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Abstract 

Optimization problems can be defined and formulated with either discrete or continuous variables. This paper presents a continuous 

optimization method for the design of reinforced concrete shear walls, based on the concept of boundary element and with the 

reinforcement layout taken into consideration. Contrary to the discrete method, where algorithm must be provided with a set of 

previously prepared default designs, the continuous optimization algorithm generates and evaluates a wall design in each iteration. 

The objective function of the algorithm minimizes the cost of the wall, which depends on the reinforcement details (rebar diameter 

and layout) and the wall dimensions (the cost of concrete and formworking). This objective function consists of the boundary 

element dimensions and the reinforcement layout variables (cross-sectional area and spacing of rebars). Shear wall design 

requirements and restrictions are formulated as constraints in accordance with ACI318-11 provisions for special ductility. After 

obtaining optimal wall design for seismic loads, design details such as wall dimensions and reinforcement details are determined 

accordingly. The optimization is performed by the use of several metaheuristic algorithms, including PSO, FA, WOA, and CSA. The 

comparison of the results of continuous and discrete optimization methods show that the shear wall designs obtained by the 

continuous approach are less expensive and closer to the global optimum. 

Keyword: Continuous Optimization Method, Seismic Design, Metahuristic Algorithm, RC Shear Wall, Bar Layout.  

1. Introduction 

With the rapid development and growing complexity of engineering optimization problems, the use of metaheuristic 

algorithms has become the method of choice in this regard. Metaheuristic algorithms are a family of computational 

method that estimate an initial solution and then improve it iteratively based on a set of rules to approach the global 

optimum. However, the final result of the algorithm is not guaranteed to be the optimal solution. 

Many of the existing powerful algorithms are nature-inspired and population-based. One of the oldest of such 

algorithms is the Genetic Algorithm (GA) [1], which is inspired by biological mechanisms such as reproduction, 

mutation, and survival of the fittest. Other notable examples algorithms inspired by the collective and social behavior of 

animals include the Particle Swarm Optimization algorithm (PSO) [2], the Ant Colony Optimization algorithm (ACO) 

[3], and the Firefly Algorithm (FA) [4]. 

Researchers constantly develop new algorithms to accelerate convergence to the optimum and reduce the error of 

approximation for a specific set of problems. In other words, the purpose of any new algorithm is to improve solution 

accuracy, solving speed, or both. Notable among the algorithms introduced in recent years are the Harmony Search 

algorithm (HS) [5], Simulated Annealing algorithm (SA) [6], gradient evolution algorithm (GE) [7] and Heat Transfer 

Search algorithm (HTS) [8] developed in 2015, the Whale Optimization Algorithm (WOA) [9], Crow Search 

Algorithm (CSA) [10] and Water Evaporation Optimization algorithm (WEO) [11] developed in 2016, and the 

thermal exchange optimization [12], and Electro-Search algorithm [13]  developed in 2017. 

In this study, a continuous optimization method is formulated for the RC shear wall design problem. The continuous 

nature of the optimization method provides better flexibility than discrete method, allowing the algorithm to further 

approach the Best Solution. Since the results produced by the continuous method may not be real-world applicable, the 

method is also combined with discrete approach in order to achieve more practical results. The shear wall problem is 

solved by PSO, FA, WOA, CSA algorithms and the results are compared. 

This paper consists of six sections. In Section 2, optimization algorithms and their formulations are described. 

Section 3 explains the RC shear wall design problem, cost function, problem constraints, and the wall optimization 

method. Section 4 provides a numerical example of the shear wall problem, and Section 5 presents a parametric study 

performed on that wall. Finally, the results are presented in   Section 6. 
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2. Swarm intelligence techniques 

2.1. Particle Swarm Optimization 

The Particle Swarm Optimization algorithm (PSO) is a nature-inspired algorithm developed by Kennedy and 

Eberhard [2]. This algorithm takes inspiration from the collective behavior of swarms of birds and fish. In this 

algorithm, each member (particle) of the population searches the space for food, which represents high-quality 

solutions. 

Each particle has a velocity and a position, which is updated as follows: 

(1)  
t t t

i i i
x x v

1 1 
   

In the above equation, t

i
x and t

i
x

1 are the current and new positions of the particle, and t

i
v

1 is the particle velocity. 

The velocity of particle i is given by: 

 

(2)  
t 1 t t t

i i i i1 1 i 2 2 gc r p c rv vpvv ( - ) ( - )
   

where t

i
v  and t 1

i
v   are the old and new velocities of particle i, Pi is the best solution ever found by particle i, Pg is the 

best solution ever found by any particle in the population, c is the random weight factor ranging between [0, 2], r is a 

random number between [1, 0] and ω is the inertia weight, which ranges between [0, 1.2]. 

2.2. Firewall Algorithm 

Firewall Algorithm (FA) is a metaheuristic optimization algorithm inspired by how fireflies communicate with each 

other using the light emitted from their lower abdomen. FA was introduced by Yang (2008) based on the following 

assumptions [4]: 

 

1. All fireflies are attracted to each other irrespective of their sex. The attraction intensity (I) is given by:  

(3)  
2r

0I r   I(  e)   

Where I0 is the initial light intensity, γ is the constant light absorption coefficient, and r is the distance of fireflies 

from each other. 

The attractiveness β(r) of a firefly, which is proportional to its light intensity as perceived by other fireflies, is given 

by: 

(4)   
2

r

0
r   e


 


  

Where, β0 is the attractiveness at r = 0. 

 

2. Attractiveness of a firefly is proportional to its brightness, and the perceived brightness and attractiveness are 

inversely proportional to distance. The distance between fireflies i and j located at xi and xj is given by: 

(5)   
d

2

ij i j i ,k j ,k

k 1

r | x  x |  x  x


     

Where xi,k is the k-th spatial coordinate of firefly i, and d is the number of problem variables. 

3. The brightness of a firefly is determined by the objective function defined for the problem. The equation of the 

motion of the dimmer firefly i toward the brighter firefly j is: 

(6)   t t t t

i i j i
x x x  x

2

i , j
r1 t

0 i
 e  


 


     

In the above equation, α is the motion randomization parameter, and εi is a random vector with normal distribution in 

the interval [0, 1]. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 3 

2.3. Whale Optimization Algorithm 

Introduced in 2016 by Mirjalili and Lewis, the Whale Optimization Algorithm (WOA) takes inspiration from the 

bubble-net feeding behavior of humpback whales [9]. These whales create bubbles as they swim in a spiral path around 

and below their preys to direct them to a hunting zone before attacking them. The formula of this algorithm is: 

(7)  blX Xw p( t 1) D.e .cos( 2 l )    

where, D is the distance between whale W and prey P, t is the algorithm iteration counter, constant b is a constant 

that determines the shape of the logarithmic spiral, and I is a random number between -1 and +1. 

The spiral motion of the whale is updated according to the best-found solution by the following equation: 

(8)  
X

w
| C . X ( t ) ( t ) |

p

X ( t 1 ) X ( t ) A . D
w p

D    

   

 

In this equation, C = 2.r and A = 2a.r-a are the coefficient vectors that help the whale approach the hunting zone. The 

vector r is generated randomly with a uniform distribution between [0, 1]. The parameter a decreases from 2 to 0 over 

the course of iterations. Each whale swims around the prey according to the following equations: 

(9)  X
w Xp

bl

X ( t ) A.D P 0.5p r
( t 1 )

D.e .cos( 2 l ) P 0.5r

   


  
  



 

In these equations, Pr is the probability of using either a spiral motion or an encircling motion with shrinking radius 

to update the position. To enhance the results, whales’ search for the prey is randomized. For this purpose, a random 

position is defined as follows: 

(10)  
X

w
| C . X ( t ) ( t ) |

rand

X ( t 1 ) X ( t ) A . D
w ra d

D

n

   

   

 

In this equation, Xrand is a position vector randomly selected from among the existing population. 

2.4. Crow Search Algorithm 

Developed by Asgarzadeh in 2016, the Crow Search Algorithm (CSA) is another population-based algorithm from 

the family of swarm intelligence methods [10]. Research has shown that crows have a large brain compared to their 

body, and can be considered among the smartest birds. These birds have a strong visual memory and can easily detect 

strangers or remember far locations and where exactly they hid their food. 

CSA is inspired by behavior of crows when they search for a place to store food. In other words, it mimics how a 

crow finds a safe spot for storing food so that it can dig up and eat the food when needs it. 

Assume a murder of crows with a population size of N. Let the position of crow i in iteration t be xi
t
. Each crow 

remembers the position of its hidden food but constantly searches for the best position. This position in iteration t is 

denoted by mi
t
. The equation of motion of crow i when it does not know that it is being followed by crow j is: 

(11)   t t t t

i i j i
x x m  x

1 t

i i
r  fl



     

But a crow that gives a Pi
t
 probability that it is being followed by another crow changes its destination according to 

the following equation: 

(12)  

t

i

t

i

P

x

j

1

rif

update to random position


 

   
 

Where ri and rj are random numbers in [0, 1], and   fli
t
 denotes the flight length of crow i in iteration t. 
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3. RC shear wall problem 

Reinforced concrete is a non-homogeneous construction material consisting of concrete and steel bars acting as 

reinforcement. Hence, one aim of optimization of RC shear walls is to minimize the cost of both of these elements 

simultaneously. However, the resulting economic design must also meet the design requirements. These requirements 

can be divided into two groups, one consisting of basic wall design formulations and another concerning the rules and 

limitations specified in building codes. In the present research, RC shear walls are designed based on special boundary 

elements in accordance with the requirements of ACI318-11 [14]. 

3.1. objective function 

In general, the RC shear wall optimization problem is defined as follows: 

(13)  
Shear  Wall

i

min

    Cost  

subject  to

           g 0

 

In this study, the objective function is the cost of the shear wall. In other words, the aim to minimize the cost of RC 

shear wall without violating the design constraints. The cost of the project consists of the costs of rebars, concrete, and 

formworking. 

Thus, the objective function of the RC shear wall optimization problem can be formulated as follows: 

(14)  
 

   

  

Shear  Wall steel concrete formwork

steel s sf w v sv w h sh w

Cost Cost Cost Cost

Cost C A H N A H N A l

concrete c w w f f w w

formwork f f f w w w

Cost C t l 2b t t H

Cost C 4 b t t l H0.5 2( 2bf )

 

       





  

  









 

The unit price of steel is considered to be 0.9 $/kg. Assuming an equivalent reinforcing steel density of    γs = 7850 

kg/m
3
, the steel cost per unit volume will be Cs = 7065 $/m

3
. Also, the concrete cost per unit volume is Cc = 60 $/m

3
 

and the formworking cost per unit area is Cs = 18 $/m
2
. 

In the objective function, Hw is the total height of the wall; lw is the total length of the wall; tw is the thickness of the 

web of the wall; tf the thickness of the flange of the wall; Asf  is the total cross-sectional area of vertical rebars in the 

flange of the wall; Asv is the cross-sectional area of each pair of vertical rebars in the web of the wall, and Ash is the 

cross-sectional area of each pair of horizontal rebars in the web of the wall (Fig. 1). 

 
Fig. 1. Details of RC shear wall 

 

The parameters Nh and Nv are the numbers of horizontal and vertical rebars in the web of the wall, which are 

calculated by the following equations: 

(15)  
2

w

h

h

h
N

S

 
 
 
 

 

(16)  

2
2

w f

v

v

l b
N

S


 

 
 
 
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In the above equation, Sh and Sv denote the spacing between horizontal rebars and between vertical rebars, which, 

according to ACI318-11, are subject to following limitations: 

(17)   min 3 450
5

w

v w

l
S t , ,  

(18)   min 3 450
3

w

v w

l
S t , ,  

To improve the construction condition and the performance of the shear wall, the wall is better to be thicker than 200 

mm [15]. According to ACI318-11, the effective width of the flange of the wall under compression (boundary element) 

should be greater than 300 mm. Therefore: 

(19)   200wt   mm  

(20)   300ft   mm  

According to ACI318-11, reinforcements in the web of the shear wall are subject to following limitations [14]: 

 The allowable range of ρf, (the ratio of the cross-sectional area of longitudinal rebars in the boundary element to 

the cross-sectional area of concrete in the boundary element) is defined as follows: 

(21)  0 01 ρ 0 06
f

. .   

 Provided that the following condition is met, the ratio of horizontal and vertical shear reinforcement in the web of 

the shear wall (ρv and ρh) should not be less than 0.0025. 

(22)  0 083
n c cv cv w w

V .  f '  A  ,      A t l    

 Furthermore, shear reinforcement should be continuous and distributed across the shear plane. Thus, for the 

horizontal shear reinforcements: 

(23)  0 0025 0 01h. .   

- The ratio of vertical shear reinforcements is given by the following equation: 

(24)   0 0025 0 5 2 5 0 0025
w

v h

w

H
. . . .

l
    

 
 
 

 

Furthermore, if hw / lw ≥ 2.5, then the ratio of vertical reinforcements should be set equal to the minimum value, that 

is 0.0025. Therefore, these reinforcements are subject to following limitations: 

(25)  0 0025 0 01v. .   

3.2. Seismic design of the shear wall 

In this study, the seismic design of the RC shear wall is optimized with the help of constraints defined in 9 groups. 

The effects of constraints on the objective function are formulated as an additive penalty function, in the sense that 

algorithm sums the penalty function with the objective function and minimizes the result (F function): 

(26)  

  0

1

Shear  Wall penalty

penalty

i

min  F Cost f 

f V

n
V max , g

i



 

 

 

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The penalty function consists of two parameters. First, the penalty factor which is a positive constant   (ω = 5×10
5
), 

and second, the parameter V, which represents the extent to which a constraint is violated. 

When designing the boundary elements, each element can be considered as a short column where the axial force 

(Pu), which includes all gravity effects, and the bending moment (Mu) could be decomposed into a pure tensile force and 

a pure compressive force (Fig. 2). In doing so, the longitudinal reinforcements of the shear wall (boundary element) are 

designed based on the more critical effects of these forces [14, 16]. 

 

 

Fig. 2. Decomposition of the shear wall forces into pure tensile and compressive forces 

 

Tensile axial force (Eq. 27) and tensile strength (Eq. 28) are: 

(27)  u

w f

M
T

l b



  

(28)  Asf ytaT F   

Where φt is the tensile strength degradation coefficient, which is considered to be 0.9. Thus, the first constraint is 

defined as: 

(29)  1 1 0

a

T
g

T
    

When the element is under compression: 

(30)  u
u

w f

M
C P

l b
 


  

(31)    0 85
'

a c g sf sfc yC . f A A A F     

Where φc is the compressive strength degradation coefficient, which is considered to be 0.65, and 

Ag = tf × bf is the gross cross-sectional area of the boundary element. Thus, the second constraint is defined as follows: 

(32)  2 1 0

a

C
g

C
    

The nominal shear strength of the wall or the columns that contribute to the bearing of lateral forces should not 

exceed the following [14]: 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 7 

(33)  0 66
'

na c w wV .  f  t l  

Thus, the third constraint emerges as: 

(34)  3
1 0

n

na

V
g

V
    

Furthermore, the shear walls must have a special boundary element on any boundary where the maximum 

compressive stress at the extreme compression fiber is greater than 0.2f'c (Fig. 3) 

 

 
Fig. 3. Placement of special stirrup in the boundary element [14]. 

 

Therefore, the stress calculations for the extreme compression fiber are conducted based on the factored seismic-

load-induced forces. This stress is obtained by the use of a linear elastic modulus and gross cross-section specifications: 

(35)  σ
u u

g g

P M
 

A s
   

In this equation, Ag is the gross cross-sectional area and Sg is the gross section modulus area of the shear wall. Thus, 

the fourth constraint is defined in such a way that the shear wall requires the boundary element. Therefore: 

(36)  
4

0 2
1 0

'
c. f

g


    

In special RC shear walls, the nominal shear strength of the wall should be less than the following: 

(37)   '
max cv c c h yvV A     f    F   

Where Acv = lw × tw is the gross cross-sectional area of the shear wall and ρh is the ratio of transverse reinforcements 

to the gross cross-sectional area of the shear wall. Therefore, the fifth constraint is defined as follows: 

(38)  5 1 0
n

max

V
g

V
    

The horizontal length of the boundary element (bf) at the extreme compression fiber must be greater than the 

following [14]: 

(39)   b max 0 1
2min

f w ,   c . lc    

Where c is the height of the compressive area of the concrete, which is approximated by the following equation 

(vertical reinforcements are ignored) [16]: 
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(40)  
sf y u

c f

A F P
c

f ' t

 



 

Thus, the sixth constraint is defined as follows: 

(41)  6

b
1 0minf

f

g
b

    

Furthermore, since the boundary elements are symmetric, tf must be at least as thick as the web of the wall [14]. 

Thus, the seventh constraint is: 

(42)  7 1 0
w

f

t
g

t
    

To achieve proper seismic performance, the boundary element should constitute a confined area and thus requires 

special stirrup reinforcement. The special transverse reinforcement of the boundary element (Ashf) is defined such that 

the total cross-sectional area of rectangular stirrups on each side is not less than the following: 

(43)  

  

0 09

0 3 1

f

'

c

c

yv

sh
'

c

c

yv

f
. sb                   

F

A max

f
. sb g c

F
A A













 

In this equation, bc is the size of the core of the boundary element at each side, which equals the center-to-center 

distance of confining rebars, the parameter Ac is the cross-sectional area of the core of the boundary element, and the 

parameter Ag = bf × tf is the total cross-sectional area of the element. The parameter s is the allowable spacing between 

stirrups, which is defined as follows: 

(44)  0

350
min 6Φ 100

4 3

min x
f

h h
S  ,     , S


  

 
 
 

 

In the above equation, hmin is the smallest dimension of the boundary element, Φf is the diameter of the longitudinal 

rebars and hx is the greatest spacing between the stirrup hooks (xi). The parameter S0 is limited to a minimum 100mm 

and a maximum of 150 mm (100 ≤ S0 ≤ 150). 

 

The minimum spacing between the vertical rebars of the boundary element (stirrup-confined compressive members) 

must be greater than: 

1. 1.5db (where db is the largest diameter of the vertical rebar). 

2. 40 millimeter. 

With the rebar diameter set to 32 mm and the net space considered, the minimum spacing is assumed to be 80 mm. 

On the other hand, the maximum spacing is limited to 200 mm (80 ≤ Sf ≤ 200). Therefore, to ensure the fulfillment of 

this condition, the eighth constraint is defined as follows: 

(45)  8 1 0

a

f

f

S
g

S
    

The algorithm calculates the area needed for the vertical reinforcements and provides an engineering design (Nf φ Df 

@ Sf) based on the assumption of rebar diameter (Df). Therefore, the number of rebars is addressed in the ninth 

constraint: 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 9 

(46)  9 2
1 0

4f f

sc

f

g
A

(( N ( N  D /x y) ) ) 

  


 

In this equation, Asc is the required area for vertical reinforcements and the parameters (Nf)x and (Nf)y are the 

algorithm outputs for the number of vertical rebars in the boundary element along x and y axes. After checking the 

possibility of placing this number of rebars in the boundary element with given dimensions, the algorithm provides an 

engineering design. 

 

3.3. Optimization method 

In general, optimization problems can be formulated in two ways: discrete and continuous. RC shear wall 

optimization problem can also be formulated in both ways, but so far researchers have preferred the discrete approach to 

this problem [17-19]. 

In the discrete design optimization, the user must introduce thousands of hypothetical designs to the algorithm. The 

algorithm then evaluates these designs one by one in search for the best solution, i.e. the design that yields the lowest 

costs without violating the constraints. 

This approach has two major flaws. Firstly, preparing thousands of designs for a shear wall is a difficult and time-

consuming task. Secondly, the designs to be introduced to the algorithm should be quite diverse and cover a wide range 

of specifications so that the algorithm can access at least one suitable design for any given force. Otherwise, each 

database will be applicable to only one specific load and will not be generalizable. 

In this study, shear wall design optimization is performed by the continuous approach. Continuous optimization 

means that the algorithm is able to select any logical value for design parameters (length, cross-sectional area of 

reinforcement, etc.). Although the continuous nature of the method improves the algorithm’s ability to find a solution 

closer to the optimum (a better near-optimal solution), reaching a reasonable design requires very careful selection of 

design variables and constraints. This is because concrete structures, unlike steel structures, have a nonhomogeneous 

nature that makes their design more complex and difficult. 

In other words, an RC shear wall can be designed with any dimension, and so there could be numerous variations in 

the number and diameter of rebars and even reinforcement layout in different parts of the section. In addition, 

continuous nature of the optimization method means that all these factors and requirements should be incorporated into 

the algorithm (contrary to the discrete optimization, where the designs must be prepared in advance by the user). 

Supposing that the shear wall problem consists of only two variables, namely the cross-sectional area of 

reinforcements (As) and the wall thickness (tw), the optimization can be implemented in four modes (Fig. 4): 

1. Continuous optimization (inapplicable to real-world construction): The wall dimensions and the cross-sectional 

area of reinforcements can take any value (Plan-A) 

2. Continuous optimization - Discrete reinforcement cross-sectional area: The wall dimensions can take any value, 

but the diameter of the rebars is given based on the required cross-sectional area. 

3. Continuous optimization - Discrete wall dimensions and reinforcement cross-sectional area: The wall dimensions 

are given as real-world applicable discrete values and the diameter of the rebars is given based on the required cross-

sectional area. In this study, dimensions of the shear walls are given in multiples of 5 mm (Plan-B) and 50 mm (Plan-C). 

4. Discrete optimization: In this approach, wall designs are prepared in advance (Plan-D) [19]. 
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Fig. 4. Representation of continuous and discrete two-dimensional shear wall design problem 

4.  Numerical Example 

Consider an RC shear wall with a height of 42 m and a total length of 5.5 m (center to center distance of the 

boundary elements). The structure has 12 stories and each story is 3.5 meters high. This shear wall and the forces acting 

on each story are illustrated in Fig. 5 [19]. 

In this example, the yield stress of steel is 400 N/mm
2
, the maximum 28-day compressive strength of concrete is 25 

N/mm
2
, and the diameter of the rebars is 32 mm. 

 
Fig. 5. 12-story wall 
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4.1. Results of the shear wall design optimization 

The shear wall design problem was optimized by four algorithms: PSO, FA, WOA, and CSA, each with 500 

iterations. Figure (6) illustrates the wall cost calculated over different iterations of each algorithm. 

 

Fig. 6. Comparison of RC shear wall design optimization outputs in Plan-B 

 

Figure (7) shows the mean degree of constraint violation by each algorithm in each iteration. As can be seen, this 

value has decreased over iterations, ultimately converging to zero. 

 
Fig. 7. Diagram of constraint violation by algorithms  

 

The results of wall optimization according to Plans A and B are presented in Tables (1). To ensure the accuracy of 

the results, the outputs were obtained from 300 independent runs of each algorithm. The comparisons are made based 

on minimum, mean and maximum values of these results. 
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Table. 1. The results of wall optimization according to Plans A and B 

 

 Plan-A  Plan-B 

Algorithm PSO FA WOA CSA  PSO FA WOA CSA 

tw 200 200 200 200  200 200 200 200 

tf 708 659 674 659  725 660 660 660 

bf 1162 1163 1198 1163  1160 1165 1195 1165 

f
  0.03760 0.04199 0.04009 0.04195  0.04065 0.04184 0.04076 0.04181 

t
  0.00400 0.00336 0.00362 0.00335  0.00339 0.00335 0.00346 0.00335 

C
o

st
 

minimum 39525.7 39525.4 39885.8 39525.3  39573.3 39543.9 39715.8 39543.9 

average 39706.9 1324741 42515.3 39527.9  40909.1 1079915 41590.6 39547.3 

maximum 40003.1 3260186 49886.6 39920.4  41828.7 2696706 58109.4 39931.8 

 

The figure (8) is plotted for Plan-B to illustrate the shear wall design performance of the algorithms in this mode of 

optimization. This circle diagram is graded from 1 to 300, which correspond to the number of runs of each algorithm. In 

this diagram, the optimal design costs in different runs relative to the Best Solution are connected together. Naturally, 

these relative values are less than or equal to one (they are equal to one when the algorithm solution equals the Best 

Solution). Therefore, any algorithm that covers a greater portion of the circle has approached the Best Solution more 

frequently and is, therefore, more desirable. Thus, it can be concluded that the best algorithms in the order of 

performance in this mode of optim ization are CSA, WOA, PSO, and FA, respectively. 

 
Fig. 8. Comparison of design optimization performance of algorithms  
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In the following, the shear wall designs obtained at a random iteration of CSA in Plan-B are examined as an 

example. The specifications of these walls and the cost details are presented in fig. 9. 

 

 
Fig. 9. Shear walls generated at a random iteration of CSA in Plan-B 

 

In Table 2, the results obtained by the continuous method (Plan-C) are compared with the results the discrete 

approach. For all algorithms the number of iteration are considered as 500, except in ref. [19], where it was 200 

iterations.  

 

Table. 2. Results obtained by the continuous method (Plan-C) 

 

Plan-D Plan-C  

CSS [19] CSA WOA FA PSO Algorithm 

300 200 200 200 200 tw 

800 700 700 700 700 tf 

1200 1200 1200 1200 1200 bf 

NA 0.03828 0.03825 0.03825 0.03828   
f

  

NA 0.00332 0.00332 0.00332 0.00332   
t

  

41831 40043.72 40043.83 40043.72 40043.72 minimum 

C
o

st
 

N/A 40046.96 41352.5 583763.4 42249.77 average 

N/A 40286.59 51027.99 4528924 631852.7 maximum 

 

As shown in Table (2), the wall cost in the three proposed plans (Plans A, B, and C) is about 5 % lower than the cost 

in the discrete method. One of the main causes of this reduced cost is the dimension of the boundary element, as the 

continuous method can choose any dimension that fits the problem without being confined to preset designs as it is in 

the discrete method. In the discrete method, the choice of best design based on cost and force criteria should be made 

from 7568 shear wall designs that are prepared in advance with full details and introduced to the algorithm before the 

optimization process. But in the continuous approach, the algorithm evaluates infinite states of reinforcement and 

dimensions to eventually obtain the most economical design. It can, therefore, be concluded that the continuous method 

is free of database restrictions, and can test the boundary elements with a wide variety of dimensions and reinforcement 

layouts; a task that is much more difficult in the discrete method. Because of these differences, the designs generated by 

the proposed method are more economical than those given by the discrete method. Further details about the presented 

plans are illustrated in Fig. (10). 
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Fig. 10. Details of the shear wall design: a) Plan-D [19], b) the present work (Plan-C), c) the present work (Plan-B) 

 

Based on the results of Tables (2), the minimum wall costs obtained by the use of algorithms with the proposed 

methods are plotted in Fig. (11). 

 
Fig. 11. Comparison of the optimal cost of the shear wall  

 

These results show that in most algorithms, the lowest cost has been obtained by the continuous method (Plan-A). 

This is because in this method, all possible solutions are selectable and the algorithm can further approach the Best 

Solution. However, the results of this mode of optimization are not applicable to real world. In contrast, the continuous 

method formulated with discrete dimensional variables (Plan-C) managed to satisfy the applicability requirement with a 

slight rise in cost (in this example, its solution is about $500 more expensive than the solution of Plan-A). In Plan-B, the 

construction accuracy has increased to 5 mm and the cost is very close to the cost of Plan-A. 

According to the requirements discussed in Section (2.3), the stirrups in the boundary element are placed such that 

they confine every other longitudinal rebar, and their spacing does not exceed 350mm. The details regarding this part of 

the results are presented in Fig. (12). 
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Fig. 12. Stirrup placement in the boundary element 

4.2. Evaluation of the optimum result 

In this section, the cost contour of the wall designed with Plan-C is plotted to identify the optimum point. This 

contour covers the range of (450, 1400) for both length and width of the boundary element. The wall cost for the values 

in this range is calculated with other variables kept constant. In this contour, the coordinate axes represent the 

dimensions of the boundary element (in millimeters) and dashed lines represent the cost (Fig. 13). Naturally, the smaller 

is the size of the boundary element, the lower is the wall cost. The bold lines represent the constraints, and the 

intersection of these zones delimits the solution space (colored green in the figure). 

 
Fig. 13. wall cost contour versus dimensions 

 

The optimal point found by the algorithm and its data are displayed in the figure. It can be seen that the algorithm 

has found the best possible value for the dimension of the boundary element, as this solution matches the point where 

the cost is minimized without violating the constraints of the design. 

5. Conclusion 

The optimization of RC shear wall design should account for seismic conditions as well as economic criteria. In this 

study, RC shear wall design optimization was performed in accordance with seismic criteria suggested in ACI318-11. 

The main advantage of the proposed method is the continuous nature of the design algorithm, which, eliminates the 

need for a database of previously prepared designs (which itself requires extensive time and effort. Furthermore, the 

solutions given by the discrete approach are not necessarily optimal, because they are dictated by the prepared design 

database. The continuous method lacks this flaw, but is more difficult to code, since the algorithm must incorporate all 

primary elements of wall design (reinforcement layout, rebar spacing, etc.) into the optimization process. 

A comparison between the discrete method and the proposed continuous method showed that, even after considering 

the real-world applicability conditions in the proposed method (Plan-C), its outputs were more economical (about 5%) 

than the results of the discrete method. 
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