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A B S T R A C T

Large-scale integration of electric vehicles (EV) and wind power could have significantly negative impacts on
power systems security. So, it is becoming an increasingly important issue to develop an effective network
security-aware charging strategy of EVs. This paper proposes a multi-objective formulation for the optimal
charging schedule of EVs while considering N− 1 security constraints. An EV aggregator representing a cluster
of controllable EVs is modeled for determining the optimal charging schedule based on a trilevel hierarchy. On
the top level, the grid control center determines the EV charging strategy from the proposed formulation, where
bus voltage fluctuations, network power losses, and EV charging adjustments are considered as multi-objective
functions. To reduce the computational burden, Lagrangian Relaxation (LR) is introduced to handle time coupled
constraints and Benders Decomposition is introduced to handle contingencies. Case studies have been conducted
on the New England 39-bus system, and the results verify the necessity of considering N− 1 security constraints
and the effectiveness of the proposed formulation and solution approach.

1. Introduction

Electric vehicles (EVs) have been receiving considerable attentions
worldwide as they are clean and green. However, the large-scale in-
tegration of EVs, without coordination, may bring negative impacts on
power systems operation, such as lower voltage quality, larger power
losses, and more harmonics [1]. Therefore, effective strategies should
be developed to schedule the charging of EVs to mitigate the negative
impacts and even benefit the grid [2].

In the literatures, studies about EV charging schedule are con-
centrated on distribution network. Up to now, only a few literatures
discussed the charging issues of EVs from the transmission network
viewpoint. Ref. [3] presented a bi-level model for coordinating the
charging/discharging schedules of EVs. The upper-level model mini-
mizes the system load variance to implement peak load shifting by
dispatching each aggregator, and the lower one traces the dispatching
scheme determined by the upper-level decision-maker by figuring out
an appropriate charging/discharging schedules throughout a specific
day. Ref. [4] proposed a multi-objective non-linear mixed integer op-
timization model for EV charging scheduling considering the un-
certainties of photovoltaic and wind power in regional power grids. The
fuzzy theory was used to change the multi-objective optimization
model into a single-objective non-linear optimization problem.

EV charging schedule problems are mostly formulated as

optimization issues aiming at improving voltage profile [5–7], flat-
tening load profile [6–10], reducing power losses [7–11], offering an-
cillary services [12], minimizing the charging cost [13–15], or in-
creasing user satisfaction level [16,17]. Ref. [5] presented a
decentralized optimization methodology to coordinate EV charging to
facilitate the voltage control on a residential distribution feeder. Ref.
[10] presented a methodology to optimize power system demand due to
EV charging load, and it was demonstrated that EV charging load has
significant potential to flatten the national demand profile in the U.K.
Ref. [11] proposed an optimization model considering EV charging
demand and voltage constraints to minimize the power losses of dis-
tribution systems. Ref. [12] presented a stochastic method for optimal
coordination of charging and frequency regulation for an EV aggregator
using the Least Square Monte-Carlo technique while modeling elec-
tricity price uncertainty. Ref. [15] proposed an intelligent method to
control EV charging loads in response to time-of-use price in a regulated
market. Ref. [16] proposed a new metric to represent the EV user sa-
tisfaction fairness to achieve a tradeoff between the user satisfaction
fairness and the total charging cost of electricity.

The existing EV charging scheduling methods did not take the N− 1
security constraints into account. However, the secure operation of the
system under N− 1 contingency is an essential requirement [18]. This
paper proposes a multi-objective optimization model for EV charging
schedule considering N− 1 security constraints. The main
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contributions of this paper include: (1) the day-ahead optimal EVs
charging model, aiming at improving voltage profile, reducing network
power loss, and improving user satisfaction, from the transmission
network viewpoint is proposed; (2) the N− 1 contingencies are taken
into consideration to guarantees the secure operation of the system
under N− 1 contingencies, which is important for transmission sys-
tems. For better implementation, we introduce Lagrangian Relaxation
(LR) [19] and Benders Decomposition (BD) methods to solve the pro-
posed formulation. The former is to handle the time coupled constraint
and the latter is to handle contingencies in the optimal EV charging
scheduling model.

The rest of the paper is organized as follows. Section 2 presents the
problem formulation. Section 3 proposes the solution methodology
based on LR and BD. The proposed model and solution approach is
tested with the IEEE 39-bus systems in Section 4. Conclusions and fu-
ture work are discussed finally.

2. Problem formulation

2.1. Conceptual framework

Since the capacity of a single EV is too small to have a measurable
influence on a transmission grid, an equivalent model (EV aggregator)
that represents a cluster of controllable EVs is introduced here to de-
scribe their aggregated effects. Using these EV aggregators, a con-
ceptual framework for optimal EV charging schedule based on a trilevel
hierarchy is developed and shown in Fig. 1.

At the top level, the optimal dispatch is determined by the control
center, and the objective is to determine the charging power of in-
dividual EV aggregators based on the predicted wind, solar, and load

power. At the middle level, each EV aggregator receives the optimal
schedule from the control center and decomposes them into charging
strategies for individual EVs. At the bottom level, individual EV com-
municates with the aggregator, and follows the schedule it receives
[20].

This paper focuses on the top transmission level to obtain a day-
ahead schedule of EV aggregators for improving the system voltage
profile, reducing the power loss, and improving user satisfaction. The
main assumptions are as follows:

• The base case is formulated with unit commitment calculated in
advance according to daily load curve, daily wind power curve, and
predicted EV charging demand/ profile curves.

• The power outputs of conventional generators are adjusted ac-
cording to the total load change during the optimization.

Nomenclature

Indices and sets

b index for lines
i index for EV aggregators
j m, index for buses
k index for generators
l index for iterations
s index for system operation scenarios: 0 denotes normal

condition, and others represent contingencies
t index for hours

Constants

T scheduling duration (24 h in this paper)
n number of EV aggregators
S number of slave problems
N number of buses
L number of lines

tΔ time interval, 1 h in this paper
w w w, ,1 2 3 weighting factors of the three objectives
di t, charging duration of EV aggregator i at time t
Eev total energy demands of EVs during one day
Pb

max upper limit of power flow through line b
Pchi t,

min lower limit of charging power of EV aggregator i at time t
Pchi t,

max upper limit of charging power of EV aggregator i at time t
P kG

min lower limit of active power of generator k
P kG

max upper limit of active power of generator k
Q kG

min lower limit of reactive power of generator k
Q kG

max upper limit of reactive power of generator k
Uj

min lower limit of voltage at bus j
Uj

max upper limit of voltage at bus j

U j
d desired voltage at bus j (per unit)
UΔ j

max maximum permissible voltage deviation at bus j
Pchi t

pre
, predicted charging power of EV aggregator i at time t

Variables

f f f, ,1 2 3 three objective functions
P tloss, power loss at time t
Rb t, line resistance of line b at time t

+I jIb t
f

b t
e

, , current thought line b at time t
Ptl t, total load at time t
Pchi total charging power of EV aggregator i
Pchi t, optimal charging power of EV aggregator i at time t
Pj t

s
, active power injection at bus j at time t

P k t
s

G , active power of generator k at time t
Q k t

s
G , reactive power of generator k at time t

Qj t
s
, reactive power injection at bus j at time t

Uj t
s
, voltage at bus j at time t (per unit)

Gjm t
s

, the element in jth row and mth column of the conductance
matrix at time t

Bjm t
s

, The element in jth row and mth column of the susceptance
matrix at time t

θjm t
s

, voltage angle difference between buses j and m at time t
λ Lagrangian multiplier for the time coupled constraint

∗Pchi t, trial charging strategy of EV aggregator i at time t
Ib t

s
, Current through line b at time t

x state vector (bus voltage in this paper)
u control vector (charging power of EV aggregators)
u0 EV charging strategy vector in normal condition

∗u0 trial EV charging strategy vector
us EV charging strategy vector in contingency s
δ δ,b c vectors of slack variables for = ∗u us 0
Λ dual variable vector for + − = ∗u δ δ us c b 0

…Aggregator Aggregator 

Power System Control Center (EMS) 

Wind 
Farm 

Other Generators 

Loads Solar 
PV 

Fig. 1. Trilevel hierarchy for EV charging schedule.
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• The minimum and maximum charging power of the stations are
given according to Ref. [20].

• When the SOC of an EV is less than 0.4, it needs to be charged. When
the SOC of an EV is higher than 0.8, the charging is stopped.

2.2. Objective function

In practical power systems, the voltage profile is the most funda-
mental concern. Second, minimizing the power loss is to serve eco-
nomic purposes. Third, the satisfaction of the users is becoming an in-
creasingly important factor to be considered. The former two objectives
are beneficial to the power system, but they could lead to EVs charging
load shifting and influence the users’ satisfaction. However, EVs and
their aggregators could get economic benefits from the incentives such
as peak and valley prices and various services such as spinning reserve
markets. In this paper, we focus on the charging scheduling from power
system viewpoint, thus the above three factors are taken as the objec-
tive functions in the studies.

The objective of the optimal charging schedule model in (1) is to
obtain the daily charging curve for each EV aggregator to improve the
system voltage profile (f1), to reduce the power loss (f2), and to meet
user satisfaction (f3).

× + × + ×w f w f w fmin 1 1 2 2 3 3 (1)
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where w1, w2 and w3 are weighting factors of the three objective func-
tions. Pchi,t represents the optimal charging power of EV aggregator i at
time t, which is the main decision variable. In order to coordinate the
system voltage profile, the power loss, and the user satisfaction, a
combinatorial strategy with the portfolio optimization of the three
objectives is employed.

The multi-objective optimization problem is organized into simple
portfolio optimization which is shown as (1). The voltage profile ob-
jective in (2) is formulated as the sum of squared deviations of voltage
[21]. The power loss objective in (3) is formulated as the ratio of the
total power loss Ploss,t to the total load Ptl,t. The user satisfaction ob-
jective in (4) is formulated as the sum of squared deviations of EV
charging power. Note that the three weights can be adjusted according
to specific requirements of a given system.

2.3. Constraints

Constraints about EVs and power networks are considered. Note
that the constraints are for both base case and N− 1 contingencies. In
the constraints shown in (5)–(10), s represents index for system op-
eration scenarios: s=0 corresponds to the operational constraints at
normal conditions, and others represent the security constraints at
contingencies.

(1) EV charging demands

The total EV charging demand must be covered throughout the daily
charging process [6] as shown in (5).

∑ ∑ × = ∀
= =

Pch d E s,
t

T

i

n

i t
s

i t
1 1

, , ev
(5)

where Pchi t
s
, is the charging power of EV aggregator i at time t under

scenario s (s=0 for base case, others for contingencies). di,t is the
charging duration of EV aggregator i at time t. Eev is the total energy
demand of all EVs during one day. The sum of all aggregated EV
charging power during one day should be equal to the total energy
demand.

(2) EV charging constraints

Due to the diverse driving habits of the EV owners, the number of
grid-connected EVs is time-varying. So, the capacity limits of EV
charging power vary with time correspondingly.

⩽ ⩽ ∀Pch Pch Pch i t s, , ,i t i t
s

i t,
min

, ,
max (6)

where Pchi t,
min and Pchi t,

max depend on the capacity, the initial state of
charge, charging time, type, and travel characteristics of EVs. In this
paper, the charging constraints are set in (6) according to Ref. [20].

(3) Power output limits of generators

The power output limits of a generator are shown in (7).
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(4) Power flow equations

The power flow equations for every bus are shown in (8).
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(5) Voltage limits of buses

The voltage of each bus needs to be within a permissible range, as
shown in (9). In this paper, the voltage constraints are set to ± 10%
(Umin= 0.9 and Umax= 1.1).

⩽ ⩽ ∀U U U j t s, , ,j j t
s

j
min

,
max (9)

(6) Line flow limits

The current through each line must be below its limit as shown in
(10).

⩽ ∀I I b t s, , ,b t
s

b,
max (10)

3. Solution approach

The optimal charging schedule model in Section 2 represents a se-
curity constrained charging scheduling (SCCS) problem. It is a large
time-coupled nonlinear optimization problem with a large number of
variables and constraints. Pch is the decision variable whose dimension
is 72. The number of the constraints is more than 230,782. For the time-
coupled constraint shown in (5), LR, as an excellent tool, relaxes the
constraints by introducing a Lagrangian multiplier. In addition, BD is
used to decompose the SCCS problem into a master problem that solves
the base-case charging schedule and a set of slave problems that check
the feasibility of the obtained charging schedule against the security
constraints under individual contingencies.
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3.1. LR-based relaxation of time-coupled constraints

LR is a powerful relaxation technique. It can be used based on the
observation that an optimization problem complicated by a lot of
coupling constraints can be modeled as a relatively easy Lagrangian
problem. As for the CS problem described by (1)–(10), constraint (5) is
the only time-coupled coupling constraint. So we define the Lagrangian
problem as (11).

∑ ∑+ + + ⎛

⎝
⎜ − ⎞

⎠
⎟

=
⩽

= =

w f w f w f λ Pch d E

g x u
h x u

min · · · ·

s.t. ( , ) 0
( , ) 0

t

T

i

n

i t i t1 1 2 2 3 3
1 1

, , ev

(11)

In (11), x is the state vector which represents bus voltage in this
paper; u is the control vector which represents charging power of the
EV aggregator; λ is the Lagrangian multiplier for the time-coupled
constraint (5). =g (·) 0 represents power flow equation constraints
shown in (8). ⩽h (·) 0 represents inequality constraints, including (6),
(7), (9) and (10).

It should be mentioned that, only the constraint for base case needs
to be relaxed in (11). In vector form, we have

= ∀Pch Pch s,s (12)

where u0 and us represent the EV charging strategies in normal condi-
tion and contingency s, respectively. Eq. (12) represents the linking
constraint between base case and contingency case.

3.2. BD-based handling of contingency constraints

(1) Fundamentals of Benders decomposition

The optimal charging model of EV aggregators considering N− 1
security constraints is a complex optimization problem that is difficult
to solve directly [22]. There is slight coupling relationship between
various operating scenarios, i.e., (12). So, BD could be introduced to
decompose the original optimization problem into a master problem for
base case and slave problems for individual contingencies. The iterative
process between the master problem and slave problems continues until
there is no violation on the security constraints [23]. Accordingly, the
computational complexity can be reduced significantly and the com-
putational efficiency can be improved.

(2) Master problem

The master problem is to find the trial charging strategy ∗Pchi t, , or
∗u0

in vector form, which satisfies the base-case constraints. The master
problem can be described as:
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0 0

0 0

0 0 (13)

In (13), the objective function is the same as that of (11), which is
for base case only, and the constraints include those for the base case
((6)–(10), s=0) and the Benders cuts fed from the slave problems.

=g x u( , ) 00 0 and ⩽h x u( , ) 00 0 represent the equality and inequality
constraints in the base case, respectively. + − ⩽∗ ∗f u uΛ ( ) 0s

T
0 0 re-

presents the Benders cut fed back from slave problem s which is dis-
cussed next.

In solving (13), once a solution is obtained, time-coupled coupling
constraint (5) will be checked and λ will be updated. This process
continues until (5) is satisfied.

(3) Slave problems

The slave problems check the feasibility of the obtained charging
strategy ∗Pchi t, (or ∗u0 in vector form) against the security constraints.
Benders cuts will be formed if there is any violation on the security
constraints under contingencies. The slave problem formulation is
shown in (14).

⎧

⎨

⎪⎪

⎩
⎪
⎪

= ∑ +

=
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+ − = ∗

f δ δ

g x u
h x u
u δ δ u

min ( )
s. t.

( , ) 0
( , ) 0

s c b

s s

s s

s c b 0 (14)

In (14), the constraints include those for the contingency case
((5)–(10)) and the linking constraints between the base case and the
contingency case, i.e., (12). =g x u( , ) 0s s and ⩽h x u( , ) 0s s represent the
equality and inequality constraints in the contingency case, respec-
tively. δc and δb are the slack variables of the linking constraints

− =∗u u 0s 0 . The objective function in (14) is the summation of all slack
variables.

If + =δ δ 0c b , no Benders cut is formed. Otherwise, a Benders cut in
(15) is formed and fed back to the master problem.

+ − ⩽∗ ∗f u uΛ ( ) 0s
T

0 0 (15)

where ∗fs is the value of the objective function in (14) and Λ is the dual
variable vector for + − = ∗u δ δ us c b 0 . (15) indicates how the base case EV
charging strategy (u0) can be adjusted to eliminate potential security
constraints violation in contingency case.

3.3. Flowchart

In our studies, the network security-aware charging issue of EVs is
decomposed into one master problem, aiming at optimal charging of
EVs, and a set of slave problems that check the feasibility of the ob-
tained charging strategy from the master problem. The decision vari-
ables of the master problem are the EVs charging power of each ag-
gregator 24 time dimensions. The objective of the master problem is LR
relaxed portfolio optimization. The variables of the slave problem are
the slack variables of the linking constraints − =∗u u 0s 0 . The solution
procedures are as follows.

Step 1: Read EV parameters, generator parameters, daily loads and
other system parameters.
Step 2: Initialize all constraints and Benders cuts of slave problems.
Step 3: Solve the master problem that is the LR relaxed portfolio
optimization. A trial charging strategy can be obtained.
Step 4: Screen all contingencies and form the candidate contingency
set.
Step 5: Check the feasibility of the trial charging strategy under all
contingencies one by one. If the trial charging strategy can maintain
system security operation, fs=0, no benders cut turn back, or fed
back + − ⩽∗ ∗f u uΛ ( ) 0s

T
0 0 to master problem, turn to Step 3 until all

slave problems meet security constraints.

The flowchart of the above solution process is shown in Fig. 2.

4. Case studies

4.1. Test system and parameters

The modified New England 39-bus test system is used for case stu-
dies in a computer with i7-6700 2.6 GHZ processor and 8 GB memory.
Two wind farms are located at buses 30 and 35, and their daily power
curves can be found in [24]. The detailed test system parameters can be
found in [25]. Three EV aggregators are connected to the network at
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buses 3, 10 and 23. The parameters of EVs are obtained by survey data
[26]. The three weights of the objectives are set as w1= 0.5, w2= 0.25
and w3= 0.25 in case studies.

It is an important issue to predict the EVs charging demand. The
decisive factors affecting the charging load of EVs in a region include
the number and types of electric vehicles, travel characteristics, char-
ging strategies, etc. In [27], the authors presented a statistical model to
predict the EV charging load. In [28], the charging traffic flow was
introduced as a discrete sequence to describe charging start events, and
a set of equations are proposed to build a probabilistic EVs charging
load model. In [29], the historical traffic data and weather data of
South Korea were used to formulate the forecasting model. In [30], a
novel methodology was developed to calculate the dynamic transition
of the combined SOC distribution from one timeslot to the next for a
large number of EV units, and a SOC-based charging strategy was then
proposed to estimate the aggregated power demand. In our study, the
Monte Carlo simulation method was used to simulate the starting SOC
and the initial charging time of individual EVs, and further to obtain the
predicted daily charging power curves of the EV aggregators [24]. Due
to space limitations, the calculation process is not shown in this paper.

The charging power curves of EV aggregator 1 under predicted
charging mode and scheduled mode are shown in Fig. 3. It can be seen
that, under predicted charging mode, most of the EVs will be charged at
noon and in the evening. In this case, the system voltage in some re-
gions may decline sharply, because other loads are also relatively large
during those times [24]. Therefore, it is of great significance of develop
an optimal charging schedule to shift the charging power of EVs to
other times and make the charging curves more smooth.

4.2. Necessity of considering N− 1 security constraints

The charging curves of EV aggregator 1 with and without the se-
curity constrains are also shown in Fig. 3. It can be seen from the
comparison of the charging curves of EV aggregator 1 with and without
the security constrains that, there are relatively large adjustments
during times 6:00–8:00 and 15:00–18:00. It means that without se-
curity-aware, if N− 1 contingencies occur at these times, the system
may go to abnormal conditions. Firstly, we discuss the lowest voltage
when contingency occurs at each line, which shows the necessity of
N− 1 security constraints. Then, we discuss the detailed daily voltage
curves of buses when specific N− 1 contingency occurs.

If the charging schedules of EV aggregators are obtained without
considering N− 1 security constraints, the lowest voltages of the
system during a day when a contingency occurs are plotted as the black
columns in Fig. 4. If the charging schedules are obtained using the
proposed method, the results are plotted as the yellow columns in
Fig. 4. It can be observed that the voltage profiles of the system can be
greatly improved.

Take branch 23 for example. The daily voltage curves of bus 11
when branch 23 is disconnected are shown in Fig. 5. For the charging
schedules of EV aggregators obtained without N− 1 security con-
straints, bus 11 will experience low voltage at time 15:00. So, it can be
concluded that considering N− 1 security constraints is very important
for determining the EV charging schedule. Without the consideration of
N− 1 security constraints, the system is likely to experience voltage
problem when a contingency occurs.

4.3. Effectiveness of the proposed method

Figs. 6–8 present the system voltage profiles, the cumulative power
losses, and the net system load profiles, obtained by using the proposed
charging mode and the predicted charging mode, respectively.

It can be seen from Fig. 6 that the centralized EV charging causes a
voltage dip at 19:00 under predicted charging mode. The proposed
method can obtain an effective charging schedule that shifts the EV
charging loads to other periods when the system voltage problem is not
prominent. The proposed charging schedule can achieve peak load
shifting (Fig. 8), improve system voltage profile (Fig. 6), and greatly
reduce power losses of the system (Fig. 7).

4.4. Effectiveness of the portfolio optimization

The three objective functions and their combination in (1) are se-
lected to compare the charging schedules of EV aggregators. The

...

Input EV parameters, daily load, generator 
parameters and other system parameters

Solve the master problem and obtain trial 
charging strategy with LR method

Form Benders cuts

Y

End

Initialize all constraints and Benders cuts of 
slave problems

Set the iteration number l = 0

Screen all contingencies and form the 
candidate contingency set 

Solve 
slave problem 1. 

Check f1=0?l=l+1 All slave 
problems  
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slave problem s. 

Check fs=0?

YN
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Fig. 2. Flowchart of the solution process.
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charging curves of EV aggregator 1 under the objective f1, f2, f3, and the
portfolio of the three are shown as Fig. 9. The voltage profile is the most
important factor. The charging curve is most similar with that under the
portfolio objective. The charging curve can be flattening with objective

f1, f2 and the portfolio objective. However, users’ satisfaction needs
fewer changes. Combinatorial optimization can reconcile the contra-
diction between the two aspects. The voltage deviations, the power
losses, and the charging deviations are compared in Table 1.
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Fig. 5. Daily voltage curves of bus 11 when branch 23 is disconnected.
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Fig. 6. Voltage magnitude curves of bus 21.
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Fig. 7. Cumulative power loss curves of the system.
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Fig. 8. Net load curves of the system.
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Fig. 9. Charging curves of EV aggregator 1 under different objectives.
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When f1 is selected as the objective function, the charging schedules
can greatly improve the system voltage profile and reduce the power
loss. However, as the EVs charging is guided and controlled, the char-
ging power curve of EVs will change. As a result, the user satisfaction
represented by EV charging deviation will be affected to a certain ex-
tent. When f2 is selected as the objective function, the power losses of
the system could be minimized, and the voltage profile could also be
enhanced, but the charging power curve further deviates from the
original one. When f3 is selected, the charging power deviations would
be less than those in other cases, as it aims at satisfying the preferred
user requirements. However, the system voltage profile deteriorates
heavily. Meanwhile, the power losses are also much larger.

It can be concluded from the above analysis that, in order to

coordinate the system voltage profile, the power losses and the user
satisfaction, it should employ a combinatorial strategy with the port-
folio optimization of the three objectives. As shown in the case with
portfolio objective, such a charging schedule can ensure the voltage
profile and mitigate the voltage issue. Moreover, the portfolio optimi-
zation can preferentially select the optimal schedules which can reduce
the power losses and improve the user satisfactions.

4.5. Computational efficiency

LR is introduced in this paper to handle the time-coupled EV char-
ging energy demand constraints. The base charging scheduling problem
without considering security constraints is solved in 4 iterations in
113 s. However, without LR, the charging scheduling problem is solved
in 211 s by the same program.

BD builds the slave problems for checking transmission network
security constraints and forming Benders cuts when needed. Assume
that each N− 1 contingency occurs in one time interval. There are 35
contingencies considered in this case study. Without BD, the number of
variables is about 5812. It is not easy to directly solve such a problem
for practical power systems, because of the limited computing re-
sources. In this paper, BD is applied to solve the optimization problem
with N− 1 security constraints. The problem converges after 7 itera-
tions. Fig. 10 shows the number of Benders cuts fed back at each
iteration.

It can be seen that the optimization problem can converge quickly.
There are 14 Benders cuts fed back at the first iteration, and there is no
benders cut after 7 iterations. The longest CPU time that one slave
problem takes in each iteration is shown as Fig. 11. It indicates that BD
is effective in solving the proposed optimal EV charging problem con-
sidering network security constraints.

5. Conclusion

This paper proposes a multi-objective formulation for the optimal
charging schedule of EVs with N− 1 security constraints. An EV ag-
gregator representing a cluster of controllable EVs is modeled for de-
termining the optimal charging schedule based on a trilevel hierarchy.
On the top level, the grid control center determines the EV charging
strategy from the proposed formulation, where bus voltage fluctuations,
network power losses, and EV charging adjustments are considered as
multi-objective functions. To reduce the computational burden,
Lagrangian Relaxation (LR) is introduced to handle time- coupled
constraints, and Benders Decomposition is introduced to decompose the
EVs charging formulation into one master problem that solves the base-
case charging schedule and a set of slave problems that check the fea-
sibility of the obtained charging schedule against the security con-
straints under individual contingencies.

Case studies have been conducted to demonstrate the effectiveness
of the proposed formulation and solution method. The results show that
the proposed charging strategy can solve the potential security pro-
blems of the system, and the portfolio optimization can preferentially
select the optimal schedule to improve the system voltage profile, re-
duce the system power losses, and improve the user satisfactions.

In this paper, unit commitment is set in advance. A better strategy
could be obtained by the co-optimization of the EV charging with unit
commitment. In addition, we only discuss the optimization strategy of
the control center. Future works can be done to the optimization
strategy of the EVs aggregator, which may provide more exact limits of
charging power of EV aggregators to the control center.

Acknowledgement

This work was supported in part by the National Science and
Technology Support Program of China (2015BAA01B01) and in part by
the National Natural Science Foundation of China (51361130153).

Table 1
Objective values with different objective functions.

Objective Voltage deviations Power losses EV charging deviations

f1 0.00148 0.01616 0.04230
f2 0.00153 0.01569 0.04344
f3 0.00230 0.02222 0.02129
portfolio 0.00152 0.01657 0.03746
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