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Abstract—During the last years, there is increasing interest
in analyzing social networks and modeling their dynamics at
different scales. This work focuses on predicting the future
form of communities, which represent the mesoscale structure
of networks, while the communities arise as a result of user
interaction. We employ several structural and temporal features
to represent communities, along with their past form, that are
used to formulate a supervised learning task to predict whether
a community will continue as currently is, shrink, grow or
completely disappear. To test our methodology, we created a real-
life social network dataset consisting of an excerpt of posts from
the Mathematics Stack Exchange Q&A site. In the experiments,
special care is taken in handling the class imbalance in the dataset
and in investigating how the past evolutions of a community affect
predictions.

I. INTRODUCTION

Social networks evolve over time as a result of the activity
of their users. New users join the network, old ones cease to
be active or depart, while edges representing user interaction
can be created, destroyed or exhibit a complex intermittent
behaviour, giving rise to a dynamic network. Predicting the fu-
ture form of a social network presents an interesting challenge
with numerous applications, such as in marketing to locate
appropriate groups of users on which to target advertisements,
criminology to identify growing cliques of delinquent individu-
als that require immediate attention and journalism to uncover
developing stories.

One of the first prediction problems to be investigated in the
context of social networks was edge prediction. Edge prediction
refers to predicting whether an interaction (edge) will occur
between two users of the network [1]–[3]. A related problem
is that of edge sign prediction, where the goal is to infer
whether an interaction between two users has a positive or
negative context [4]–[6]. Communities represent the mesoscale
structure of the social network and are implicitly formed as
users with the same interests closely interact. As the interests
of users change over time so do the communities, which may

reduce or increase in size, or, even completely disappear from
the network. Community evolution prediction concerns the
prediction of the future form of a community given its present
and past form and has been a hot research topic lately [7]–[10].

In this work we focus on four popular evolutionary phe-
nomena of communities; growth, shrinkage, continuation and
dissolution [7]. We present a framework for predicting these
types of evolution that covers all the necessary steps involved,
including the preprocesing of the data, the detection and track-
ing of the communities, the extraction of features to represent
the communities and finally the training of a predictive model
that discriminates the four evolutionary events. Particular focus
is placed on employing an extensive set of structural and
temporal features that capture various characteristics of the
communities in order to get accurate predictions. To test the
proposed framework, experiments are performed on a real-
life social network dataset obtained from the Mathematics
Stack Exchange Q&A site. Results confirm the efficacy of our
framework and the importance of using a mixture of structural
and temporal features.

The rest of paper is organized as follows. In Section II we
provide a review of related on work on methods for community
evolution prediction. In Section III we present our framework
for community evolution prediction placing special focus on
the extraction of appropriate features to represent communities.
Next, in Section IV we present experiments using a real-life
social network. Finally, in Section V concludes this work and
offers directions for future work.

II. RELATED WORK

Various approaches have been presented in the literature
to predict the evolution of communities. Brodka et al. [7]
tried different classifiers to predict six evolutionary events of
communities (defined as grow, shrink, continue, merge, split
and dissolve). Classifiers were trained using as features the size
of the communities and their evolutionary events over the last
three timeframes. An extended version of this work is presented
in [11], where a larger set of features and past timeframes are978-1-5386-0756-5/17/$31.00 c©2017 IEEE



used. Sequential and non-sequential classifiers were evaluated
in [8] to infer four types of community evolutionary phenom-
ena: continuation, shrinkage, growth and dissolution. Features
related to the structure, content and context of communities
over the past one, two or three timeframes were considered,
to test how past evolutions of communities affect predictions.
Ilhan and Oguducu [12] introduced a time series ARIMA
model to estimate how community features values will change
in future timeframes and predict six types of evolutionary
events (survive, shrink, continue, merge, split and dissolve)
using those feature estimates for training a classifier. Patil
et al. [13] addressed a similar problem to the above, that
of o predicting the stability of communities, i.e., whether a
community will disappear or thrive in the future. Takaffoli et
al. [14] considered five evolutionary events, namely survive,
merge, split, size and cohesion. These events are treated as
being non mutually exclusive and, thus, may occur together at
the same time for a particular community. Hence, they learn
separate models to predict each of them, using structural and
temporal information about the communities. The size and
cohesion evolutions are meaningful for a surviving community
only, therefore a two-stage technique is employed to predict
them. First, the survival of a community is decided and, if
it is found to survive, the prediction for these two evolutions
follows using the corresponding models.

Kairam et al. [9] distinguished between two types of growth
for a community, diffusion and non-diffusion growth, and
analyzed the processes which govern them. Diffusion growth
occurs when a community attracts new members through
ties to existing members, whereas in non-diffusion growth
individuals with no prior ties become members. They generated
models which exploit a communitys structure and past growth
behaviour to predict its future rate of growth and longevity of
growth. In [15], structural information extracted from the early
stages of a community were utilized to infer the lifespan of a
community using linear regression. Results indicated that there
is a correlation between the lifespan of a community and its
structural properties. Finally, in [10] a method was proposed
that examines the structural characteristics of a social network
to extract an appropriate subset of features for representing
communities. Using this feature subset that is tailored to the
individual network, the accuracy of predictions in community
evolution tasks is improved and, also, a speedup with regards
to run time is achieved.

III. PREDICTING COMMUNITY EVOLUTION

Communities in dynamic social networks evolve, since their
members and the interactions between the members change as
time passes. We consider four popular and mutually exclusive
evolutionary events and present a framework for predicting
them that covers all the necessary steps involved. In partic-
ular, we wish to build a predictive model that discriminates
whether a community in the future will grow or shrink in size,
continue to exist with almost no change of its current form,
or dissolve and, thus, completely disappear from the network.
Our framework consists of the following steps:

1) Segment the social network data into timeframes.
2) Detect the communities in each timeframe.
3) Track communities across time to identify their evo-

lution and corresponding evolutionary events.

4) Compute structural and temporal community features.
5) Train a classifier to predict community evolution.

Below we analyze in detail each of these steps.

A. Segmentation into Timeframes

Data acquired from social networks are timestamped and
come in the form of data streams. To handle the continuous
time dimension of the data stream, we discretize it into a pre-
defined number of time-ordered timeframes Ft, t = 1, . . . , T .
Data is assigned to timeframes according to its timestamp,
such that each timeframe contains the same number of ele-
ments (e.g., user posts from a social network). Consecutive
timeframes are allowed to overlap, with an overlap O ∈ [0, 1],
in order to have a smoother transition between them and,
thus, better monitor the evolution of communities, as suggested
in [16]. The amount of overlap designates the percentage of the
previous timeframe that is also part of the next timeframe, as
shown in the examples of Figure 1.

Fig. 1. Examples of overlap between two timeframes.

B. Community Detection

Having segmented a social network dataset into timeframes,
the next step is to independently detect the communities in
each timeframe. We model the social network as a sequence
of undirected graphs {G1, G2, . . . , GT }, where Gt = (Vt, Et)
denotes the graph of timeframe Ft with vertex set Vt, n(Ft) =
|Vt|, and edge set Et, m(Ft) = |Et|. Each user of the social
network in a particular timeframe is represented by a node in
the timeframe graph, and there is an edge between two nodes
if an interaction between the corresponding users occurs in this
timeframe (e.g., one responds to the other’s post).

A community corresponds to a densely connected subset of
users (i.e., a subgraph) of the timeframe graph that is loosely
connected to the rest of the graph. Any graph clustering algo-
rithm can be employed to uncover the communities in social
networks. One popular choice is the Louvain algorithm [17],
which optimizes the modularity measure and scales well to
large networks. We use the set Ct = {C1

t , C
2
t , ..., C

Kt
t } to de-

note the communities detected at timeframe Ft. Each commu-
nity Ck

t ∈ Ct is represented by a graph Gk
t = (V k

t , Ek
t ), which

is a subgraph of Gt with vertex set V k
t ⊂ Vt, n(Ck

t ) = |V k
t |,

and edge set Ek
t = {(u, v) ∈ Et : u, v ∈ V k

t }, m(Ck
t ) = |Ek

t |.

C. Community Tracking

A community in a timeframe may be matched to a com-
munity in a following (not necessarily consecutive) timeframe,
in the sense that the latter is the evolution of the first. The
instances of the same community at different timeframes form
what is called a dynamic community. Formally, a dynamic
community is defined as a sequence of matched communities
M = {Ck1

t1 , ..., C
kp

tp , ..., C
km
tm }, where 1 ≤ t1 < t2 < . . . <
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tm ≤ T , 1 ≤ kj ≤ Ktj j = 1, . . . ,m. For a community
C

kp

tp ∈M , its past instances, Ckj

tj , j < p, are referred to as the
ancestors of the community.

Given the communities in each timeframe, community
tracking algorithms that find matching communities based on
a similarity measure, such as GED [7], can be employed to
locate the dynamic communities arising in the dataset. These
algorithms also assign a label to each community of the dy-
namic community sequence that describes the type of evolution
which took place as the community evolved (e.g., continue,
grow, shrink, dissolve1). These labels serve as the ground-
truth for training a model to perform community evolution
prediction. Note that some social networks provide annotations
which allow to readily track communities, without needing the
intervention of tracking algorithms. Such a case is described in
our experiments with the Mathematics Stack Exchange social
network.

D. Community Feature Engineering

To attain an informative representation of communities that
captures a variety of their properties, we employ a comprehen-
sive set of structural and temporal features, aiming to predict
community evolution accurately. Structural features capture dif-
ferent aspects of the community graph, while temporal features
capture characteristics of the evolution of the community by
extracting information from its ancestors. On the following,
we analytically present those features.

1) Structural Features:

• Relative Size [8] is the normalized value of commu-
nity’s Ck

t size in timeframe Ft:

RS(Ck
t ) = n(Ck

t ) /n(Ft) (1)

• Relative Edges Number is the normalized value of
edges belonging to community Ck

t in timeframe Ft:

RE(Ck
t ) = m(Ck

t ) /m(Ft) (2)

• Density [8] is the ratio of the actual edges of com-
munity Ck

t to the maximum number of edges the
community could have:

D(Ck
t ) =

m(Ck
t )

n(Ck
t )(n(C

k
t )− 1)/2

(3)

• Cohesion [8] is the product between the density and
the inverse fraction of edges (out of all possible edges)
pointing outside of community Ck

t :

Ch(Ck
t ) = D(Ck

t )
n(Ck

t )(n(Ft)− n(Ck
t ))

mout(Ck
t )

, (4)

where mout(C
k
t ) = |{(u, v) ∈ Et : u ∈ V k

t , v /∈ V k
t }|.

• Ratio Association [18] is the average internal degree
of a community’s members:

RA(Ck
t ) = 2m(Ck

t )
/
n(Ck

t ) (5)

1A community dissolves when it is the last community of the dynamic
community sequence, hence it was not matched to a community of a subsequent
timeframe.

• Ratio Cut [18] is the average external degree of a
community’s members:

RC(Ck
t ) = mout(C

k
t )
/
n(Ck

t ) (6)

• Normalized Cut [18] measures the edge volume that
points outside of the community:

NC(Ck
t ) = mout(C

k
t )
/
(2m(Ck

t ) +mout(C
k
t )) (7)

• Average Path Length of community Ck
t is the average

path length on the community’s graph Gk
t , as defined

in graph theory.
• Diameter of community Ck

t is the diameter of the
community’s graph Gk

t .
• Clustering Coefficient [14] of community Ck

t shows
how often, on average, the neighbours of a node of the
community are also connected to each other, based on
the community graph Gk

t .
• Centrality measures capture how central (i.e., centre

of importance) each node (i.e., user) of a community
Ck

t is. We use three centrality measures as features,
namely closeness, betweenness and eigenvector cen-
trality [19], [20]. Closeness centrality shows how close
a node is to other nodes in the community graph Gk

t ,
in terms of the edges that must be traversed to reach
the other nodes. Betweenness centrality measures the
number of shortest paths a node lies on. Hence, it
shows the importance of the node in controlling the
communication between other nodes of the commu-
nity. Finally, eigenvector centrality reflects the idea that
a node is more central, if it is connected to central
nodes. As centrality measures are defined on a per
node basis, we take the average over all nodes to
calculate the centrality of the entire community.

2) Temporal Features: To present these features, we
will use as reference a dynamic community M =
{Ck1

t1 , . . . , C
kp

tp , . . . , C
km
tm }, as defined in Section III-C, and

assume that we want to compute the temporal features of
community C

kp

tp using its n most recent ancestors in time. We
shall split temporal features into three groups.

• Structural features and evolutionary events of an-
cestors: The structural features (described above) of
the n ancestor communities, as well as the evolutionary
events assigned to them through tracking, form our first
group of temporal features.

The temporal features belonging to the second group are
defined between pairs of communities and depict how a com-
munity has evolved compared to its previous instance in time.
We calculate these features between the following pairs of
communities from M when we want to represent community
C

kp

tp using n ancestors: (C
kp−n

tp−n
, C

kp−n+1

tp−n+1
), . . . , (C

kp−1

tp−1
, C

kp

tp ).
These features are:

• Jaccard Coefficient is the fraction of members that
are common in both instances of the community:

JC(Cki
ti , C

ki−1

ti−1
) =
|V ki

ti ∩ V
ki−1

ti−1
|

|V ki
ti ∪ V

ki−1

ti−1
|

(8)
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• Join Nodes Ratio [14] is the percentage of new mem-
bers joining the community compared to its previous
instance:

JNR(Cki
ti , C

ki−1

ti−1
) = |V ki

ti \ V
ki−1

ti−1
|
/
|V ki

ti | (9)

• Left Nodes Ratio [14] is the percentage of members
leaving the community compared to its previous in-
stance:

LNR(Cki
ti , C

ki−1

ti−1
) = |V ki−1

ti−1
\ V ki

ti |
/
|V ki−1

ti−1
| (10)

• Activeness [12] measures the new edges per node
that a community contains compared to its previous
instance:

Act(Cki
ti , C

ki−1

ti−1
) = |Eki

ti \ E
ki−1

ti−1
|
/
|V ki

ti | (11)

The temporal features belonging to the third group are
defined for individual communities instead of pairs. When
representing community C

kp

tp using n ancestors, we calculate
these features for Ckp

tp and its n ancestors. These features are:

• Lifespan [14] of community Ckw
tw is the ratio of the

ancestors the community has based on the correspond-
ing dynamic community, to the maximum number
of ancestors it could have. Obviously the maximum
number of ancestors equals tw.

• Aging [12] of community Ckw
tw is the average age of

the community members. The age of a member is in-
creased by 1 every time it is found to be also a member
of an ancestor community of Ckw

tw in the corresponding
dynamic community. Aging is normalized by dividing
with the maximum possible age of members, which
equals w.

E. Learning a Predictive Model for Community Evolution

Community evolution prediction is formulated as a clas-
sification problem, where the aim is to train a classifier
that distinguishes between four types of evolutionary events
(i.e., classes). These events are: continuation, shrinkage, growth
and dissolution. The instances for training the classifier are the
communities that have been extracted from the social network
timeframes, which are represented with vectors comprising of
the structural and temporal features described above, along
with their corresponding class label obtained through tracking.
Any classifier that can handle instances in vectorial form can
be applied to learn the predictive model. In our experiments
we use Support Vector Machines (SVMs) as the underlying
classifier.

IV. EXPERIMENTAL EVALUATION

To test the applicability of our framework in practice and
investigate the efficacy of the presented features in predicting
community evolution, we perform experiments over a dataset
acquired from the Mathematics Stack Exchange Q&A site2,
a real-life social network. Mathematics Stack Exchange is a
question and answer site for people studying math, where users
post questions, answer questions posted by other users and

2http://math.stackexchange.com/

comment on the users’ posts. All questions are tagged with
their subject areas (i.e., topics), while answers and comments
inherit the topics of the question they correspond to. Our dataset
contains 376030 timestamped posts under various topics, pub-
lished between 2009 and 2013.

To conduct our experiments we split the dataset into 10
timeframes containing an equal number of posts, set the overlap
of timeframes to O = 0.6 and set out to detect and track the
communities to obtain the instances that will be used to train
a support vector machine (SVM) classifier for predicting the
evolution of communities.

Each timeframe is modeled with an undirected graph where
every different user who posted a question, answer or comment
in this timeframe is a node of the graph and an edge is added
between two users if one posts an answer or comment to
respond to the other’s post in the timeframe. To detect the com-
munities in each timeframe, we take advantage of the topics
associated with posts in Mathematics Stack Exchange and do
not employ a community detection algorithm. Specifically, we
consider that users belong in the same community if they make
posts (questions, answers or comments) about the same topic.
Hence, each community is associated with a particular topic.
Note that communities that contain less than four members
are considered as artifact communities and are ignored in our
experiments.

Tracking the communities across time to obtain the dynamic
communities and their evolutionary events is also done by
utilizing the topics. For each detected community Ck

t in time-
frame Ft, we obtain the topic associated with the community
and look for a matching community with the same topic in
a subsequent timeframe Ft′ , t

′ > t. Timeframes are processed
sequentially, stopping at the first timeframe a match is found
(i.e. a community with the same topic). If the topic is not
found in any of the following timeframes (i.e., no matching
community is found), then we set the evolutionary event of
Ck

t as dissolution. Otherwise, a match is found to a community
Ck′

t′ , t
′ > t (i.e. Ck

t is the most recent ancestor of Ck′

t′ ) and the
evolutionary event is set as:

• If n(Ck
t )−n(Ck′

t′ ) > th, we set the evolutionary event
of community Ck

t as shrinkage.
• Else if n(Ck′

t′ )− n(Ck
t ) > th, we set the evolutionary

event of community Ck
t as growth.

• Else, we set the evolutionary event of community Ck
t

as continuation.

We call th > 0 the event threshold. This threshold
determines how much different the sizes of two matching
communities should be in order to decide that a significant
difference exists and thus label the evolution as growth or
shrinkage. Note that by defining different values for the event
threshold, we obtain a different ground-truth for the dataset.
Figure 2 illustrates the number of the different evolutionary
events in our dataset as we vary the threshold value. Notice
the imbalance that exists in the dataset in terms of the different
types of evolutionary events for all th values.

Having obtained the communities along with their labels,
as described above, we compute their structural and temporal
features (Section III-D) to form the dataset for training and
testing an SVM classifier. The SVM implementation available
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Fig. 2. Number of community evolutionary events for different values of event threshold th.

in Weka3 with RBF kernel is used for our experiments. To train
and test the classifier, we employ a variant of the popular k-fold
cross validation technique that is appropriate for timestamped
data, called time series cross validation. In this variant, folds
correspond to timeframes and each fold is once used as the test
set and performance is averaged over all folds. When the i-th
fold is used as the test set, only the first i−1 folds are used in
the training set, thus time series cross validation ensures that
the instances of the training set precede in time those of the
test set, respecting the natural ordering of the data.

In all experiments we apply the SMOTE oversampling
technique and the spreadsubsample undersampling technique
of Weka to counter the imbalance that exists in our dataset
(Figure 2). The experiment results obtained without the use of
oversampling and undersampling techniques were inferior to
the ones presented below, and thus were omitted due to space
limitation. Moreover, we measure classification performance
using the popular F1 score and report the per-class perfor-
mance, as well as the performance over all classes using the
macro-F1 score which is suitable for evaluating imbalanced
datasets.

We aim at investigating whether the addition of the tempo-
ral features on top of the structural features improves predic-
tions and studying how the number n of ancestors considered
when computing the temporal features affects predictions. To
examine this we perform experiments for n ∈ {0, 2, 4, 6} and
use i) only the structural features and the evolutionary events
of the ancestors as temporal features and ii) the complete set
of temporal features. When n = 0 no ancestors are considered,
hence only the structural features are used to represent the
communities. For each value of n we try th ∈ {2, 3, 4, 5, 6}
and optimize the internal parameters of the SVM classifier
using grid search and report the best performance. Results are
shown in Tables I and II and were obtained for th = 6 for all
tried values of n. It is evident that temporal features help in
improving performance. Also the use of 2 or 4 ancestors seems
to be beneficial while for 6 ancestors performance degrades,
indicating that going too far back time is not helpful. It is

3http://www.cs.waikato.ac.nz/ml/weka/

TABLE I. RESULTS IN TERMS OF F1 SCORE WHEN ONLY THE
STRUCTURAL FEATURES AND EVOLUTIONARY EVENTS OF ANCESTORS ARE

USED AS TEMPORAL FEATURES.

Ancestors Continue Shrink Grow Dissolve Overall
0 0.4783 0.5644 0.1526 0.3587 0.4694
2 0.4683 0.5642 0.4282 0.4333 0.5072
4 0.4726 0.6238 0.3874 0.4263 0.5105
6 0.3783 0.6805 0.3257 0.4415 0.4785

TABLE II. RESULTS IN TERMS OF F1 SCORE WHEN ALL TEMPORAL
FEATURES ARE INCLUDED.

Ancestors Continue Shrink Grow Dissolve Overall
0 0.4783 0.5644 0.1526 0.3587 0.4694
2 0.5444 0.6652 0.4202 0.5762 0.5720
4 0.5403 0.7123 0.3884 0.5095 0.5475
6 0.4812 0.7152 0.3292 0.4857 0.5581

noted that F1 scores are rather low in these experiments and
this occurs because low th values were used, resulting in low
quality ground truth, as shown below.

Having shown that the temporal features improve predic-
tions we perform a more detailed experiment to examine if
the outright performance scores can be improved. Specifically,
we experiment with a greater range of event threshold values,
including large ones, th ∈ {5, 10, 15, 20, 25, 30, 60}. When
assigning evolutionary events using higher values for event
threshold, we become more strict while deciding whether a
community has grown or shrunk, since the difference in size
between two matched communities must be larger in order to
assign these labels. Hence, more communities are labeled as
continuing as the event threshold increases. Although a higher
threshold increases imbalance (Figure 2), it may still lead to
better performance if the underlying ground-truth is of higher
quality. Results over all classes are reported in Table III, where
also the macro recall and macro precision are shown. It is
evident that performance has considerably increased in these
experiments and for all number of ancestors tried the best
results were obtained for th = 30. This shows that a ground-
truth of higher quality is constructed in this case allowing
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TABLE III. RESULTS WHEN ALL TEMPORAL FEATURES ARE INCLUDED
AND AN EXTENDED SET OF EVENT THRESHOLD VALUES IS USED.

Ancestors Macro F1 Macro Recall Macro Precision
0 0.6731 0.6545 0.6928
2 0.7662 0.7572 0.7754
4 0.7719 0.7608 0.7835
6 0.7194 0.7132 0.7259

for a more accurate prediction of community evolution. In
accordance with the previous experiment, we observe that
performance increases as we move from smaller to greater
values for the number of ancestors, until we use 6 ancestors,
at which point performance declines.

Overall, our experiments have shown that structural features
when combined with temporal features improve prediction
accuracy and that using some, but not too many, ancestors to
compute temporal features is also beneficial.

V. CONCLUSIONS

This work aimed at predicting the evolution of communities
that are formed in social networks as a result of user interaction,
using a mixture of structural and temporal features. Four
types of evolution that commonly arise in social networks
were examined, namely the continuation, growth, shrinkage
and dissolution of communities. We presented a framework
that incorporates all necessary steps for building a predictive
model to infer community evolution. These steps are: segmen-
tation into timeframes, detection and tracking of communities,
calculation of communities’ features and classifier training.
We performed experiments using real-life social network data
acquired from the Mathematics Stack Exchange Q&A site.
Experiments demonstrated that prediction accuracy improves
when temporal features are used on top of the structural ones.
Also, the extent of past evolutions of a community considered
(i.e., the number of ancestors) affects predictions and using
four ancestors gave the best results in our dataset. It seems
that the past of a community encapsulates information about
its future evolution and can help in improving predictions, if
we do not go too far back in time.

Future work will focus on the prediction of other types of
community evolution, such as merges and splits where there
is no one-to-one correspondence between communities as they
evolve. The incorporation of other types of features in order
to improve predictions, such as features derived from the text
posted by social network users (e.g., topics of discussion and
sentiment) and features related to the context of a particular
social network (e.g., reputation in the Mathematics Stack
Exchange site and hashtags in Twitter), could be also examined.
In addition, using other classifiers, apart from SVMs, for
predictions and performing tests with more datasets, as well as
comparing our approach to existing ones from the literature,
such as [14], is in our plans. Moreover, finding the optimal
timeframes for splitting the data stream of a social network
poses an interesting problem itself. Such optimal timeframes
would contribute in a more accurate detection of communities
and subsequently their tracking and prediction. Finally, using
first-order logic to capture the knowledge governing commu-
nity evolution and applying Markov Logic Networks [21] to

predict the evolution of communities, is another interesting
research direction.
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