers. In the first
case, mistakes made by experts have the consequence to produce wrong knowl-
edge bases; in the second case knowledge maintenance activities can turn pre-
viously correct knowledge bases into incorrect ones, or difficulties may arise in
modeling correctly the acquired knowledge.

Given that traditional methodologies proposed in the past as possible so-
lutions to the KAB problem, such as CommonKads (Schreiber et al., 1994) and
MIKE (Angele et al., 1998), have substantially failed their goal (Hoppenbrouw-
ers and Lucas, 2009), the KAB continues to be a very important research subject.
Gaines (2013) points out the continuing need to consolidate and extend all that
we know about knowledge acquisition processes and techniques. Many recent
efforts (Aussenac-Gilles and Gandon, 2013) indicate in the social web a possi-
ble solution to that problem, as a natural evolution of past wiki-based meth-
ods (Wagner, 2006). The main purpose of these semantic methods is to make
the knowledge acquisition phase slimmer, delegating to the expert/user some
functions traditionally in charge of the knowledge engineer.

This paper advocates the applicability of the Knowledge Artifact notion to
solve the KAB problem. According to Holsapple and Joshi (2001), a knowledge
artifact is an object that conveys or holds usable representations of knowledge.
Salazar-Torres et al. (2008) argued that, according to this definition, KAs are arti-
facts which represent executable-encoding of knowledge, which can be suitably
embodied as computer programs, written in programming languages such as
C, Java, or declarative modeling languages such as XML, OWL or SQL.

According to these definitions, Knowledge Artifacts can be meant as guides
to the development of complete knowledge-based systems. A relevant case
study addressing this direction is the pKADS project (Butler et al., 2008), that
provided a web-based environment to store, share and use knowledge assets
within enterprises or public administrations. Each knowledge asset is repre-
sented as an XML file and it can be browsed and analyzed by means of an
ontological map. Although the reasoning process is not explicitly included into
the knowledge asset structure, this can be considered an example of Knowledge
Artifact, being machine readable and fully involved in a decision making pro-
cess development. Salazar-Torres et al. (2008) proposed a tabular Knowledge
Artifact, namely T-Matrix to implement knowledge-based systems according to
the design-by-adaptation paradigm. A T-Matrix describes products as recipes
where ingredients and their amount are correlated to the different performance
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Wearable Expert Systems 5

requirements that the final product should satisfy, providing a proper grammar
to define those correlations and implementing it as rule-based systems.

As presented in Cabitza and Locoro (2014), knowledge artifacts can be clas-
sified according to both the research field they refer to and the application do-
mains they are used in. In particular, the authors grouped KA experiences into
five conceptual clusters, where different KAs are used with different scopes, on
the basis of objectivity1 and situativity 2dimensions: Artificial Intelligence (AI-KAs
from now on), Knowledge Management, Computer Supported Cooperative Learn-
ing, Information Systems and Computer Supported Cooperative Work. Here, we are
mainly interested in AI-KAs, devoted to design and implement decision sup-
port systems, expert systems and ontologies in many domains, like engineering
design (Bandini and Sartori, 2010), furniture manufacturing (Cheatle and Jack-
son, 2015), healthcare (Eysenbach et al., 2007), emergency management (Fogli
and Guida, 2013). AI-KAs seem to be characterized by a higher level of objectiv-
ity than situativity; this means that the knowledge engineer role remains funda-
mental, and the KA is a sort of passive tool helping him/her in the knowledge-
bases definition, creation and maintenance.

With respect to existing AI-KAs, the challenge is defining new methodolog-
ical tools to make them active entities in the knowledge engineering process. To
do so, it is crucial to be able to distinguish the different kinds of knowledge in-
volved in the decision making process and produce proper KAs for them. These
KAs must be correlated, in order to recognize changes in the whole knowledge
domain and propagate such changes from a KA to the others; doing so, KAs
could manage events, with the consequence to become important tools for cre-
ating wearable expert systems.

According to Luckham (2002), an event is an object acting as a record of
activity in a system. Events are related to other events by time, causality and
aggregation. WESs can take advantage of solutions developed in other research
fields oriented to modeling event-driven processes, like Information Flow Pro-
cessing (IFP). Cugola and Margara (2012) use this term for indicating applica-
tions that require to process continuously data from geographically distributed
sources at unpredictable rates, in order to obtain timely responses to complex
queries. Moreover, they define IFP engine a tool capable of timely processing
large amounts of information as they flow from the periphery to the center of
the system.

Within the IFP domain, Complex Event Processing (CEP) is defined in Mehdiyev
et al. (2015) as a novel and promising methodology that enables the real-time
analysis of stream event data, with the main purpose to detect complex event pat-
terns from the atomic and semantically low-level events, such as sensors, log or
RFID data. CEP involves rules to aggregate, filter and match low-level events,

1 Authors define objectivity as the capability of the KA to represent true facts in an objective,
crisp and context independent manner.

2 Authors define situativity as the capability of the KA to adapt itself to the context and
situation at hand.
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6 F. Sartori and R. Melen

coupled with actions to generate from them new, higher level events (Robins,
2010).

A knowledge engineering methodology to develop executable knowledge-
based systems, addressing issues quite similar to CEP system design and imple-
mentation, is fundamental to design and implement wearable experts systems.
Conceptual tools for the acquisition of different kinds of knowledge should be
used, to fully understand how an event is characterized, which relationships
with other events should be considered and how these relationships change as
the system evolves. The former kind of knowledge can be identified by func-
tional knowledge (FK) (Kitamura et al., 2004), the latter by procedural knowledge
(PK) (Surif et al., 2012). Finally experiential knowledge (EK)(Niedderer and Reilly,
2010) allows modeling events and relationships among them with a rule-based
system variable over time, that is a wearable expert system.

In KAFKA, aggregation is provided by ontologies (Brewster and O’Hara,
2004), time and causality are tackled by Bayesian Networks (Korb and Nichol-
son, 2010). With respect to similar approaches (Margara et al., 2014; Teymourian
and Paschke, 2009; Mehdiyev et al., 2015) that aim at automatically derive rule
patterns by means of machine learning techniques, our approach is interested
in the analysis of different kinds of knowledge involved in problem solving
activities. The relationship between knowledge and data is then explored to
understand how the variability in the data stream can drive the evolution of
the related knowledge bases.

3 The KAFKA Conceptual Model

The KAFKA model represents several kinds of knowledge, employing a spe-
cific modeling methodology for each one, and defines the necessary correla-
tions when the same system entities are handled within different knowledge
models.

Figure 1 shows the multi-layered model of Knowledge Artifact in KAFKA
(Sartori and Melen, 2015). Given a particular kind of knowledge ki, i ∈ [1, ..., n],
a Knowledge Artifact for the acquisition of ki is the pair

KAki = {EKAki , RKAki}, (1)

where

EKAki = {eKAki
j }, j ∈ [1, ...,m] and R = {rKAki

k }, k ∈ [1, ..., s], (2)

are the sets of entities and relationships among them respectively, with

r : e
KAki
1 × ...× e

KAki
j−1 −→ ej ,∀r ∈ [r

KAki
1 , ..., r

KAki
s ]. (3)

Note that in the following we will use the terms entity meaning a general
category of “thing”: within it, we will distinguish between events and variables,
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Wearable Expert Systems 7

Fig. 1: The multi-layered model of Knowledge Artifact in KAFKA.

the former possessing the distinguishing feature of being related to a time of
occurrence, the latter modeling the state of parts of the system and of its envi-
ronment.

In order to correlate different KAs, it is necessary to extend the definition
above: given a set of kinds of knowledge K = {k1, ..., kn} and Knowledge Ar-
tifacts KAki ,∀i ∈ [1, ..., n] a Higher-Level Knowledge Artifact (HLKA) for the ac-
quisition of K is the couple

KAHL
K = {KAK , rK}, (4)

where

KAK = {KAki} and rK : EKAki −→ EKAkj , with i, j ∈ [1, ..., n] (5)

The way the correlation rK is defined depends on the knowledge domain: at
the current state of development, there exists only one correlation in KAFKA,
namely eqK (i.e. equivalence on K):

eqK : EKAki −→ EKAkj |eKAki

l ≡ e
KAkj
p , (6)
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8 F. Sartori and R. Melen

with

e
KAki

l ∈ EKAki and e
KAkj
p ∈ EKAkj (7)

The equivalence notion allows managing the same entity differently according
to the specific Knowledge Artifact, but preserving its main features moving
from a kind of knowledge to another.

The general model presented here must then be configured on the basis of
the knowledge involved: the HLKA acts as a library of Knowledge Artifacts,
each of them chosen to model the related kind of knowledge in the best way.
For example, Procedural Knowledge can be captured by many kinds of tools for
modeling causal relationships, like e.g. Influence Nets (Rosen and Smith, 1996),
Petri Nets, Bayesian Networks (Korb and Nicholson, 2010), Causal Nets (Van
Der Aalst et al., 2011) or Superposed-Automata Nets (de Cindio et al., 1981).

The HLKA must then be configured in order to become a complete model
for acquiring and relating all the kinds of knowledge involved in the develop-
ment of knowledge-based systems.

We are employing the KAFKA modeling approach for a wide set of appli-
cations, including WESs, were:

– FK will be acquired by means of taxonomies (T), characterized by three kinds
of entities and two relationships;

– PK will be modeled through bayesian networks (BN), characterized by three
kinds of entities and two relationships;

– EK will be captured by production rules (PR), characterized by three kinds of
entities and one relationship.

Thus, given the set K = {FK,PK,EK}, the KAFKA Higher-Level Knowl-
edge Artifact to deal with K is KAHL

K = {{TFK , BNPK , PREK}, eqK}, where
eqK : TFK −→ BNPK and eqK : BNPK −→ PREK makes equivalent the event
sets of TFK , BNPK and PREK .

The TFK scope is the clear identification of the entities relevant to the sys-
tem. As stated above, Wearable Expert Systems manage both variables, describ-
ing the environment and the system state, and timed events. Variables and
events may have different roles in the system: they can be inputs (I), outputs
(O) or partial outputs (PO). An input is a variable describing the environment
in which the system operates or a possible domain restriction, or it can be an
event, modeling an observation on the field, typically detected by a wearable
device or manually introduced by the user. An output is a result of the compu-
tation, returned to the user as a command-type event in order to solve his/her
problem, or as a generic alarm-type event if the management of the situation is
the complete responsibility of the user. A partial output is the result on an inter-
nal computation, and often represents a state variable accumulating “partial”
or “intermediate” knowledge about the history of the system and the future
actions to be undertaken.
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Wearable Expert Systems 9

The TFK classifies variables and events in I, PO and O, and describes how
they are possibly aggregated into or derived from other entities:

KAFK = TFK = {ETFK , RTFK}, (8)

with

ETFK = {I ∪ PO ∪O}, (9)

and

RTFK = {is-aETFK , part-ofETFK } (10)

where

is-aETFK , part-ofETFK : ETFK −→ ∅ ∪ P(ETFK ) (11)

with

P(ETFK ) the set of all the subsets of ETFK (12)

In addition to elementary entities, there are many situations in which more
complex definitions are needed: the is-a relationship allows to extend the de-
scription of an existing input, partial output or output by means of a new value;
the part-of relationship allows to aggregate two or more inputs, partial outputs
or outputs into a new record-like element.

The Bayesian Network model is a structured process that allows to analyze
complex problems of cause-effect type in order to infer hidden variables, assess
expectations and determine an optimal strategy for the execution of certain ac-
tions. The KAFKA Bayesian Network (KBN) is the Knowledge Artifact adopted
for procedural knowledge representation:

KAPK = KBNPK = {EKBNPK , RKBNPK}, (13)

with

EKBNPK = {I ∪ PO ∪O}, (14)

and

RKBNPK = {parentEKBNPK , cptEKBNPK }, (15)

where

parentEKBNPK : EKBNPK −→ ∅ ∪ P(EKBNPK ) (16)
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10 F. Sartori and R. Melen

with

P(EKBNPK ) the set of all the subsets of EKBNPK (17)

and

cptEKBNPK : EKBNPK −→ P (EKBNPK |EKBNPK ) ∈ [0, 1] (18)

The parentEKBNPK relationship returns, for each entity, the set of entities
having a causal relation to it. Given an entity eKBNPK

j ∈ EKBNPK

parent
e
KBNPK
j

{
= ∅, if eKBNPK

j ∈ I ,
⊂ P(EKBNPK ), otherwise.

The cptEKBNPK stores, for each entity, the related conditional probability table,
depending on the number of entity outcomes (i.e. the possible values assumed
by the event or variable) and the number of parents’ outcomes.

In particular, given an entity eKBNPK
j we have

cpt
e
KBNPK
j

= {P (eKBNPK
j | parent

e
KBNPK
j

)} (19)

with

#e
KBNPK
j∑
j=1

P (eKBNPK
j | parent

e
KBNPK
j

) = 1 (20)

where

#eKBNPK
j is the number of outcomes of eKBNPK

j (21)

Two observations are needed about the KBN. First, the parent relationship
organizes the nodes of the model into a graph: this must be a DAG (Directed
Acyclic Graph) to obtain a proper BN (this condition has not been introduced
explicitly in the above formalism in order to keep it readable). A second, funda-
mental observation regards the use of causal relations as the guideline to build
the KBN graph. It is well known that in some applications (e.g. in medical diag-
nosis) it may be difficult to determine the correct direction of causal relations,
however in the practical cases that we have considered, clear causal (or logical
precedence) relations were always available to guide us in the definition of the
KBN.

Finally, Production Rules are used to describe how the causal process de-
fined by a given KBN is modeled. Given that a KBN describes the steps neces-
sary to reach outputs from inputs, it is also evident that the KBN allows iden-
tifying the different layers of the system to be developed, as well as possible
parallelisms in sytem execution.
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Wearable Expert Systems 11

E

B

C

A

Rule 1:
IF A THEN C

Rule 3:
IF C and D THEN E

D

Rule 2:
IF B THEN D

Level 0

Level 1

Level 2

Fig. 2: The relationship between KBN and Production rules in KAFKA

Figure 2 shows a sketch of a KBN with two inputs (nodes A and B), two
partial outputs (nodes C and D) and an output (node E). Rule 1, 2 and 3 allow
specifying how the transitions described by KBN are implemented. Moreover,
rules allow a clear identification of all the computational levels of the system:
in particular, while Rule 1 and Rule 2 could be executed in parallel, it is evident
that Rule 3 must wait that both Rule 1 and Rule 2 complete their execution,
because its left hand side depends on their right hand sides.

This way, it is possible to identify easily the different computational levels
of the system, where a computational level contains all the rules that can po-
tentially be executed at the same time. There exist two particular computational
levels in KAFKA: Level 0, where no rule is present, that is the level where inputs
are collected, and Level n (n = 2 in Figure 2) where only one rule can be executed
(for each output), that is the level where outputs are finally generated once all
the necessary inputs and partial outputs have been provided.

According to the definition above, the third Knowledge Artifact in KAFKA
is

PREK = {EPREK , RPREK}, (22)

with

EPREK = {I ∪ PO ∪O}, (23)

and

RPREK = {if -doLHS,RHS}, (24)
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12 F. Sartori and R. Melen

where

if -doLHS,RHS : P(EKBNPK ) −→ EKBNPK (25)

The if-do relationship semantics is the definition of a left-hand side (LHS), spec-
ifying a set of evidences to be verified and a right-hand side (RHS), specifying
one and only one action to execute in case of LHS verification.

4 Implementing WES in KAKFA

As previously stated, wearable expert systems are characterized by an agile
development cycle, scalable and time-evolving knowledge bases and a cloud-
based knowledge maintenance system. The adoption of KAFKA allows to con-
sider all these aspects into a unique conceptual framework, the higher-level
knowledge artifact: indeed, agility is incremented thanks to the direct interac-
tion between domain expert and system user, while the time-evolving knowl-
edge bases requirement is obtained trough the exploitation of bayesian net-
works in procedural knowledge modeling. The last point must be obtained
from the implementation strategy.

The upper part of Figure 3 shows the computational model of WES develop-
ment in KAKFA, according to the client-server paradigm: the three-tier architec-
ture of the HLKA is implemented on the server, managed by the KA-Developer.
The client side is managed by the KA-User, which is responsible for the defi-
nition of inputs to execute the expert system and gets outputs from it. In our
implementation the KA-User sends data serialized into a JSON3 object. JSON
is an open standard format that uses human-readable text to transmit data ob-
jects consisting of attribute-value pairs. These data are observations about the
conditions of the problem domain. The GSON4 library has been integrated to
convert Java objects automatically into their JSON representation.

The bottom of Figure 3 shows the relationship between KA-Developer and
KA-User as a UML class diagram. The KA-Developer is the server side of the
framework. Its heart is the BayesNet class, which is responsible for the KBN
creation and updating. When a new KBN is created, the KA-Developer allows
specifying its nodes and parent relationships among them (i.e. the KAFKA
taxonomy). The KBN is then stored into both XML and CSV files: the XML
file is useful for parsing the KBN, the CSV file is necessary to allow manag-
ing the KBN by means of JAYES 5, our current Bayesian network manager. The
knowledge engineer role is substituted by the KBN, which is responsible for
the automatic generation of rules starting from the defined taxonomy. Doing so,
knowledge inaccuracy is significantly decreased: the domain expert must only
identify the inputs, partial outputs and outputs of the system, together with

3 JavaScript Object Notation, see http://json.org/
4 See https://sites.google.com/site/gson/gson-user-guide#
TOC-Goals-for-Gson

5 See http://www.eclipse.org/recommenders/jayes/.
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Wearable Expert Systems 13

Fig. 3: The roles involved in the KAFKA knowledge engineering process and a
sketch of the KAFKA UML class diagram.

their possible values and parent relationships. The KAFKA framework auto-
matically generates a Bayesian network according to such specifications: at the
beginning of the reasoning process, the related Conditional Probability Tables
(CPT) are filled with uniform probability distributions. The CPTs are continu-
ously updated according to the evidences and outcomes settings. The Bayesian
network manager exploits the designed KBN to generate the rules of the ex-
pert system: these rules have inputs and partial outputs in the LHS and partial
outputs and outputs in the RHS. Each rule is completed by a reliability value,
computed on the basis of the CPT status. The rule-based system is exported as
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14 F. Sartori and R. Melen

a Jess 6 clp file. The clp file is then sent to the KA-User serialized into a JSON-
GSON object, and run on the KA-User, if Jess 8.0 (that is fully compatible with
Android OS) is available on the related wearable; otherwise, it can be executed
by the KA-Developer on the remote server, returning selected outputs to the
KA-User by means of suitable JSON-GSON objects.

4.1 Initial configuration

For the purpose of computation, taxonomies and KBN elements of the HLKA
have been represented in XML. Production rules are automatically generated
starting from the KBN according to the Jess syntax.

The XML file structure for T (on the left) and KBN (on the right) is the fol-
lowing one:

<ontology> | <kafkaBayesianNetwork>
<name> ... </name> | <name> ... </name>
<description> taxonomy </description> | <description> ... </description>
<input> | <node>

<name> ... </name> | <name> ... </name>
<is-a> ... </is-a> | <value> ... </value>
... | ...
<part-of> ... </part-of> | <parent> ... </parent>
... | ...

</input> | <probabilities>
<partialOutput> | ...

<name> ... </name> | </probabilities>
<is-a> ... </is-a> | </node>
... | ...
<part-of> ... </part-of> | </kafkaBayesianNetwork>
... |

</partialOutput> |
<output> |

<name> ... </name> |
<is-a> ... </is-a> |
... |
<part-of> ... </part-of> |
... |

</output> |
</ontology> |

According to the conceptual model described so far, the taxonomy XML file
is a collection of inputs, partial outputs and outputs, possibly linked by is-a
and part-of relationships: given a specific node, an is-a tag will specify another
node of the taxonomy that it extends; a part-of tag will specify a node of the
taxonomy it contributes to describe. A node can have more than one is-a and
part-of tags, or zero at all: this means that a set of isolated nodes may be a valid
taxonomy in KAFKA. The is-a and part-of relationships are useful in the def-
inition of possible values for evidences and outcomes in the KBN description
step.

According to the HLKA definition, the eqK relationship states that the input,
partialOutput and output sets are the same as described in the taxonomy, given
that different kinds of information are associated with them. In particular, one
or more < value > ... < /value > tags are used to specify the outcomes of

6 See http://herzberg.ca.sandia.gov/.
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Wearable Expert Systems 15

each node and one or more < parent > ... < /parent > tags are exploited to
describe causal relationships among nodes. The KBN definition is completed
by the specification of the Conditional Probability Table: given that the initial
CPT is uniformly distributed, Alg. 1 allows to build up the initial CPT to start
the rules generation.

Algorithm 1 Initial CPT Computation in KAFKA

for j ∈ I ∪ PO ∪O do
pOutcomes← 1;
for i ∈ parents(j) do

pOutcomes← pOutcomes ∗ outcomes(i)
end for
tConfigurations← outcome(j) ∗ pOutcomes
probabilityj = 1/outcome(j)
CPTj = [tConfigurations]
for k ∈ [0, tConfigurations) do

CPTj [k]← probabilityj
end for

end for

The KBN is browsed from the first node to the last one, and for every <
parent > ... < /parent > tag of the current node, the total number of config-
urations (i.e. tConfiguration) is the product of the number of outcomes of the
node (i.e. the result of the outcome(j) function) and the number of outcomes of
each parent (i.e. the value of the pOutcomes variable). The tConfiguration vari-
able is used to create CPTj , namely the Conditional Probability Table for the node
j, as an array of uniform probabilityj values.

Finally, all the possible production rules are generated starting from a KBN:
each rule is made of LHS and RHS, subsets of evidences and outcomes respec-
tively, and a reliability value is associated to it. Further details about the rule
generation process are given below.

4.2 Rules Generation

Given the taxonomy T and the related KBN with its CPT, a new rule-based
system can be finally generated. The mechanism through which this task is
automatically made in KAFKA is the following one:

1. the KBN nodes acting as inputs of the system are selected;
2. all the possible configurations of inputs values previously identified are

generated;
3. each possible input configuration is passed to the KBN, which infers the a

posteriori probability distributions of output nodes;
4. such distributions are used to generate production rules: the right part of

the conditional probability formula becomes the left hand side of the rule,
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16 F. Sartori and R. Melen

while the left part of the formula becomes the right hand side of the rule.
The probability value associated to the output node in the CPT is taken as
a measure of rule reliability that can be exploited to define different mecha-
nisms of rule extraction/firing;

5. the procedure at point 4 is repeated for every possible configuration, origi-
nating a set of rules that represent an exhaustive expert system, that can be
run on the observed input values.

The real-time adaptation of the rule-based system with respect to the user
depends on the CPT updating algorithm, exploiting data collected by him/her.
The rule reliability varies over time: when the KBN is asked to update the CPTs,
the probability distributions are updated accordingly, making a rule less or
more reliable than before. In this sense, an expert system generated in KAKFA
dynamically changes its knowledge base according to the events occurring dur-
ing its execution, given that the reliability of each rule varies. The user can select
the desired reliability value as a threshold, in order to exclude from the execu-
tion step portions of the knowledge base. What is interesting in this scenario is
that a rule discarded at the i-th execution step could be selected again at the j-th
execution step, with i < j.

5 An Application Example

Our application example is related to the analysis of urban traffic in the town
of Bergamo. The town is characterized by the division in two parts: the lower
town, where most public services are located, and the upper town, more ap-
pealing from the tourist perspective. Nowadays, the need of having recom-
mendations about mobility in the urban context is greater than ever, due to the
ever-growing metropolitan areas, with higher population density. Such kinds of
applications should be able to exploit real-time information about traffic con-
gestion, physical-psychological state of the user, weather conditions, and so on.
Each observation could be collected from personal devices, like smartphones
and wearable devices, or hand inserted by the user.

A simple prototype composed by a KA-User and a KA-Developer has been
implemented. The KA-User goal is to assist a person in reaching the upper town
of Bergamo from the lower town using one of the three possibilities available
(i.e. bus, funicular and stairs); the KA-Developer aim is to generate the expert
system to suggest the best alternative.

The model comprises four entities:

– Agent type (AT), a parameter specifying the kind of user. Such entity can
assume a value among tourist, citizen and hinterland;

– Queue tolerance (QT), a variable describing the capability of the user to main-
tain self-control in case of critical traffic conditions. Its value can be high,
moderate or low, depending on Agent type;

– Queue status (QS), an input measurement sampling the traffic conditions.
Possible values are high, moderate, low or null;
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Wearable Expert Systems 17

– Best alternative (CA), that is the suggested output. It can assume values fu-
nicular, bus or stairs, depending on Queue tolerance and Queue status.

The Queue input can be inserted by the user or automatically detected by the
system through wearables, exploiting traffic conditions applications installed
on them. The input of this value could change over time, generating different
probability distributions and, consequently, inducing variations in the reliabil-
ity of the WES rules. The related HLKA, according to the model described in
section 3, is defined as follows. The first KA is the taxonomy T.

E = I ∪ PO ∪O = {AT,QS} ∪ {QT} ∪ {BA}

T = {E, ∅}

Figure 4 is a complete taxonomy of the entities in the system, represented
in graphical form; for simplicity, the E set as defined above comprises only the
instantiated classes, that is the last level of the tree.

System entity

VariableEvent

Output eventInput event

CommandMeasurement

Best alternativeQueue status

Partial Output 
variableInput Variable

Inferred variableParameter

Queue 
toleranceAgent type

Fig. 4: A complete taxonomy relative to the application example

The second KA is the KBN, defined as follows:

KBN = {E,A}, with A = {{∅, PAT }, {∅, PQS}, {{AT}, P (QT | AT )}, {{QT,QS}, P (CA | QT,QS)}}

and represented in figure 5
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18 F. Sartori and R. Melen

Best alternative

Queue status

Queue 
tolerance

Agent type

Fig. 5: The KBN relative to the application example

The third KA is a set of production rules, selected according to their level of
reliability.

PR = {E, {{if − doAT,QT }, {if − do{QT,QS},CA}}}

Let us now consider the WES development process and the generation of
the rules. In a first phase, the KA-Developer generates the taxonomy (see step
A in Figure 6): each node is characterized by a name and a list of values. The
KBN is then generated (step B) through the parents relationship for each node:
this operation has the consequence to initialize the CPTs too. For each node,
the number of probability values depends on its number of outcomes and the
number of outcomes of each parent.

For instance, the CPT of Best alternative node will contain initially 36 uni-
form probabilities, given that it has three values and its parents Queue sta-
tus and Queue tolerance have four and three outcomes respectively. Finally, an
XML file (step C) is created to incorporate all the information about the current
KBN, making it persistent and usable by KA-Users. Each line included in the
< probabilities >< /probabilities > tags represent a column in the node CPT:
the sum of its values is equal to 1.

When the KBN is ready, a KA-User can exploit it to create an expert system,
as shown in Figure 6: the nodes’ list is shown for values selection (step D). This
list is dynamically created from the KBN XML file and the KA-User must select
the value for each input.
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Wearable Expert Systems 19

Fig. 6: The information flow processing in KAFKA, from KA-Developer (steps
A., B. and C.) to the output (steps G. and H.), through the KA-User (steps D., E.
and F.).

The second phase (step E) is the definition of evidences to browse the KBN
properly. The evidences and their values will be transformed in the LHS of the
rule to be created.

The user can also specify a threshold value on rule reliability for limiting the
dimension of the rule-based system. The reliability value is a measure of how
much the automatically generated rule can be considered applicable. The relia-
bility of a rule is calculated by the framework, being modified at each iteration:
it depends on the involved evidences and outcomes probabilities, on the basis
of the principle that rules with higher probability values of their LHS and RHS
will be more reliable. Since the CPTs are continuously updated by KAFKA, the
reliability of the resulting rules will be dynamically modified.

Finally, the user selects the outcomes (step F), i.e. partial outputs and out-
puts of the system; they will be written in the RHS of each rule. The association
between LHSs and RHSs depends on the parent relationships: following the
chain of parent relationships in the KBN it will be possible to identify the com-
putational levels of the rule-based system, with many benefits from the main-
tenance point of view. In our example, the Queue tolerance partial output must
be obtained before the Chosen alternative output: a different behavior would be
erroneous.
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20 F. Sartori and R. Melen

Figure 6 also shows a sketch of the rule-based system automatically cre-
ated by the KA-User (step G) and the results of its execution (step H): the KBN
has generated 24 rules and two templates for the Chosen alternative output and
the Queue tolerance partial output . The rules’ LHSs are combinations of parent
nodes’ outcomes: for example, rule number 1 calculates the Queue tolerance
value according to the type of agent (i.e. the parent): if the parent value is cit-
izen, then his/her tolerance to queue is low. Rule number 24 determines the
chosen alternative funicular if the Queue tolerance and Queue status values are
high. The rules RHSs are combinations of the current node outcomes together
with the reliability of the rule.

The reliability value allows to prune the rules set to limit the combinatorial
explosion of rules: in this way, the WES modifies its knowledge base according
to the temporal evolution of its inputs and user preferences. The following code
shows an excerpt of KA-Developer elaboration, where none outcome has been
selected for the Queue status node and citizen outcome has been selected for the
Agent type node:

Node: Queue_tolerance
Configuration exploited:
...... Node: Queue_status Outcome: none
...... Node: Agent_type Outcome: citizen
Posterior probability distribution:
------Queue_tolerance Outcome: low Probability: 0.85
------Queue_tolerance Outcome: moderate Probability: 0.13
------Queue_tolerance Outcome: high Probability: 0.02

Supposing that the user selects a reasonable value of 0.5 or greater as relia-
bility threshold (step E), the rule chosen for the evaluation of the partial output
Queue tolerance by the current WES will be:

(defrule Queue_tolerancelow1
(Queue_status none)

(Agent_type citizen)
=>

(assert
(Result_Queue_tolerance
(Queue_tolerance low)

(Reliability 0.85)
)
)
)

The partial output value will be then exploited to extract the rule for output
Best alternative determination:

Node: Best_alternative
Configuration exploited:
...... Node: Queue_tolerance Outcome: low
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Wearable Expert Systems 21

Posterior probability distribution:
------Best_alternative Outcome: funicolar Probability: 0.7275
------Best_alternative Outcome: bus Probability: 0.2515
------Best_alternative Outcome: stairs Probability: 0.021000000000000005

It is evident how the funicular outcome is the most reliable among the three
possibilities in the current instant of time, given that its probability value is
0.7275. Thus the final rule to be included and executed in the WES will be:

(defrule Best_alternativefunicolar13
(Queue_tolerance low)

=>
(assert
(Result_Best_alternative
(Best_alternative funicolar)

(Reliability 0.7275)
)
)
)

6 Results and Discussion

In this paper we have presented wearable expert systems as an evolution of
traditional expert systems (in particular rule-based systems) able to deal with
scalable and time-dependent domains. The most interesting feature of WESs is
the possibility to design, implement and use them on wearable devices, making
them able to manage events dynamically according to the environment evo-
lution. In our approach, WESs continuously adapt their knowledge bases to
tackle such evolution, taking care of both new values for existing events and
new event types.

Evaluating the performance of wearable expert systems is not simple, given
that it strictly depends on the kinds of problem to be solved. Anyway, given
that in our approach WES development is based on KAFKA adoption, we can
evaluate the wearable expert systems development cycle from a methodologi-
cal point of view. To this aim, we will use metrics existing in the literature.

The most similar framework found in the literature was developed by Ruiz-
Mezcua et al. (2011), who designed and implemented a web server with the
tools for knowledge-base construction and browsing, and two distinct inter-
faces for domain experts and users. The main difference between KAFKA and
that approach is the target user addressed: while that work was devoted to sup-
port domain experts in developing their own, complete, expert systems, the
KAFKA scope is to support any kind of user in developing knowledge based
systems from scratch. For this reason, the main effort in KAFKA development
was the characterization of the HLKA model to guide the user in the identifica-
tion of knowledge kinds involved in his/her problem and (possibly) to extend
them in case of need.
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22 F. Sartori and R. Melen

In order to test the usability of KAFKA, the framework has been submitted
to different groups of students for the design and implementation of projects
for their examinations: 4 students applying for a Bachelor Degree in Informat-
ics (G1), 20 students from secondary schools applying for a stage at the Depart-
ment of Computer Systems and Communication of the University of Milano-
Bicocca (G2), 20 students attending the first year of first level degree in Mathe-
matics (G3), and 20 students attending the IT-Knowledge course of the Master
in Marketing Management at the University of Milano-Bicocca (G4).

Every group was divided into couples with a KA-User and a KA-Developer
and the same problem: G1 had to configure the components of a remote control
car to meet given performance levels, G2 and G3 had to find the best travel so-
lution to go from a given source to a given destination, according to inputs like
the distance between the places, the travel time and cost and the user needs,
G4 had to analyze a subset of the balance indexes of an enterprise to define its
ranking. Note that, although the objective of the experiment was the evalua-
tion of the KAFKA efficacy in the design of a general expert system, the specific
problem given to groups G2 and G3 is amenable to the implementation as a
WES: for example, data about the remote control car could be derived from car
sensors and travel solutions could depend on available services like weather
conditions forecasting. Each couple had two weeks to complete its task, pro-
ducing an executable Jess 7.0 file of rules.

Both couples in G1, seven couples in G2, eight in G3 and eight in G4 were
able to complete their tasks successfully. On the other hand, three couples in G2,
two in G3 and two in G4 were unable. Summarizing, 78% of couples involved in
the experiment were able to complete the task of building an executable expert
system: among them, only the couples from G1 had some knowledge on Jess
and its usage, while the rest of them used it for the first time. They didn’t need
to learn the Jess syntax, but they spent most of the time in acquiring knowledge
about the proposed problem domain. Of course, the obtained expert systems
were heterogeneous in terms of quality and number of solutions found.

The couples were also asked to evaluate the KAFKA usability, exploiting
the same indicators used by Ruiz-Mezcua et al. (2011), that are the perceived
power of the framework in developing expert systems, the ease of use of the tool
and the adaptation of the system to user’s needs (i.e. suitability dimension); the
results are shown in Figure 7.

As expected, the best overall evaluations were given by couples in groups
G1 and G4, since they were composed of people with higher technical com-
petencies than the other two. Anyway, it is important to highlight how also
members of G2 and G3 recognized the capability of KAFKA in designing and
implementing solutions to problems, independently by the application domain
(power and suitability dimensions received very good votes). Summarizing,
the KAFKA framework received an average evaluation of 8.9, 9.2 and 8.4 for
ease of use, power and suitability, respectively. The total average evaluation of
the framework usability was 8.8: these results are comparable with the previous
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Fig. 7: Answers provided by each group to the KAFKA evaluation question-
naire.
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24 F. Sartori and R. Melen

work by Ruiz-Mezcua et al. (2011), although in that case the users were selected
among domain experts, therefore had a much smaller competence gap to fill.

In order to project the evaluation of KAFKA to wearable expert systems de-
veloped through it, it is possible to observe that usability can be considered
as a measure of the scalability feature of WESs. The expert systems designed
and implemented by the students were continuously updated during the two
weeks of development, according to new discoveries made by them, causing
the addition of new events and variables. The implementation of the updating
algorithm allowed them to maintain the knowledge base of their systems when
needed, since the reliability calculus allowed to avoid the possible combinato-
rial explosion of rules generated by the KBN.

About the agility of the WES development cycle feature, a different kind
of evaluation is necessary. To this aim, the 4-dimensional analytical tool (4-DAT)
proposed by Qumer and Henderson-Sellers (2008) has been applied to KAKFA.
This method allows to evaluate and compare existing agile software develop-
ment tools thanks to four qualitative and quantitative indexes: method scope,
agility characterization, agile value characterization and software process characteriza-
tion. Agility characterization is determined by valuing five key features, namely
flexibility (FY), speed (SD), leanness (LS), learning (LG) and responsiveness (RS),
of the phases the application life cycle is made up of as well as practices de-
rived from them. Traditional models of experts systems development, like e.g.
(Agarwal and Tanniru, 1990), are not intrinsically agile, being based on mod-
els for software systems development like the waterfall (Royce, 1987) or spiral
(Boehm, 1988) approaches. With respect to other methodologies, KAFKA tries
to reduce the knowledge engineering effort distributing it between users and
experts, avoiding the knowledge engineer role. In this way, complex steps like
knowledge acquisition, representation and coding can be made simpler.

Table 1 shows the results derived from the students’ experiment above. The
table is configured as prescribed by the 4-DAT model, with entries for both
phases and practices characterization. Phases and practices have been derived
from the ESDL model by Agarwal and Tanniru (1990): in particular, functional,
procedural and experiential knowledge and user interface substitute conceptualiza-
tion, formalization, implementation and testing practices in the system development
phase of ESDL cycle of life, connectivity is the practice for transfer to production
phase, while KB maintenance and evaluation are the practices for the operation
phase.

The WES development cycle receives 0 characterization value on the dimen-
sions related to problem identification and evaluation, since no tools are currently
provided by KAFKA to tackle them. The evaluation of phases features is ob-
tained from the related practices values, according to equation 26:

Phasei =
∧

j∈[1...n]

Practiceji (26)

where i ∈ [FY, ..., RS] is the current feature to be valued and n is the number
of practices related to the current phase.
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Table 1: Agility characterization of WESs developed in KAFKA.
Agility features

FY SD LS LG RS Total

Phases
Problem identification 0 0 0 0 0 0
System development 1 0 0 1 0 2
Transfer to production 1 1 1 1 1 5
Operation 1 1 1 1 1 5
Total 3 2 2 3 12
Agility degree 3/4 2/4 2/4 3/4 2/4 12/20

Practices
Functional Knowledge 1 0 0 1 1 3
Procedural Knowledge 1 1 1 1 1 5
Experiential Knowledge 1 1 0 1 0 3
User Interface 1 1 1 1 0 4
Connectivity 1 1 1 1 1 5
KB Maintenance 1 1 1 1 1 5
Evaluation 0 0 0 0 0 0
Total 6 5 4 6 4
Agility degree 6/7 5/7 4/7 6/7 4/7 25/35

From the analysis of results, it emerges that the less agile practice is func-
tional knowledge representation. Given that it is the initial step in the knowl-
edge artifact definition, it is the most difficult one from the speed and leanness
perspectives. In fact, users and domain experts must define inputs, partial out-
puts, outputs and relationships among them.

KAFKA fully supports the two roles in procedural knowledge, experien-
tial knowledge, user interface, connectivity and KB maintenance steps. Only
experiential knowledge and user interfaces received a zero value in the respon-
siveness characteristic, since the suggested set of rules and the standard GUI
provided by the implemented WES are prototypes.

KB maintenance is automatically provided by the updating algorithm; more-
over, mechanisms for the connectivity with wearables are automatically inte-
grated into KAFKA-based wearable expert systems (Baretta et al.; Pinardi et al.,
2016).

Finally, the total estimated agility degree is 60%, that is significantly higher
than waterfall and spiral models (Qumer and Henderson-Sellers, 2008), although
less than typical agile software engineering methodologies.

7 Conclusion and Future Works

This paper has discussed the design of Wearable Expert Systems. The proposed
design methodology is KAFKA, a framework based on the Knowledge Artifact
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conceptual model, which is general enough to be adopted in different contexts
and programming paradigms.

From the conceptual point of view, KAFKA aims at making the develop-
ment of knowledge-based systems (in particular, rule-based systems) quicker
and simpler through the reduction of knowledge engineer responsibilities. In
this way, the knowledge engineering process is focused on the kinds of knowl-
edge involved in the decision making activity rather than on how to model it, rep-
resenting a radical change of perspective if compared with classical approaches
like CommonKADS and MIKE. In this sense, KAFKA philosophy is closer to
methodologies like MOKA (Stokes et al., 2001) and KNOMAD (Curran et al.,
2010), proposed in the knowledge-based engineering field as product-oriented
(Verhagen et al., 2012) rather than process-oriented tools for supporting users
in the configuration of objects.

The WESs which can be developed employing this methodology bear some
distinguishing features with respect to traditional expert systems. The WES
knowledge base may change dynamically, following the long-term evolution
of the monitored system and of its surrounding environment. Moreover, the
presence of a centralized knowledge maintenance system, in principle common
to a large number of WES instances, permits to exploit the massive amount of
information coming from this large set of wearable devices: for instance, in the
example of section 5, the Queue status may be monitored reliably by collect-
ing data from all the application users in the city, tens or maybe hundreds of
devices.

From these observations, it follows naturally that WESs are a kind of time
evolving expert systems (Sartori and Melen, 2015), in which both the measure-
ment of new values for input variables and the detection of new input events
can be used to modify, extend and maintain knowledge-bases, to represent
domains characterized by variability over time. Probabilistic event processing
(Wang et al., 2013), exploiting graphical models like Dynamic Bayesian Net-
works (Murphy, 2002), could be useful to this scope. The introduction of KBNs
in the HLKA model has been thought to build up a flexible, time-dependent
and automatic mechanism to deal with this challenge.

Possible future developments are certainly ample and varied. In terms of
implementation, the server is, without doubt, the component that needs more
attention: some possible modifications range from the addition of new JESS fea-
tures to the improvement of memory management and a more efficient man-
agement of concurrency. From the client side point of view, it should be in-
creased the autonomy level of KA-User and KA-Developer in supporting the
development of several kinds of applications as discussed in section 6.

Moreover, the framework must be quantitatively evaluated in concrete do-
mains of application along the lines discussed in Section 6.
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