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The processes by which the canonical protein synthesis

machinery is modified by environmental stresses to allow

healthy cells to respond to external conditions to maintain

homeostasis, are frequently hijacked by tumour cells to

enhance their survival. Two major stress response

pathways that play a major role in this regard are the

unfolded protein response (UPR) and the DNA damage

response (DDR). Recent data have shown that key proteins

which coordinate post-transcriptional control, and which

are regulated by signalling through the UPR and DDR, are

upregulated in cancers and that targeting these proteins/

pathways will provide new therapeutic avenues for cancer

treatments.
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Introduction
Regulation of protein synthesis makes a major contribu-

tion to post-transcriptional control, and during disease or

following cell stress, reprogramming of the translatome

is essential to orchestrate the appropriate cellular

response [1]. Protein synthesis is a three-stage process

of initiation (where eukaryotic initiation factors (eIFs)

bind to the RNA and recruit the ribosome), elongation

(when tRNA-dependent and eEF1A-dependent codon

decoding, and eEF2-dependent ribosome translocation

occurs to produce the polypeptide chain) and termina-

tion (where upon reaching a stop codon, the polypeptide

chain is released from the ribosome) [2]. Both initiation

and elongation phases are highly regulated by changes in

the phosphorylation status of eIFs or eEFs, and these

processes combine to determine the overall rate of

translation [2,3].
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Initiation is for the most part controlled by changes in the

phosphorylation status of 4EBPs and eIF2a. 4EBPs are

regulated by mammalian target of rapamycin (mTOR), a

serine/threonine protein kinase that is inhibited in

response to cellular stress such as DNA damage, low

energy levels and hypoxia [4]. Upon mTOR inhibition

4EBPs are dephosphorylated and sequester the cap-bind-

ing protein eIF4E, reducing protein synthesis rates [5].

However, following stimulation with growth factors and

amino acids, upstream signalling pathways including

PI3K/AKT and MAPK, activate mTOR to enhance phos-

phorylation of 4EBPs and the release of eIF4E, stimulat-

ing protein synthesis.

EIF2 is required for the formation of ternary complex

(TC) with GTP and tRNAimet, which is necessary to

recruit the initiator methionine to the start codon. When

phosphorylated on the alpha subunit, eIF2 binds to its

GEF eIF2B, inhibiting its activity and reducing the

amount of TC available. There are four mammalian

kinases that control the phosphorylation of eIF2: PERK,

PRK, GCN2 and HRI [6,7]. Each kinase is activated by

specific stress stimuli, however many stresses activate

more than one kinase. For example, both hyperosmotic

stress and double-stranded RNA, activate PKR [8,9].

Elongation is controlled by regulating tRNA levels, in

addition to the phosphorylation of eEF2 by eEF2K,

which prevents ribosome translocation along the mRNA

[3]. Interestingly, eEF2K is activated by Ca2+/CaM and

signalling downstream of AMPK, whereas it is inactivated

by signalling through mTORC1 [10], enabling mTOR to

regulate both initiation and elongation.

Many of the environmental stresses that modify the

canonical protein synthesis machinery in response to

external stress are also important for survival of a tumour

cell. Two major stress response pathways that are modu-

lated in tumours are the unfolded protein response (UPR)

and the DNA damage response (DDR) (summarised in

Figure 1). Here, we will discuss the recent findings

identifying how post-transcriptional control pathways

downstream of the UPR/DDR are modulated in cancer,

and discuss translational reprogramming within tumours

and its implication for future therapy.

Unfolded protein response
Endoplasmic reticulum (ER) stress in tumours can result

from aberrant increases in protein synthesis, accumula-

tion of unfolded proteins, disrupted calcium homeostasis,
www.sciencedirect.com
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Figure 1

Post-transcriptional regulation initiated by the unfolded protein response and DNA damage response. Schematic representation of post-

transcriptional regulation of the unfolded protein response (UPR) and DNA damage response (DDR). Unfolded proteins activate signalling from

three ER transmembrane receptors: PERK (purple), IRE-1 (orange), and ATF6 (grey); whereas DNA damage activates signalling from three DDR

kinases: DNA-PKcs, ATR, and ATM (red). The UPR and DDR both phosphorylate eIF2a and post-transcriptionally regulate the expression of ATF4

and ERCC5 respectively (indicated by broken arrows), restoring homeostasis while simultaneously inhibiting ternary complex (TC) formation and

translation initiation. Additionally, the DDR regulates mTOR signalling to inhibit translation initiation and elongation by regulating eIF4F complex

formation and ribosome translocation respectively.
nutrient deprivation, hypoxia and oxidative stress [11].

To manage this stress, tumour cells initiate the evolu-

tionary conserved stress response pathway, the UPR.

This response is coordinated by three ER trans-mem-

brane bound receptors, inositol-requiring trans-mem-

brane kinase endoribonuclease 1a (IRE1a), PERK,

and activating transcription factor 6 (ATF6) [12]. In

unstressed cells, these receptors are maintained in an

inactive state through association with the glucose-regu-

lated protein GRP78 (also known as BiP) within the ER

lumen. In the presence of unfolded/misfolded proteins,

GRP78 dissociates from the three sensor proteins

enabling them to activate downstream signalling path-

ways: IRE1a cleaves XBP-1 mRNA, which leads to the

production of XBP-1 protein and ultimately ER chaper-

ones; ATF6 translocates to the golgi where it is cleaved

into its functional form and works in concert with XBP-1;

PERK dimerises, autophosphorylates and phosphorylates

eIF2a (eIF2a-P), reducing protein synthesis to restrict
www.sciencedirect.com 
ER protein load [13]. In conjunction with the reduction in

protein synthesis that follows activation of PERK, accu-

mulation of eIF2a-P allows translation of selected

mRNAs including ATF4 and ATF5 [13]. These tran-

scription factors drive the expression of a number of

proteins including growth arrest and DNA damage-induc-

ible protein 34 (GADD34), which dephosphorylates

eIF2a to restore protein synthesis, and C/EBP homolo-

gous protein (CHOP), a transcription factor which has a

pro-apoptotic role following ER stress [13].

The major role of the UPR is to restore cell homeostasis

and interestingly, it has been suggested that triggering of

the UPR in early stages of tumourigenesis can hamper

tumour progression [14]. For example, in HRAS-mutated

melanocytes, UPR activation resulted in cell cycle arrest

and premature senescence, which was associated with

vacuolisation and expansion of the ER [15]. However,

chronic induction of this pathway is required for tumour
Current Opinion in Genetics & Development 2018, 48:30–35
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cell survival to allow these cells to overcome the stresses

associated with the tumour-microenvironment. Thus, it

has been shown in cell lines where the UPR is inactivated

by mutations in PERK and eIF2a, or alternatively by

expressing dominant-negative PERK, there is reduced

cell survival under conditions of extreme hypoxia [16]. In

nude mice, tumours derived from these cells are smaller

and exhibit higher levels of apoptosis in hypoxic areas

compared those with intact stress signalling [16]. In

agreement with these data, components of the UPR have

been found to be overexpressed in many solid tumours

including breast, gastric, liver, lung and prostate cancers

(reviewed in [11]), and high levels of GRP78, IRE1a,
PERK and ATP6 in prostate cancer patients are associ-

ated with poor prognosis [17�,18]. In addition to tumour

progression driven by internal changes in the cell, recent

data also show that induction of the UPR triggers the

release of soluble factors that transmit ER stress to

surrounding cells, a process termed transmissible ER

stress (TERS) [19�]. It was shown that in TERS primed

cells there was a reduction in PERK activity and eIF2a
phosphorylation, and as a consequence, decreased

ATF4 translation and CHOP expression, which pro-

tected the cells from CHOP-mediated apoptotic sig-

nalling [19�]. Cells exposed to TERS were also resistant

to the effects of cytotoxic agents, in agreement with

data which show that reduced translation of ATF4 is

cytoprotective [20].

It is also possible to exploit ER stress to treat cancers with

elevated protein production, for example in multiple

myeloma (MM), where malignant plasma cells produce

very high levels of immunoglobulin. This cancer is rou-

tinely treated with bortezomib, which induces ER stress

and tumour cell killing by inhibiting the proteasome. A

role for an active UPR and PERK/eIF2a axis in MM-cell

cytotoxicity is supported by data which showed that low

expression of ATF4 correlated with shorter progression-

free survival of patients [21], and that genetic knockdown

of IRE1a or XBP1 in human myeloma cell lines enhanced

resistance to bortezomib [22].

DNA damage response
Double-strand or single-strand DNA breaks (DSB and

SSB respectively), are induced by both endogenous (con-

sequence of normal metabolism, such as ROS) and exog-

enous (UV, IR, chemotherapeutics) sources. DNA dam-

age poses a significant risk to the genome as strand breaks

interfere with DNA transcription and replication. Subse-

quently, cells have developed intricate mechanisms to

maintain genomic stability, namely the DDR. The DDR

is a collection of interlinked signalling pathways that co-

ordinate DNA damage recognition, cell cycle arrest and

DNA repair pathways [23]. Furthermore, if the damage

cannot be adequately repaired, cell death pathways are

induced to prevent compromised DNA being passed on

to daughter cells.
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The DDR is primarily mediated by three functionally

similar PI3K serine/threonine protein kinases, ATM,

ATR and DNA-PKcs, which are recruited to DNA breaks

[23]. Importantly, all three kinases directly or indirectly

stabilise the tumour suppressor p53, inducing a cascade of

p53-dependent transcription pathways culminating in

cell cycle arrest or cell death [24]. Moreover, it is becom-

ing apparent that DDR genes are extensively regulated

by post-transcriptional mechanisms [25].

A hallmark of cancer is genomic instability, and intrigu-

ingly, cancerous cells often show compromised activity of

one or more DDR kinase, placing emphasis on the

remaining pathways [26]. This is important considering

many chemotherapeutic agents induce DNA damage or

target the DDR and repair pathways, in an attempt to

selectively kill cancerous cells [26].

UV-radiation and platinum-based chemotherapeutics,

such as cisplatin, induce bulky adduct DNA damage

and distort the DNA helix. Energy consuming protein

synthesis is down-regulated via the phosphorylation of

eIF2a [27], however, the expression of proteins involved

in DNA repair pathways are enhanced via post-transcrip-

tional regulatory mechanisms, including the presence of

upstream open reading frames (uORFs) [28]. One such

example is ERCC5, an indispensable endonuclease func-

tioning within the nucleotide excision repair (NER)

pathway [29]. A common polymorphic variant has been

identified within the 50UTR of ERCC5, generating an

additional uORF, which enhances its translation follow-

ing UV-and cisplatin-induced DNA damage [30��].
Importantly, this polymorphism was shown to confer

resistance to platinum-based chemotherapeutics in pae-

diatric patients with brain tumours (ependymoma) [30��],
indicating the presence of this polymorphism could be

used as a prognostic marker to determine the suitability of

chemotherapeutics for an individual patient.

Post-transcriptional control of the DDR is also regulated

by RNA binding proteins (RBPs). In response to IR-

induced and UV-induced DNA damage, the RBP HuR

promotes the selective translation of target mRNAs dur-

ing global protein synthesis inhibition, including MDM2,

p53, p21 and Bax, regulating cell cycle arrest and cell

death pathways [31,32]. Moreover, many chemotherapeu-

tics induce DNA damage through similar mechanisms to

IR and UV, suggesting that dual targeting RBPs may aid

chemotherapeutic efficacy.

Translational reprogramming within tumours
As discussed above, in the tumour environment cells are

exposed to a range of external stresses, with limited blood

supply contributing to hypoxia and nutrient deprivation,

down-regulating protein synthesis [33]. Subsequently,

adenocarcinoma tumour cells have been shown to adapt

to stress by reprogramming translation and enhancing
www.sciencedirect.com
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ATF4 translation via activation of GCN2 and phosphor-

ylation of eIF2a, in a mechanism essential for survival

[34]. Moreover, translational reprogramming enhancing

ATF4 expression in response to tumour stress also drives

invasion and metastasis in melanoma, and more importantly

is implicated in therapeutic resistance [35��]. These studies

show how tumours can hijack a conserved stress response to

promote cell survival, and implicate ATF4 as a mediator of

tumour survival. Interestingly, relieving eIF2B inhibition

with ISRIB (integrated stress response inhibitor) blocks

tumour cell invasion [35��], highlighting how therapeutic

targeting upstream of ATF4 may be beneficial.

mTOR is found within two alternative complexes,

mTORC1 and mTORC2, distinguished by the presence

of Raptor or Rictor respectively. As discussed above,

mTORC1 regulates translation initiation and elongation

through the phosphorylation of 4EBPs and p-70 S6K [4],

as well as regulating the translation of specific subsets of

mRNAs [36]. mTOR signalling is deregulated in tumours

and promotes tumour growth [37], making mTOR an

attractive chemotherapeutic target. The inhibition of

mTOR in response to DNA damage and chemotherapeu-

tic agents has been well studied [38–40], and this mecha-

nism is likely to be dependent on p53 stabilisation [41].

Interestingly, mTORC1 and mTORC2 are both required

for tumour cell survival in response to IR, by promoting

the translation of protective mRNAs [42]. However,

combined therapy of IR with dual mTORC1/2 inhibition

overcomes resistance to DNA damage and promotes

cancer cell death [42]. Additionally, mTOR inhibitors

are effective when used singly to treat tumours. For

example, upon depletion of the tumour suppressor, ade-

nomatous polyposis coli (APC), the growth of the tumour

is dependent on mTORC1 activity. Importantly, inhibition

of mTORC1 with rapamycin selectively targets cancerous

cells, reducing proliferation and tumour growth [43�]. Fur-

thermore, proliferation of APC deficient tumour cells was

dependent on mTORC1 inactivation of eEF2K, highlight-

ing a mechanism where cancer cells drive tumorigenesis via

the up-regulation of translation elongation [43�].

Interestingly, mTORC1 has also been shown to regulate

the translation of ATF4 mRNA. Although ATF4 transla-

tion is regulated by a delayed re-initiation mechanism

dependent on the phosphorylation of eIF2a [44], mTOR

inhibition represses ATF4 translation by inhibiting cap-

dependent translation and increasing the concentration of

free TC that is no longer required for initiation, mimick-

ing a decrease in eIF2a phosphorylation [45]. Although

this mechanism may be transient, it indicates that target-

ing mTOR therapeutically could also relieve tumour

reprogramming through ATF4.

Conclusions and future perspectives
Cancer cells take advantage of evolutionary conserved

stress response pathways and post-transcriptional
www.sciencedirect.com 
regulatory mechanisms to promote tumourigenesis

and therapeutic resistance. Subsequently, these path-

ways have emerged as important therapeutic targets.

It has been proposed that targeting the UPR may be a

promising method to treat cancers, however as discussed

above, the effects of this stress response pathway on

tumour development and maintenance are more compli-

cated than originally anticipated, and dependent on both

tumour stage and grade [12]. Therefore, extreme caution

would be necessary when considering such targeting to

ensure that pro-survival and pro-apoptotic roles of this

pathway in individual tumour cells were fully explored

[20,46]. Moreover, the phosphorylation of eIF2a gener-

ally promotes cell survival in response to stress [47],

therefore, therapeutic targeting of eIF2a phosphorylation

in conjunction with standard chemotherapy offers a

unique opportunity to target tumours [35��]. However,

treatment of cancer cell lines with an inhibitor of eIF2a
phosphatases, subsequently enhancing eIF2a phosphor-

ylation, sensitised cells to the chemotherapeutic doxoru-

bicin [48], suggesting that these mechanisms, as with

those observed in the UPR, could be tumour, cell line

or therapeutic agent specific. Furthermore, the applica-

tion of mTOR inhibitors individually, or in combination

with alternative therapies, remains a crucial tool in the

treatment of cancer, but as with platinum-based chemo-

therapy [30��], their effectiveness may be tumour type

specific.

These studies underscore the importance of tumour and

patient genotyping to determine the most effective way

to target tumours that are utilising stress response path-

ways to proliferate and evade death, and should be

considered for the development of future therapy.
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