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SUMMARY

Cancer progression involves the gradual loss of a
differentiated phenotype and acquisition of pro-
genitor and stem-cell-like features. Here, we provide
novel stemness indices for assessing the degree
of oncogenic dedifferentiation. We used an innova-
tive one-class logistic regression (OCLR) machine-
learning algorithm to extract transcriptomic and
epigenetic feature sets derived from non-trans-
formed pluripotent stem cells and their differentiated
progeny. Using OCLR, we were able to identify previ-
ously undiscovered biological mechanisms asso-
ciated with the dedifferentiated oncogenic state.
Analyses of the tumor microenvironment revealed
unanticipated correlation of cancer stemness with
immune checkpoint expression and infiltrating
immune cells. We found that the dedifferentiated
oncogenic phenotype was generally most prominent
in metastatic tumors. Application of our stemness
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indices to single-cell data revealed patterns of
intra-tumor molecular heterogeneity. Finally, the
indices allowed for the identification of novel targets
and possible targeted therapies aimed at tumor
differentiation.

INTRODUCTION

Stemness, defined as the potential for self-renewal and differen-
tiation from the cell of origin, was originally attributed to normal
stem cells that possess the ability to give rise to all cell types in
the adult organism. Cancer progression involves gradual loss
of a differentiated phenotype and acquisition of progenitor-like,
stem-cell-like features. Undifferentiated primary tumors are
more likely to result in cancer cell spread to distant organs,
causing disease progression and poor prognosis, particularly
because metastases are usually resistant to available therapies
(Friedmann-Morvinski and Verma, 2014; Ge et al., 2017; Shibue
and Weinberg, 2017; Visvader and Lindeman, 2012).

An increasing number of genomic, epigenomic, transcrip-
tomic, and proteomic signatures have been associated with
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Figure 1. Development and Validation of the Stemness Indices
(A) Overall methodology. Highlighted are data sources Progenitor Cell Biology Consortium (PCBC), Roadmap, and ENCODE databases; the OCLR machine-
learning algorithm; and the resulting stemness indices mRNAsi, mDNAsi, and EREG-mRNAsi. The indices for each TCGA tumor sample were correlated with
known cancer biology, tumor pathology, clinical information, and drug sensitivity.
(B) Stemness indices of the validation set derived using our stemness signature.

(legend continued on next page)
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cancer stemness. Those molecular features are causally con-
nected to particular oncogenic signaling pathways that regulate
transcriptional networks that sustain the growth and proliferation
of cancer cells (Ben-Porath et al., 2008; Eppert et al., 2011; Kim
etal., 2010). Transcriptional and epigenetic dysregulation of can-
cer cells frequently leads to oncogenic dedifferentiation and
acquisition of stemness features by altering core signaling path-
ways that regulate the phenotypes of normal stem cells (Bradner
et al., 2017; Young, 2011). Cell-extrinsic mechanisms can also
affect maintenance of the undifferentiated state, largely through
epigenetic mechanisms. Tumors comprise a complex, diverse,
integrated ecosystem of relatively differentiated cancer cells,
cancer stem cells, endothelial cells, tumor-associated fibro-
blasts, and infiltrating immune cells, among other cell types.
The microenvironment of a tumor, considered as a pathologically
formed “organ,” is frequently characterized by hypoxia, as well
as by abnormal levels of various cytokines, growth factors, and
metabolites (Lyssiotis and Kimmelman, 2017). It provides
numerous opportunities for cell-cell signals to modulate the epi-
genome and expression of stem-cell-like programs in cancer
cells, frequently independent of their genetic backgrounds (Gin-
gold et al., 2016).

Over the last decade, The Cancer Genome Atlas (TCGA) has
illuminated the landscapes of primary tumors by generating
comprehensive molecular profiles composed of genomic, epige-
nomic, transcriptomic, and (post-translational) proteomic char-
acteristics (Hoadley et al., 2014; Tomczak et al., 2015), along
with histopathological and clinical annotations. The resulting
resource enabled us to analyze cancer stemness quite exten-
sively in almost 12,000 samples of 33 tumor types.

First, we defined signatures to quantify stemness using pub-
licly available molecular profiles from normal cell types that
exhibit various degrees of stemness. By multi-platform analyses
of their transcriptome, methylome, and transcription-factor bind-
ing sites using an innovative one-class logistic regression
(OCLR) machine-learning algorithm (Sokolov et al., 2016), we ob-
tained two independent stemness indices. One (MDNAsi) was
reflective of epigenetic features; the other (MRNAsi) was reflec-
tive of gene expression. We then identified associations between
the two stemness indices and novel oncogenic pathways,
somatic alterations, and microRNA (miRNA) and transcriptional
regulatory networks. Those features correlated with, and
perhaps govern, cancer stemness in particular molecular sub-
types of TCGA tumors. Importantly, higher values for stemness
indices were associated with biological processes active in
cancer stem cells and with greater tumor dedifferentiation, as
reflected in histopathological grade. Metastatic tumor cells
appeared more dedifferentiated phenotypically, probably
contributing to their aggressiveness. We also found tumor het-
erogeneity at the single-cell level by measuring stemness in tran-
scriptome profiles obtained from individual cancer cells. Using
CIBERSORT to profile immune cell types in TCGA tumors, we

obtained insight into the interface of the immune system with
stemness. Finally, we identified compounds specific to selected
molecular targets and mechanisms that may eventually lead to
novel treatments that trigger differentiation and exhaust the
stemness potential of highly aggressive neoplasms.

RESULTS

DNA-Methylation- and mRNA-Expression-Based
Stemness Classifiers

We analyzed publicly available non-tumor and tumor datasets
for which transcriptomic and epigenomic molecular profiles
were available (Figure 1A). We derived stemness indices using
an OCLR algorithm trained on stem cell (ESC, embryonic stem
cell; iPSC, induced pluripotent stem cell) classes and their differ-
entiated ecto-, meso-, and endoderm progenitors. We chose
OCLR because it does not penalize misclassification of stem-
cell-derived progenitors at different stages of differentiation
that still carry some of the undifferentiated features in their
molecular profiles (its output was also validated against random
forests in Figure S1A). OCLR-based transcriptomic and epige-
netic signatures were applied to TCGA datasets to calculate
the mRNAsi and mDNAsi. Each stemness index (si) ranges
from low (zero) to high (one) stemness (Table S1). The tumor
samples stratified by the indices were used for the integrative
analyses.

mRNA Expression-Based Stemness Index

We validated the mRNAsi by applying it to an external dataset
composed of both stem cells and somatic differentiated cells
(Nazor et al., 2012) (Figure 1B) and by scoring molecular sub-
types of breast cancers and gliomas that are characterized by
different degrees of oncogenic dedifferentiation associated
with pathology and clinical outcome (Figures S1B and S1C). All
stem cell samples attained higher stemness index values than
samples from differentiated cells. TCGA tumors display various
degrees of cancer stemness as revealed by mRNAsi (Figure 1C
[left])) and mDNAsi (Figure 1C [right]). Germ-cell tumors, basal
breast cancer, and Ly-Hem cancers displayed highly dedifferen-
tiated phenotypes in comparison to other tumor types.

Using gene set enrichment analysis (GSEA), we compared our
signature to 16 gene sets that were associated with stemness
in cancer and healthy cells in previous studies (Ben-Porath
et al., 2008; lvanova et al., 2006; Kim and Orkin, 2011;
Mathur et al., 2008; Palmer et al., 2012; Sato et al., 2003;
Venezia et al., 2004; Yan et al., 2011). These sets spanned
2,564 unique genes, with no 2 sets overlapping by more than
134 genes. In all cases, the published stemness gene sets
were significantly enriched in mRNAsi (Figure 2A). We found
that “cancer hallmark” gene sets were significantly enriched,
as were MYC targets, which significantly contributed to the pos-
itive side of the signature (Hanahan and Weinberg, 2011). This is

(C) TCGA tumor types sorted by the stemness indices obtained from transcriptomic (mRNAsi) and epigenetic (mnDNAsi) features; indices were scaled from 0 (low)
to 1 (high). The TCGA tumor types were grouped based on their histology and cell of origin into stem cell-like (SC), lympho-hematopoietic (Ly-Hem), adeno-
carcinomas, squamous cell carcinomas (Squamous), neuronal lineage (Neuronal), sarcomas (Sar), kidney tumors (Kidney), and not belonging to any of the above

(Misc) (Table S2).
See also Figures S1 and S2 and Tables S1 and S2.
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Figure 2. Biological Processes Associated with Cancer Stemness

(A) Gene Set Enrichment Analysis showing RNA sequencing (RNA-seq)-based stemness signature evaluated in the context of gene sets representative for
hallmarks of stemness and cancer.

(B) Correlation between mRNAsi and mRNA expression for published hallmarks of stemness.

(C) Correlation between mRNAsi and selected oncogenic processes.

(D) Association between the epigenomic-based stemness signature (EREG-mDNAsi and EREG-mRNAsi) and enrichment in the transcription factor binding sites.
See also Figure S2 and Table S2.
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consistent with MYC being one of the transcription factors that
drive pluripotency in ESCs (Young, 2011).

Wingless-related integration site (Wnt)/B-catenin and TGF-B
signaling pathways were significantly enriched on the negative
side of the stemness signature. This negative enrichment does
not imply absence of specific signals in cancer stem cells, but
rather that this signaling is lower relative to stem-cell-derived pro-
genitors, as captured by the signature weights. This is again
consistent with other GSEA results, as both signaling pathways
are known mediators of the epithelial-mesenchymal transition
(EMT) mechanism (Gonzalez and Medici, 2014). We also
computed the correlation of mMRNAsi against mRNA expression
of published pan-cancer EMT markers (Mak et al., 2016), which
revealed significant correlations with for most tumors (Figure S2C).
This is consistent with the biology of ESCs, which grow as epithe-
lioid, polygonal cells in vitro and epithelial cancer precursors hav-
ing stem-like properties. Importantly, most TCGA samples are pri-
mary tumors of an epithelial phenotype. Most skin melanoma
cases come from lymph nodes, and this tumor type shows higher
expression of vimentin, a key marker of a mesenchymal pheno-
type. mRNAsi is positively correlated with other core stem cell fac-
tors: EZH2, OCT4, and SOX2 (Figure 2B and Table S2). Finally,
Moonlight analysis of the oncogenic signatures from the Molecu-
lar Signatures Database (MSigDB) further validated our gene-
expression-based index and confirmed engagement of MYC
and EZH2, along with E2F3, MTOR, and SHH in driving oncogenic
dedifferentiation (Figure 2C) (Colaprico et al., 2018).

DNA Methylation-Based Stemness Index

We defined the mDNAsi using OCLR by combining (1) super-
vised classification between ESCs/iPSCs and their progenies,
(2) stem cell signatures associated with pluripotency-specific
genomic enhancer elements based on ChromHMM from Road-
map, and (3) ELMER, which uses DNA methylation to identify
enhancer elements and correlates their state with the expression
of nearby genes. 219 CpG probes (Figure S2A) were selected in
training OCLR using the Progenitor Cell Biology Consortium
(PCBC) datasets. By selecting probes previously defined to
be active stemness-specific enhancers, we confirmed the ability
of our approach to derive an mDNAsi. Since we focused
exclusively on hypomethylated, functionally important CpG
probes associated with stem cells, we further explored cis-acti-
vated genes.

We scored each TCGA sample using the mDNAsi and used an
external dataset to confirm that stem cells had higher mDNAsi
than differentiated samples (Figure 1B [left plot]). TCGA tumor
types show different degrees of an inferred dedifferentiated
phenotype (Figure 1C [right]). Within these, individual tumor sam-
ples show variation for cancer stemness. As anticipated, TCGA
samples derived from the primary tumors show higher cancer
stemness indices compared to non-tumor samples obtained
from adjacent normal tissue of origin (Figure S1E [bottom]).

Most of our selected probes fell within non-promoter ele-
ments, yet the SOX2-OCT4 transcription factor binding motif is
one of the most highly enriched signatures within these regions.
The SOX2-OCT4 complex is a critical master regulator of plurip-
otency and stemness and is highly enriched in tumor samples
with high mDNAsi (Figure 2D).
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Correlations of mMRNAsi and mDNAsi

Since the inputs for mDNAsi and mRNAsi are not necessarily
complementary, we explored stratification of glioma samples
by the epigenetically regulated mRNAsi (EREG-mRNAsi), as
stemess index generated using a set of stemness-related epige-
netically regulated genes. The EREG-mRNAsi, based on both
RNA expression and epigenetics, elucidates the discrepancy
between mDNAsi and mRNAsi and shows a positive correlation
with both indices (Figure S1F). Both mRNAsi and mDNAsi show
good correspondence for a majority of tumors (Figures S1F and
S2B). We observed major discrepancies in the case of brain
lower grade glioma (LGG), thyroid carcinoma (THCA), and thy-
moma (THYM). For gliomas, mDNAsi is correlated positively
with tumor pathology and clinical features, while mRNAsi shows
a negative correlation. This result could arise from a high fre-
quency of isocitrate dehydrogenase mutations (IDH1/2) muta-
tions and resulting DNA hypermethylation.

Stemness Index Can Stratify Recognized
Undifferentiated Cancers

We examined breast invasive carcinoma (BRCA), acute myeloid
leukemia (AML), and gliomas to study if the mRNAsi/mDNAsi
predict stemness in poorly differentiated tumors. In BRCA, we
found a strong association between the stemness index and
known clinical and molecular features (Figure 3A [left]). The
mRNAsi was highest in the basal subtype, known to exhibit
an aggressive phenotype associated with an undifferentiated
state. BRCA samples with high mRNAsi were more likely to
be estrogen receptor (ER)-negative and enriched for FAT3
and TP53 mutations. We noted that high mRNAsi was associ-
ated with higher protein expression of FOXM1, CYCLINB1,
and MSH6, as well as higher miRNA-200 family expression
(Figure 3A [right]). Invasive lobular type of BRCA (ILC), charac-
terized by better prognosis in comparison to invasive ductal
carcinoma (IDC), has a lower mRNAsi (Figure 3A [right]). We
also applied our indices to non-TCGA BRCA samples (Rey-
ngold et al., 2014) and found a similar correlation between
mRNAsi and mDNAsi in those samples. Moreover, mRNAsi
also stratified BRCA samples with distinct histology in this da-
taset (Figure S1B). Using datasets with estimated tumor cell
type composition provided by the epigenetic deconvolution
method (Onuchic et al., 2016), we found that both mRNAsi
and mDNAsi were more highly correlated with malignant
epithelial cells than with normal epithelial cells, suggesting
that our indices identify distinct cancerous epithelial cell popu-
lations characterized by different features or degrees of stem-
ness (Figure S1D).

We found an association between the mRNAsi, RNA expres-
sion subtypes previously defined by TCGA, and the French-
American-British (FAB) classification of AML (Figure 3B). The
mRNAsi showed the strongest correlation with the stage of
myeloid differentiation of the AML samples. FAB subtypes MO
(undifferentiated), M1 (with minimal maturation), and M2 (with
maturation) were characterized by high mRNAsi. In contrast,
the M3 well-matured promyelocytic subtype, which is associ-
ated with benign chromosomal abnormalities and favorable
clinical outcome, had low mRNAsi (Figure 3B [right upper]).
High mRNAsi was associated with higher expression of
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Figure 3. Molecular and Clinical Features Associated with Stemness in Breast Cancer, Acute Myeloid Leukemia, and Gliomas

(A) (Left) An overview of the association between known molecular and biological processes and stemness in BRCA. Columns represent samples sorted by
mRNAsi from low to high (top row). Rows represent molecular and biological processes associated with mMRNAsi. Rows named “EDec CEp 2 and 4” represent
estimated cell type proportions. (Top right) Boxplots of mMRNAsi in individual samples, stratified by molecular subtype and histology. (Bottom right) Correlation of
mRNAsi and representative protein expression and microRNA.

(B) Similar to (A), association of mMRNAsi in AML. (Top right) mRNAsi by mRNA-based molecular subtype and by FAB classification. (Bottom right) Correlation
scores of mMRNAsi and representative microRNA.

(C) As in (A) and (B), GBM and LGG sorted by mDNAsi. (Top right) mDNAsi by molecular subtype and grade. (Bottom right) Correlation scores of mDNAsi and
representative protein expression and microRNA.

All molecular and clinical features shown are statistically significant. See also Figures S1, S3, S4, and S5.
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Figure 4. Selected Molecular and Clinical Features Associated with the Stemness Indices in TCGA Tumors

(A) Association of molecular and clinical features with stemness in LUAD. (Top) mDNAsi by integrative molecular subtypes, smoking history, and mutations of

TP53 and SETD2. (Bottom) Correlation scores of mDNAsi and representative protein expression.

(B) Stemness in HNSC. (Top) mDNAsi stratified by molecular subtypes and mutation of NSD1. (Bottom) Correlation scores of mDNAsi and representative protein

and microRNA expression.

(C) Stemness in LIHC. (Top) mRNAsi stratified by grade and mutations of TP53, CTNNB1, and AXIN1. (Bottom) Correlation scores of mRNAsi and representative

protein and microRNA expression.
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miR-181c-3p, miR-22-3p, and miR-30b-3p (Figure 3B [right
bottom]).

We found a strong association between high mDNAsi, high
pathologic grade, and recently published molecular subtypes
of glioma (Figure 3C). mDNAsi was low in less-aggressive
gliomas that are characterized by codel and glioma CpG methyl-
ator phenotype (G-CIMP)-high features and was highest in highly
aggressive glioblastoma multiformes (GBMs) characterized by
IDH mutations (G-CIMP low) and poor clinical outcome. Also,
high mDNAsi is strongly associated with more aggressive clas-
sical and mesenchymal subtypes of GBM, suggesting that it
can stratify tumors with distinct clinical outcomes. We also found
that high mDNAsi was associated with mutations in NF7 and
EGFR and infrequent mutations in IDH1, TP53, CIC, and ATRX
(Figure 3C [left]), with higher expression of ANNEXIN-A1 protein
and lower expression of ANNEXIN-A7 and with expression of the
miR-200 family (Figure 3C [right bottom]).

We obtained similar results on non-TCGA glioma samples for
which both mRNA expression and DNA methylation data were
available (Turcan et al., 2012) (Figure S1C). The negative correla-
tion between mDNAsi and mRNAsi was restricted to LGG sam-
ples—specifically, the IDH mutant subtypes (G-CIMP high and
codel). IDH1 mutations are known to reduce cell differentiation,
and high values of the mRNAsi in a subset of IDH mutant gliomas
might capture this phenomenon (Lu et al., 2012).

Pan-cancer Stemness Landscape

Next, we tested the ability of our indices to identify previously un-
explored features of cancer stemness across all TCGA tumors .
First, we performed an enrichment analysis by sorting all TCGA
samples by stemness index for each tumor type and looking
for associations with mutations and molecular and clinical fea-
tures. The most salient associations of MRNAsi and mDNAsi
are presented in Figure 4, while the following results of the
comprehensive analyses are shown in the supplementary mate-
rial: associations with mutations (Figure S3), associations with
miRNA expression and protein abundance (Figure S4), associa-
tions with the tumor grading, and clinical outcome (Figure S5).

Correlations of mMRNAsi and mDNAsi with Mutations in
Genes, miRNA, and Expression of Proteins

We found a strong association of mMDNAsi with known molecular
subtypes, with somatic mutations in SETD2 and TP53 genes,
and with tobacco smoking status in lung adenocarcinoma
(LUAD) (Figures 4A and S3). Current smokers and recently
reformed smokers have higher mDNAsi than non-smokers or
long-term reformed smokers. This suggests that the stemness
of LUAD tumors might be activated in response to environmental
stimuli such as smoking and might influence the aggressiveness
of the tumor. We also found an association between mDNAsi and
higher protein expression of CYCLINB1 and FOXM1, which is a
pro-stemness transcription factor upstream of CYCLINB1 (Fig-

ure 4A [lower plots]). FOXM1 has been associated with dediffer-
entiation in pancreatic cancer cells (Bao et al., 2011), as well as
tumor proliferation in the kidney (Xue et al., 2012) and ovarian
(Wen et al., 2014) cancers. Our result suggests that it could be
a driver of dedifferentiation and proliferation in breast and lung
cancers. Stemness of LUAD tumors is also associated with lower
expression of ANNEXIN-A1 (Figure 4A). ANNEXIN-A1 has been
indicated as a differentiation marker in pancreatic (Bai et al.,
2004) and urothelial (Kang et al., 2012) cancers; therefore, we
suspect that the relationship between ANNEXIN and FOXMH1
expression and tumor differentiation may extend to other tumor
types (Figure S4C).

Analyses of head and neck squamous cell carcinoma (HNSC)
samples revealed that high indices are correlated with NSD7 mu-
tation, E-cadherin protein expression, miR-200-3p, and previ-
ously identified classical molecular subtypes (Figure 4B). NSD1
mutation was recently linked in HNSC tumors to blockade of
cellular differentiation and promotion of oncogenesis (Papillon-
Cavanagh et al., 2017). Interestingly, miR-200 family members
have been implicated in cancer initiation and metastasis, as
well as self-renewal of healthy stem cells (Gregory et al., 2008;
Tellez et al., 2011). HNSC tumors with high mDNAsi have
reduced programmed death ligand 1 (PD-L1) protein level
(Figure 4B).

In liver hepatocellular carcinoma (LIHC) samples, we found an
association between mRNAsi and high pathological grade (Fig-
ure 4C). Negative associations between mRNAsi and the proba-
bility of overall survival (OS) or progression-free survival (PFS)
were detected (Figures 4E and S5C). In contrast to the majority
of tumor types, LIHC samples with high mRNAsi have low
expression of miR-200 family members (Figure 4C). The miR-
200 family is known to be associated with progression of hepa-
tocellular carcinoma (Tsai et al., 2017; Wong et al., 2015), and the
miR-200b-ZEB1 circuit has been suggested as a master regu-
lator of stemness in these cancers (Tsai et al., 2017). We found
associations of mRNAsi with higher CYCLINB1 and ACC1 and
with lower PD-L1 and ANNEXIN-A1 protein expression in LIHC
(Figure 4C). ACC1 was associated with pathomorphological
markers of LIHC aggressiveness (vascular invasion and poor
differentiation), and its upregulation was correlated with poor
OS and disease recurrence in hepatocellular carcinoma pa-
tients (Wang et al., 2016). LIHC samples with high mRNAsi
were associated with specific genomic alterations (e.g., TP53,
CTNNBT1, AXINT).

Detailed analyses of adrenocortical carcinoma (ACC) sam-
ples revealed an association between high mRNAsi and
defined molecular subtypes (Zheng et al., 2016), clinical stage,
and mutations in PRKAR1A and TP53 genes (Figure 4D). We
found a positive correlation between mRNAsi and adrenal
differentiation score that is based on expression of 25 genes
that are important for adrenal function (Zheng et al., 2016)
(Figure 4D).

(D) Stemness in ACC. (Top) mRNAsi stratified by mRNA molecular subtypes, clinical stage, and mutations of PRKAR1A and TP53. (Bottom) Correlation scores of

mRNAsi and adrenal differentiation score.

(E) Cox proportional hazards model analysis. (Left) Progression-free survival. (Right) Overall survival. Hazard ratio greater than one denotes a trend toward higher

stemness index with worse outcome.
See also Figures S3, S4, and S5.
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mRNAsi and mDNAEsi are higher in the tumor metastases
and reveal intratumor heterogeneity at the single-cell level
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Figure 5. Analysis of Cancer Stemness in
the Context of Metastatic State and Intratu-
mor Heterogeneity

(A) mRNAsi is higher in cancer metastases in
comparison to the TCGA primary tumors.

(B) mDNAsi is higher in recurrent glioma samples
compared to the primary glioma occurrence from
the same patient. G-CIMP, glioma CpG methylator
phenotype.

(C and D) Application of mRNAsi to a single-cell
transcriptome of gliomas and breast cancer reveal
intratumor heterogeneity and various degrees of
the oncogenic dedifferentiation.

(E) Correlation of mRNAsi and mRNA expression of
CDH?1 (epithelial marker) and CDH2 (mesenchymal
marker) in the cancer metastases.
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Stemness Indices Are Correlated with Tumor Pathology
and Predictive of Clinical Outcome

We observed a positive correlation between tumor histology and
pathology grading and both stemness indices for the majority of
the TCGA cases (Figures 3A, 3C, 4C, 4D, S1B, S5A, and S5B).
For mRNAsi, the most significant correlations were found for
BRCA (IDC and ILC), cervical squamous cell carcinoma and en-
docervical adenocarcinoma (CESC), LIHC, pancreatic adeno-
carcinoma (PAAD), and uterine corpus endometrial carcinoma
(UCEC) (Figure S5A). Interestingly, mRNAsi shows low values
in GBM and stomach adenocarcinoma (STAD). On the other
hand, mDNAsi strongly stratifies glioma by the pathology grade,
culminating with the highest value for GBM (Figure S5B). The
reversed values of mDNAsi and mRNAsi in case of gliomas
were also evident in the clinical data analyses. An adverse asso-
ciation between the mRNAsi and survival was detected (Fig-
ure 4E), which was significant for OS and PFS after adjusting
for clinical factors (Figures S5C). In contrast, the mDNAsi had
no significant association with OS and PFS after correcting for
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which are predominantly hypermethy-
lated. The subgroup of G-CIMP with the
lowest overall DNA methylation levels
(G-CIMP low) is associated with the worst outcomes. Compared
to G-CIMP-high tumors, G-CIMP-low tumors are known to be
more proliferative, express cell-cycle-related genes, and have
various stem-cell-like genomic features (Ceccarelli et al., 2016).

Cancer Stemness Indices Are Higher in Tumor
Metastases and Reveal Intratumor Heterogeneity

The TCGA samples are derived mostly from primary tumors,
except for skin melanoma, for which tissues are mostly metasta-
tic lymph nodes. We used the mRNAsi to interrogate the MET500
dataset comprising expression profiles from 500 metastatic
samples obtained from 22 different organs (Robinson et al.,
2017). In most cases, mRNAsi was significantly higher in meta-
static samples compared to primary TCGA tumors (Figure 5A).
Prostate and pancreatic adenocarcinoma metastases had the
most dedifferentiated phenotypes and are also more aggressive
and resistant to therapies in contrast to primary tumors. Weaker
association with the mRNAsi was due to a small number of avail-
able samples (n < 20). Interestingly, testicular germ cell tumors
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(TGCTs) present the less differentiated phenotypes in primary
tumors when compared to distant metastases. Primary TGCT
tumor cells have high mRNAsi and may differentiate when
metastasizing to distant organs. A similar trend was observed
for STAD.

Using another dataset, we found that mDNAsi was signifi-
cantly higher in glioma samples obtained at first recurrence in
contrast to primary gliomas (Figure 5B). Our results reveal signif-
icant dedifferentiation of glioma cancer cells that contribute to
glioma recurrence, which is frequently associated with poor
prognosis and resistance to treatment (de Souza et al., 2018).

By taking advantage of single-cell transcriptome datasets, we
used mRNAsi to probe tumor heterogeneity for oncogenic dedif-
ferentiation of individual cancer cells (Chung et al., 2017; Tirosh
etal., 2016). We revealed high variation of stemness in the glioma
and breast primary tumors. Individual glioma cells showed
higher variation of oncogenic dedifferentiation in comparison to
breast cancer cells (Figure 5C). Single cells from metastases

panel] and S6A). We expect that such tu-

mors will be less susceptible to immune
checkpoint blockade treatments due to insufficient immune
cell infiltration or preexisting downregulation of the PD-L1
pathway, which makes further inhibition ineffective. Our findings
are consistent with previous reports showing a strong correlation
between PD-L1 protein expression and infiltration of CD8+ cyto-
toxic lymphocytes (Zaretsky et al., 2016).

We further explored correlations between stemness and im-
mune microenvironment variables in the context of molecular
subtypes of tumors. Figure 6B highlights several tumor types
with the strongest (positive or negative) correlations. Except
for kidney renal clear cell carcinoma (KIRC), the association
between stemness and PD-L1 expression and leukocyte fraction
is readily apparent from the increasing and decreasing trends
of individual variables across the molecular subtypes. For
example, we found mesenchymal tumors to have the highest
PD-L1 expression levels, the most significant leukocyte
fractions, and the lowest mDNAsi compared to other HNSC
subtypes, suggesting potential susceptibility to checkpoint
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blockade inhibitors. The use of immunotherapy for HNSC tumors
is under active investigation (Economopoulou et al., 2016; Fuer-
eder, 2016) with the recent FDA approval of pembrolizumab;
however, whether the effectiveness of therapy is limited to spe-
cific HNSC molecular subtypes is not clear from those reports.

To assess other relationships between stemness and tumor
microenvironment, we computed correlations between stem-
ness indices and individual types of immune cells. By applying
CIBERSORT, we scored 22 immune cell types for their relative
abundance in TCGA tumor samples. These cell types included
natural killer (NK) cells, monocytes, macrophages, dendritic
and mast cells, eosinophils, and neutrophils. We also obtained
absolute estimates by scaling their relative abundance by overall
leukocyte infiltration in each tumor as determined by ESTIMATE
applied to DNA methylation data. For any given TCGA sample,
we calculated the correlation between mDNAsi/mRNAsi and
the estimated fraction of individual immune cell types. In addition
to individual immune subpopulation fractions, we considered the
functional activation of distinct cells by measuring the difference
between activated and resting fractions of NK cells, CD4+
T cells, and macrophages. This approach was motivated by
recent observations that activation of peripheral CD4+ T cells
triggered by immunotherapy is responsible for the specific killing
of tumor cells (Spitzer et al., 2017).

Although the squamous cluster tumors had a negative cor-
relation between stemness and the fraction of CD4+ T cell pop-
ulations, the activation state of the CD4+ T cells was higher in
dedifferentiated tumors. This finding is consistent with our
observation that PD-L1 protein expression is lower in these tu-
mors, suggesting again thatimmune checkpoint blockade might
be ineffective, and an additional mechanism of immune evasion
may be operative. The opposite trend is present in thymomas,
where PD-L1 protein expression and the fraction of the CD4+
T cell population are positively correlated with tumor dedif-
ferentiation. Likewise, the activation state of CD4+ T cells is
lower in dedifferentiated tumors, suggesting that they might be
more susceptible to immunotherapy treatments (Figures S6A
and S6B).

Connectivity Map Analysis Identifies Potential
Compounds/Inhibitors Capable of Targeting the
Stemness Signature

We employed the Connectivity Map (CMap), a data-driven, sys-
tematic approach for discovering associations among genes,
chemicals, and biological conditions, to search for candidate
compounds that might target pathways associated with stem-
ness. We found enrichment for compounds associated with
stemness in at least three cancer types (Figure 7A). 5 com-
pounds are significantly enriched in more than 10 cancer types
and have been reported to inhibit stemness-related tumorige-
nicity: the dopamine receptor antagonists thioridazine and pro-
chlorperazine (Cheng et al., 2015; Lu et al., 2015; Dolma et al.,
2016), the Wnt signaling inhibitor pyrvinium (Xu et al., 2016),
the HSP9O0 inhibitor tanespimycin, and the protein synthesis in-
hibitor puromycin. Further, the telomerase inhibitor gossypol
induced apoptosis and growth inhibition of cancer stem cells
(CSCs) (Volate et al., 2010), and histone deacetylase inhibitors
such as trichostatin A (SAHA) reduced glioblastoma stem cell
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growth (Chiao et al., 2013). According to our analysis, pyrvinium
and puromycin could inhibit stemness in LUAD. We found
several candidates with recognized anti-CSC activity for
HNSC, including the aforementioned compounds. For LIHC,
thioridazine, a prospective inhibitor of lung cancer stem cells
(Yue et al., 2016), pyrvinium, puromycin, prochlorperazine, and
others are potential compounds targeting undifferentiated tu-
mors (Figure 7).

CMap mode-of-action (MoA) analysis of the 74 compounds
revealed 56 mechanisms of action shared by the above com-
pounds (Figure 7B and Table S4B). Five compounds (fluspirilene,
pimozide, prochlorperazine, thioridazine, and trifluoperazine)
shared the MoA of dopamine receptor antagonist. We observed
that entinostat, trichostatin-a, and vorinostat shared MoA as
HDAC inhibitors, and LY-294002, zaprinast, zardaverine share
MOoA as phosphodiesterase inhibitors.

CMap target analysis revealed 212 distinct drug-target genes
shared by the mentioned compounds (Figure S7 and Table S4C).
Eight genes are targets of five different compounds—namely,
DRD2 (8 drugs), HTR2A (7 drugs), HRH1 (6 drugs), ADRA1A
(5 drugs), CALM1 (5 drugs), CHRM3 (5 drugs), HTR1A (5 drugs),
and HTR2C (5 drugs).

Recent polypharmacology studies suggest the need to design
compounds that act on multiple genes or molecular pathways. In
this study, we observed similar mechanisms of action among
different compounds, suggesting that selective therapies
can target the undifferentiated phenotypes for selected can-
cer types.

DISCUSSION

This study is based on integrated analysis of cancer stemness in
almost 12,000 primary human tumors of 33 different cancer
types. We interrogated TCGA data for mutations, DNA methyl-
ation, expression of mMRNA and miRNA, expression and post-
translational modification of proteins, histopathological grade,
and clinical outcome. Applying CIBERSORT, we gained insight
into the tumor microenvironment and composition of immune
cell infiltrates. By applying a machine-learning algorithm to mo-
lecular datasets from normal stem cells and their progeny, we
developed two different molecular metrics of stemness and
then used them to assess epigenomic and transcriptomic fea-
tures of TCGA cancers according to their grade of oncogenic
dedifferentiation. Ultimately, the analyses led us to potentially
actionable targets (and their MoAs) as candidates for possible
differentiation therapy of solid tumors and metastases. Our
approach could be applied to longitudinal study of samples
from primary, recurrent, and metastatic cancers, and gene
expression signatures identified in the tumor samples can be
used to interrogate CMap to suggest actionable targets and in-
hibitors for further analysis.

To the best of our knowledge, this is the first study in which
molecular PCBC datasets comprised of stem cells and defined
populations of their differentiated progeny have been leveraged
to develop a classification tool and machine-learning algorithm
for analysis of a spectrum of human malignancies. A number of
cancer stemness scores, based on genes that are differentially
expressed between CSCs and non-CSCs, have been published



d
,/\(Jxouaqd
boiyy

019 WNJUOZUOY
aunsnwas
|013R12AS3)

uoydansonyy
9Z11520-N
W sulwezuaq,
200¥6T-A1
3 apisojeue|
auoiepojwe
unadede
g-auluenbeze
auisouen

W suuaneplez
1seundez

alvespimycin

cyclosporin-a
econazole

inhibitors

specific inhibitors

LAd

Auaid
d

3
I

Aydipiou

0000-5t%6£10
0000-620SZ10

183SOULIOA

B 0 W suwnquia

338
23573
2532
3383
35352
33m5

auiwey
|oassbaw
auinboyaw
uedajoun
ajozewiop
9|0zZIWd)se
sulpejuewe
uusmol
auljixaysad
opljouay1IR

| [
|
|
aujj

ybenzamine

entinostat
|
irinotecan
loperamide
LY-294002
mefloquine
megestrol
naringenin
niclosamide
nortriptyline
benzone
phenox:
____ phloretin
imozi

[
prochlorperazine

" gossypol
____ pime

g
= o, =8
2. ez

s5_3 5
EEch-K] mé-ﬁm'm"‘j
S3352930.008.0
52 23 ]
2o00@n3s3 o
ZRNOLZ32aEN
55528354

32850835353

phan
iostrepton
trichostatin-a
averine

withaferin-a

resveratrol

vinblastine

vinburnine

zaprinast
d

thior
th

pyrvinium-pamoate
zare

i

| [ 7 perhe:

=S

g
o

éqt

upeysouinb

B suozuagouow
aunsnwo|
piediukide)d
uiaIndsa

count

®
i

3|0zeuoda
dopn

XOul
1 000¢

Count
0 500 1500

- 0.5
-0

- -0.5

MW W SARC
WOEE W skem
] STAD

mT6CT
W THCA

% of cancer types
with p-value < 0.05

mechanism of action

7 Dopamine receptor antagonist

Phosphodiesterase inhibitor
HDAC inhibitor

Adrenergic receptor antagonist
Tricyclic antidepressant
NFkBﬁathwa inhibitor
Cytochrome P450 inhibitor
Protein synthesis inhibitor

r
BCL inhibitor
Sterol demethylase inhibitor
Aromatase inhibitor
Microtubule inhibitor
MAP kinase inhibitor
DNA methyltransferase inhibitor
PLK inhibitor
DNA dependent protein kinase inhibitor
Chelating agent
TRPV antagonist
i ine receptor ligand

Acetylcholine receptor antagonist
I eptor i

b‘Agj

rec
Sodium/potassium/chloride transporter inhibitor
ATP syntﬁase inhibitor

Calcineurin inhibitor

Calcium channel blocker

L-type calcium channel blocker

Lipase inhibitor

eptor agonist

oe

g e rec
Bihydrofolate reductase inhibitor
Bacterial cell wall synthesis inhibitor
PI3K inhibitor

MTOR inhibitor

Topoisomerase inhibitor

Carnitine palmitoyltransferase inhibitor
Sodium/glucose cotransporter inhibitor
DNA replication inhibitor

STAT inhibitor

CDK activator

=

Ol

.

o«

Figure 7. Correlation of Cancer Stemness With Drug Resistance: Connectivity Map Analysis
(A) Heatmap showing enrichment score (positive in blue, negative in red) of each compound from the CMap for each cancer type. Compounds are sorted from
right to left by descending number of cancer type significantly enriched.
(B) Heatmap showing each compound (perturbagen) from the CMap that shares mechanisms of action (rows) and sorted by descending number of compound

with shared mechanisms of action.

See also Figure S7 and Tables S3 and S4.

Tubulin inhibitor

Potassium channel blocker
Progesterone receptor agonist
Opioid receptor agonist

HSP inhibitor

Adenosine receptor antagonist
Protein kinase inhibitor

SIRT activator

Adiponectin receptor agonist
Hemoglobin antagonist

FOXMT inhibitor

MCL1 inhibitor

ID1 inhibitor

Lanosterol demethylase inhibitor
Serotonin transporter inhibitor (SERT)

inhibitor

Cell 173, 338-354, April 5, 2018 349



and are relevant to clinical outcomes in AML (Eppert et al., 2011;
Gentles et al., 2010; Ng et al., 2016). In those studies, gene sets
enriched in ESCs (e.g., targets of NANOG, OCT4, SOX2, and
c-MYC) were frequently overexpressed in poorly differentiated
tumors compared with well-differentiated ones. In breast
cancers, those gene sets were associated with high-grade es-
trogen receptor-negative, basal-like tumors and poor clinical
outcome (Ben-Porath et al., 2008). Another web-based tool,
StemChecker, uses a curated set of 49 published stemness sig-
natures defined by gene expression, RNAI screens, transcription
factor binding sites, text mining of the literature, and other
computational approaches. But it has been tested only for
pancreatic ductal adenocarcinoma. In that case, high expression
of stemness genes correlated with poor prognosis (Pinto et al.,
2015). All previous studies were transcriptome-based and
limited to a narrow set of genes and a small number of tu-
mor types.

In the present study, we found oncogenic dedifferentiation to
be associated with several characteristics: mutations in genes
that encode oncogenes and epigenetic modifiers, perturbations
in specific MRNA/miRNA transcriptional networks, and deregu-
lation of signaling pathways. Cancer stemness also appeared to
involve core expression of MYC, OCT4, SOX2, and other genes
involved in the regulatory circuitry that underlies normal and
malignant self-renewal potential. Our indices derived from
mRNA expression and DNA methylation signatures reliably
stratified tumors of known stemness phenotype. High mRNAsi
was associated with basal breast carcinomas but also Her2
and lumB subtypes that are more aggressive than the hor-
mone-dependent lumA group. In contrast, high mDNAsi was
strongly associated with high-grade glioblastomas, poor OS,
and PFS. The association between stemness signatures
and adverse outcome for some tumor types, including gli-
omas, may reflect malignant cell origins or the impact of their
microenvironment.

Dedifferentiated cells can arise from different sources: from
long-lived stem or progenitor cells that accumulate mutations
in oncogenic pathways or via dedifferentiation from non-stem
cancer cells that convert to CSCs through deregulation of devel-
opmental and/or non-developmental pathways. It is important to
distinguish between the inherent stemness of CSCs and dedif-
ferentiation induced by the tumor microenvironment. However,
addressing that issue would require further validation beyond
the scope of this study using other genomic datasets and/or lab-
oratory experiments.

Both stemness indices were lowest in normal cells, increased
in primary tumors, and highest in metastases, consistent with the
idea that tumor progression generally involves oncogenic dedif-
ferentiation. Interestingly, we observed negative associations
between stemness and EMT gene signatures. The relationship
between EMT and stemness remains a hotly debated topic,
with several studies showing that EMT is necessarily associated
with stemness (Fabregat et al., 2016). However, most TCGA data
are obtained from primary tumors, which exist in a pre-EMT
state, since EMT is strongly associated with tumor progression
and with metastasis for many tumor types. Cancer cells in
many primary solid tumors are basically epithelial regardless of
their degrees of dedifferentiation, but some cells in such con-
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texts could acquire mesenchymal characteristics either by
accumulating additional mutations or by undergoing epigenetic
changes shaped by the tumor microenvironment. Those mesen-
chymal cells can traverse the underlying tissue, enter the blood-
stream, and seed distant organs, where they reacquire an
epithelial phenotype to form metastatic tumors.

We observed epithelial phenotypes and increased stemess
index in molecular profiles of tumor-type-matched metastatic
samples in the MET500 cohort. This portends an association
between dedifferentiation and spread of tumor cells to distant
organs. The observation is further supported by high mDNAsi
in samples from recurrent gliomas. It appears that tumor growth
de novo, or at recurrence/metastasis, is associated with an
increased stemness phenotype. Decreased mRNAsi levels
seen in TGCT suggest its possible differentiation as a germ cell
tumor type induced by the microenvironment of liver or lung
parenchyma, the organs it most often colonizes. Clinically, in
general, tumor progression is associated with greater aggres-
siveness and resistance to therapy of almost all types.

The mRNAsi was high for individual primary glioma and breast
cancer cells. Interestingly, when applied to transcriptomic pro-
files obtained from analysis of single cancer cells in bulk tumors,
stemness indices revealed a high degree of intratumor heteroge-
neity with respect to dedifferentiation phenotype. The heteroge-
neity was greater in gliomas than in breast cancer, suggesting
that intratumor environment, including stromal cells, hypoxia,
and infiltration of immune cells, may play a role in shaping CSC
niches and affect cancer cell developmental plasticity. Further
molecular analyses of cancer cells stratified by the stemness
phenotype would provide novel insights into the biology of pri-
mary tumors.

We found that for a number of tumor types (GBM, LUSC,
HNSC, and BLCA), higher mDNAsi was associated with reduced
leukocyte fraction and/or lower PD-L1 expression. Such tumors
are expected to be less susceptible to immune checkpoint
blockade, due either to insufficient immune cell infiltration of tu-
mors or to inherent downregulation of the PD-L1 pathway. Both
factors can render immune checkpoint immunotherapy ineffec-
tive. The interaction between PD-L1 on cancer cells and PD1 re-
ceptor on T cells helps cancer cells elude the immune system by
preventing activation of cytotoxic T cells in lymph nodes and
subsequent recruitment of other immune cell types to the tumor
site (Chen and Mellman, 2013). The presence of tumor-infiltrating
lymphocytes and/or PD-L1 expression correlates with aggres-
siveness in gastrointestinal stromal tumors (Bertucci et al.,
2015) and breast carcinomas (Polonia et al., 2017). Common fea-
tures shared between cancer cells and stem cells in the context
of the immune response are being highlighted by a growing num-
ber of studies showing that vaccination with ESCs or iPSCs can
raise specific immune response against cancer cells (Kooreman
et al., 2018). That finding may indicate that both cell populations
use protein networks that, in tumors, result in uncontrolled self-
renewal and dedifferentiated phenotypes histopathologically
defined by loss of architecture specific to the tissue of origin.
We speculate that the indices described here may help
predict the efficacy of stem-cell-based immunotherapies and
contribute to the identification of patients who will respond to
such therapies.



We interrogated CMap using the gene expression signatures
from tumor samples with the highest and lowest mRNAsi levels.
Surprisingly, perhaps, the CMap analysis, which is based on
only a limited number of treated cell lines, very precisely selected
drugs that have been shown to affect cancer stem cells with spec-
ificity. These translational analyses may ultimately pave the way
for implementation of differentiation therapies for solid tumors.

Here, we have also shown that cancer hallmarks can be ex-
tracted from datasets on cells with defined phenotypes and
used to train machine-learning methods applicable to index mo-
lecular profiles of cancer. Our mRNAsi and mDNAsi can be trans-
lated into stemness scores (e.g., STEM50) that stratify tumors
based on their dedifferentiation features, thus providing bio-
markers for prediction of patient outcomes and response to dif-
ferentiation therapies.

By defining new metrics of cancer stemness and using them to
interrogate TCGA datasets, our results provide a comprehensive
characterization of dedifferentiation as new and significant hall-
marks of cancer. The strengths of the approach are that it lever-
ages features of dedifferentiated cells across a spectrum of
tumor types that reflect tumor pathology and, in some cases,
clinical outcome. This study also provides strategies for inte-
grated analysis of cancer genomics based on machine-learning
methods trained on molecular profiles obtained from cells with
defined phenotypes. The findings based on those methods
may advance the development of objective diagnostics tools
for quantitating cancer stemness in clinical tumors, perhaps lead-
ing eventually to new biomarkers that predict tumor recurrence,
guide treatment selection, or improve responses to therapy.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical and molecular data were collected from the NIH Genomic Data Commons (GDC) of 11,392 participants from The Cancer
Genome Atlas PanCancer Atlas cohort (https://gdc.cancer.gov/about-data/publications/PanCanStemness-2018).
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METHOD DETAILS

DNA Methylation Data

A total of 9,627 PanCancer TCGA samples across 33 different tumor types were available for DNA methylation using the robust lllu-
mina HumanMethylation 450 (HM450) platform. TCGA samples included primary (8,471), recurrent (41), and metastatic tumor (394)
tissues and a set of 721 non-tumor tissues.

Level 3 data were downloaded from TCGA Data Portal using TCGADbiolinks functions GDCquery, GDCdownload and GDCprepare
importing into R (http://www.r-project.org) for further analysis (Colaprico et al., 2016).

DNA methylation level 3 data are p-values that were calculated from pre-processed raw data using the methylumi Bioconductor
package (Davis et al., 2015). Pre-processing steps included background correction, dye-bias normalization, and calculation of
B-values and detection p values. B-values range from zero to one, with zero indicating no DNA methylation and one indicating com-
plete DNA methylation. A detection p value compares the signal intensity difference between the analytical probes and a set of nega-
tive control probes on the array. Any data point with a corresponding p value greater than 0.01 is deemed not statistically significantly
different from background and is thus masked as “NA” in TCGA level 3 data. The data levels and the files contained in each data level
package are on the NIH Genomic Data Commons (GDC).

In addition to TCGA data, we used a dataset of 99 human stem/progenitor cells from the Progenitor Cell Biology Consortium
(PCBC) (https://www.synapse.org/#!Synapse:syn1773109) to define stem cell signatures (Daily et al., 2017; Salomonis et al.,
2016). PCBC samples were profiled using the lllumina HumanMethylation 450 (HM450) platform and consisted of 4 embryonic
stem cells (ESC), 40 induced pluripotent stem cells (iPSC), 22 stem cell (SC)-derived embryoid bodies (EB), 11 SC-derived mesoderm
day 5 (MESO, mesothelioma), 11 SC-derived ectoderm (ECTO), and 11 SC-derived definitive endoderm (DE). We downloaded raw
IDAT files from PCBC Genomic Data Commons and processed the data according to the TCGA standard level 3 protocol
described above.

RNA Expression Data
PanCancer TCGA RNA sequence level 3 normalized data were downloaded from the GDC Data Portal using TCGAbiolinks functions
GDCquery, GDCdownload and GDCprepare importing into R (http://www.r-project.org) for further analysis (Colaprico et al., 2016).
A total of 10,852 samples across 33 tumor types were available, including primary (9,702), recurrent (45) and metastatic tumor (395)
tissues and a set of 710 non-tumor tissues.

We also downloaded PCBC RNA sequence data from the PCBC Synapse Portal (https://www.synapse.org/#!
Synapse:syn1773109), consisting 16 ESC, 77 iPSC, 66 SC-derived EB, 29 SC-derived MESO, 29 SC-derived ECTO, and 36
SC-derived DE (Daily et al., 2017; Salomonis et al., 2016).

Stemness Index Derived Using OCLR
To calculate a stemness index (si) based on mRNA expression or DNA methylation, we built a predictive model using one-class
logistic regression (OCLR) (Sokolov et al., 2016) on the pluripotent stem cell samples (ESC and iPSC) from the PCBC dataset
(Daily et al., 2017; Salomonis et al., 2016).

For mRNA expression-based signatures, to ensure compatibility with the TCGA PanCancer cohort, we first mapped the gene
names from Ensembl IDs to Human Genome Organization (HUGO), dropping any genes that had no such mapping. The resulting
training matrix contained 12,945 mRNA expression values measured across all available PCBC samples. For DNA methylation-
based signatures, we used each of the signatures (probe set) described below.

We mean-centered the data, then applied OCLR to just the samples labeled SC (which included both ESC and iPSC). We chose to
use the one-class framework because of its robustness in the absence of the a “negative” class. The PCBC data does not have data
for fully differentiated cells, and progenitor cell types might exhibit some of the stemness signals.

Once the signature is obtained, it can be applied to score new samples. For RNA expression data, we computed Spearman cor-
relations between the model’s weight vector and the new sample’s expression profile. We advocate for the use of Spearman corre-
lation over the more traditional dot product operation because it is more robust with respect to potential cross-dataset batch effects
that may arise. For DNA methylation data, which follow the beta distribution, the samples were scored using the standard application
of a linear model: f(x) = wT x + b.

We validated our approach using leave-one-out cross-validation by withholding each SC sample in turn. A separate signature was
then trained on all other SC samples and used to score the withheld sample as well as all the non-SC samples. The performance was
measured using the area under the curve (AUC) metric, which can be interpreted as the probability that the model correctly ranks a
positive sample above a negative (Agarwal et al., 2005). In our cross-validation experiment, every withheld SC sample was scored
higher than all the non-SC samples, yielding an overall AUC of 1.0.

We performed additional validation of the stemness signature by applying it to an external dataset composed of pluripotent stem
cells (ESC and iPSC), somatic cells (17 distinct tissue types and several primary cell lines of diverse origin), and hydatidiform mole
samples (Nazor et al., 2012). The mRNA expression data for the study were downloaded from GEO (GEO: GSE30652) as were DNA
methylation data (GEO: GSE30654). We observed that all of the SC samples were correctly scored above all of the somatic samples
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by both platforms (Figure 1B). This is particularly striking for mMRNA expression, because mRNA expression in study by the Nazor et al.
was measured using microarrays, whereas the signature was trained using RNA-seq data.

Having validated the signature by using cross-validation and external SC data, we then applied it to score the TCGA PanCancer
cohort using the same Spearman correlation (RNA expression) or linear model (DNA methylation) operators. The indices were sub-
sequently mapped to the [0,1] range by using a linear transformation that subtracted the minimum and divided by the maximum. The
mapping was done to assist with interpretation as well as integration with the stemness indices derived from other data platforms
(i.e., DNA methylation and mRNA expression).

Additionally, we downloaded independent, non-TCGA datasets of gliomas [(Sturm et al., 2012) (GEO: GSE36245, GEO:
GSE36278) and (Turcan et al., 2012) (GEO: GSE30339)] and BRCA samples (Reyngold et al., 2014) (GSE59000) and applied our met-
rics to measure the stemness in the validation data. For mRNA expression, the preprocessing consisted of mapping the lllumina
probe IDs (lllumina HumanHT-12 V3.0 platform) to HUGO symbols, and then reducing the signature and the external dataset to a
common set of genes. We then computed the Spearman correlation between the signature and the external samples. For DNA
methylation, we applied the linear model.

DNA Methylation Stemness Signatures

Due to the magnitude of the available DNA methylation platform Infinium HumanMethylation450 (HM450), we defined DNA methyl-
ation-based stemness signatures as a reduced input to the OCLR machine learning algorithm. For the DNA methylation-based stem-
ness indices, three signatures were utilized, each defining a distinct, biologically relevant, molecular phenotype of stemness. First, we
performed a supervised analysis between human pluripotent stem cells (ESC and iPSC) and stem cell-derived progenitors (embryoid
bodies [EB], mesoderm [MESQ], ectoderm [ECTO], and definitive endoderm [DE]) (B value mean difference < —0.4 and false discov-
ery rate [FDR] < 10e-22; B value mean difference > 0.3 and false discovery rate [FDR] < 10e-17).All ‘rs’ and ‘ch’ probes were removed
prior to analyses. To eliminate somatic tissue-specific probes, we removed probes that were consistently methylated (standard de-
viation B value > 0.05) in non-tumor adult tissues available through TCGA. This resulted in a set of 62 pluripotent cell-specific and
differentially methylated regions, which was then used as input for the OCLR to determine the stemness index for each TCGA tumor
sample, named “differentially methylated probes-based stemness index” (DMPsi). Interestingly, most of these probes (85%) were
positioned within intergenic regions known as open seas (Figure S2A).

Second, we defined a stem cell signature associated with genomic enhancer elements. Enhancers have been shown to be a crit-
ically relevant functional element for defining gene target expression and chromatin organization. For this, we downloaded Chromatin
State data (ChromHMM) from the NIH Roadmap Epigenomics Consortium (http://www.roadmapepigenomics.org), which defined 18
chromatin states (based on 6 different histone marks: H3K4me3, H3K27ac, H3K4me1, H3K36me3, H3K9me3, and H3K27me3)
across 98 different cell types (Kundaje et al., 2015). Briefly, by using ChromHMM data we mapped the HM450 probes to the chro-
matin states in each individual cell type; then we identified genomic regions corresponding to active enhancers that are specific to
pluripotent stem cell states (ESC and iPSC), meaning that each region was defined as active enhancers (according to their states:
9-EnhA1 and 10-EnhA2 (Kundaje et al., 2015)) in all pluripotent stem cells (n = 9) whereas not enhancer (enhancer in less than
25% of non-pluripotent stem cells (n = 89)) in non-pluripotent stem cells. We identified 82 DNA methylation probes of the HM450
platform that mapped to enhancer elements and considered them to be a DNA methylation-based pluripotent stem cell enhancer
signature, which was then used as input for the OCLR to evaluate stemness signatures for TCGA samples, named “enhancer-based
stemness index” (ENHsi) (Figure S2A).

Third, we applied ELMER (Enhancer Linking by Methylation/Expression Relationships), an R/Bioconductor package (Yao et al.,
2015) that uses DNA methylation to identify enhancer elements and correlates enhancer state with expression of nearby genes to
identify putative transcriptional targets. Using ELMER, we compared pluripotent stem cells (ESC and iPSC) to stem cell-derived pro-
genitors (EB, MESO, ECTO, DE) from PCBC and identified 87 CpGs that were hypomethylated in the pluripotent state (ESC and iPSC)
compared to stem cell-derived progenitors and that potentially regulate 103 genes. We confirmed the importance of these probe-
gene pair targets by identifying that the SOX2-OCT4 transcription factor binding motif was among the most highly enriched signa-
tures within these elements (+/—250 bp from the center). The SOX2-OCT4 complex is an important master regulator of pluripotency
and stemness. We then derived a new set of signatures using the OCLR and defined TCGA samples’ stemness as “epigenetically
regulated stemness indices” for each molecular feature (RNA expression-based Epigenetically regulated-mRNAsi [EREG-mRNAsi]
and DNA methylation-based [EREG-mDNAsi]).

Because there was high concordance among the three DNA methylation-based indices (DMPsi, ENHsi, and EREG-mDNAsi)
(not shown) and each contributes important and complementary biological relevance to stemness, we combined the three stemness
signatures (total of 219 probes) and derived a comprehensive DNA methylation index, named mDNAsi (Figure S2A). The lists of
probes and genes used to derive the stemenss indices are provided on the publication portal accompanying this publication
(https://gdc.cancer.gov/about-data/publications/PanCanStemness-2018).

Stemness versus Molecular and Clinical Features

To evaluate the performance of our stemness indices across the entire TCGA cohort, we performed an enrichment analysis by sorting
TCGA samples by stemness index for each tumor type and looked for associations with all available genomic features (by using
comprehensive mutation data [MC3]), molecular features (previously published TCGA molecular subtypes available at TCGAbiolinks
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package (http://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html) (Colaprico et al., 2016; Silva et al., 2017), through
the function “PanCancerAtlas_subtypes(),” which provides full access to the curated matrix used for this study), and clinical features
(more than 10,000 features). We used the fgsea R/Bioconductor package to compute the enrichment scores (Sergushichev, 2016).
Briefly, for each tumor type we ranked the TCGA samples according to their stemness index (from -low to -high stemness index) and
tested if any particular genomic/molecular/clinical feature was associated with either -low or -high stemness index in a non-random
behavior. We performed 10,000 permutations for each parameter analyzed to calculated our enrichment score. We then normalized
the enrichment scores to mean enrichment of random samples of the same size (NES - normalized enrichment score). Tables con-
taining all the results can be accessed at https://gdc.cancer.gov/about-data/publications/PanCanStemness-2018. In addition, an
interactive portal with the results across all tumor samples/types versus mDNAsi and mRNAsi can be accessed at https://
bioinformaticsfmrp.github.io/PanCanStem_Web/ where the user can search for any gene or molecular/clinical feature of interest.

Stemness versus Clinical Predictors

The associations between the three stemness indices and overall survival (OS) and progression free survival (PFS) in different tumors
were evaluated in two stages. First, the proportional hazard (PH) model with the index as a single continuous covariate was used to
test whether there was a statistically significant effect on OS or PFS. Given that, for each outcome, the effects of the three indices
were tested for 33 cancer types. The significance level of the tests was adjusted for multiple testing to control the overall type | error
probability at 5%. In the next stage, the cancer types for which at least one index showed a statistically significant association with
either OS or PFS were analyzed in more detail by using a multivariable PH model that included relevant clinical factors. Moreover, the
model included a functional form of the index obtained by using degree-2 fractional polynomials (Royston and Altman, 1994). The
plausibility of the PH assumption was checked by using the test based on the scaled Schoenfeld residuals (Therneau and Grambsch,
2000). The analyses were conducted using STATA v13 software.

To select the clinical factors for inclusion in the PH model used in the second stage of the OS/PFS analysis for selected cancer
types, a detailed analysis of the association between the stemness indices and demographic and clinical features (such as sex,
age, race, stage, grade, etc.) was carried out by using linear models. mRNAsi and EREG-mRNAsi were analyzed on the original scale,
while mDNAsi was transformed logarithmically to make its distribution more symmetric. The fit of the constructed models was as-
sessed by using residual plots. The analyses were conducted using STATA v13 software.

The screening of the association between the stemness indices and OS (Figure 4E) by using univariable proportional hazard (PH)
models indicated a statistically significant (using p values adjusted for multiple testing) effect of mRNAsi on OS for LGG (p < 0.0001)
and STAD (p = 0.005) and on PFS for GBM (p = 0.04), LGG (p < 0.0001), LIHC (p = 0.05), STAD (p = 0.04), and UCEC (p = 0.03). For
mDNAEsi, an effect on OS was found for LGG (p < 0.0001) and on PFS for kidney renal papillary cell carcinoma (KIRP) (p = 0.04) and
LGG (p < 0.0001). Finally, for EREG-mRNAsi, a statistically significant effect on OS was found for ACC (p = 0.005), KIRC (p = 0.008),
and LGG (p = 0.03), and on PFS for ACC (p = 0.03), LGG (p = 0.03), and UCEC (p = 0.04). In these selected cases, multivariable an-
alyses were conducted (using STATA v13 software), which took into account the effect of clinical factors. The analyses confirmed (by
using unadjusted p values) the effect of MRNAsi on OS for STAD (p = 0.0001) and for GBM/LGG (p = 0.002) and the effect on PFS for
GBM/LGG (p = 0.008) and LIHC (p = 0.002). For mDNAsi, the effect on PFS in KIRP was confirmed (p = 0.0001), while for EREG-
mRNAsi, the effect on PFS in UCEC was confirmed (p = 0.05). These confirmed results indicate that the indices have a potential
role as novel, independent prognostic factors for the indicated tumor types.

Compounds Targeting with Cancer Stemness

To determine which target drugs might be useful against cancer stem cells, we used the Broad Institute’s Connectivity Map build 02
(CM) (Lamb et al., 2006), a public online tool (https://portals.broadinstitute.org/cmap/) (with registration) that allows users to predict
compounds that can activate or inhibit based on a gene expression signature.

To further investigate about mechanism of actions (MoA) and drug-target we performed specific analysis within Connectivity Map
tools (https://clue.io/) (Subramanian et al., 2017).

Using Connectivity Map (Query) in May 2017 having data available from a collection of cell lines (MCF, PC3, HL60 and SKMELS5)
and 164 compounds as small molecules perturbagens. We obtained 33 mRNA expression signatures (one for each cancer type) by
applying a differential expression analysis to samples with high mRNAsi and low mRNAsi, using the function TCGAanalyze_DEA from
the the R/Bioconductor package TCGAbiolinks version 2.5.9 (Colaprico et al., 2016), carrying edgeR pipeline. The table with differ-
entially expressed genes is reported as Table S3. Due to a limitation of the Connectivity Map tool that matches gene symbol and
HG-U133A probe set (eg 200800_s_at) GPL96 platform ID, we had to remove duplicate IDs after sorting by decreasing |logFC|.
We selected the top 1000 genes (500 upregulated and 500 downregulated) where the number of differentially expressed genes
was enough or considering the aggregation of upregulated or downregulated genes.

Connectivity MAP is a method similar to GSEA analysis and follows a 4 step approach: (i) looking for similarity between a query
signature (diff.expr. genes) and expression profiles present in the dataset using pattern-matching strategy based on Kolmogorov-
Smirnov test (i) rank-ordering the list of genes according their diff.expr. relative to the control from the above expression profiles
with significantly similarity (i) comparison of each rank-ordered list with a query signature to specify when upregulated query genes
appear in the proximity of the top of the list or near the bottom (“‘positive connectivity’’) or vice versa (‘‘negative connectivity’’) pro-
ducing an Enrichment Score (ES) from —1 to 1. (iv) All instances in the database are then ranked according to their connectivity
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scores; those at the top are most strongly correlated to the query signature, and those at the bottom are most strongly anticorrelated.

For each cancer type we obtained two tables that applied the Connectivity Map’s findings to stemness mRNA expression signa-
tures, namely, “detailed results” and “permuted results.” We used the permuted results and filter (with p < 0.05), to identify an
average of 74 compounds per tumor type that are predicted to repress or activate the stemness signature (Table S4A).

Connectivity Map (CMap) was recently updated (September 2017) (Subramanian et al., 2017), providing the end-users new func-
tionalities and new graphical interface as web-server, previous registration (https://clue.io/) allowing easily the extraction of drug-
interaction knowledge using as input a signature of genes or compounds.

The new interface (https://clue.io/), provided 7 different analysis (query, touchstone, proteomics query, command, data library,
repurposing, morpheus).

In particular CMap Query it is a tool for perturbagens that give rise to similar (or opposing) expression signatures, for a technical
limit, the CMap Query 2017 allows only to upload 150 genes max for upregulated genes and 150 genes for downregulated genes. For
this reason we considered the results analyzed in May 2017 using 500 genes for up-downregulated genes.

QUANTIFICATION AND STATISTICAL ANALYSIS

R version 3.3.1 was used for all statistical analyses, unless specified otherwise. The statistical details of all experiments are reported
in the figure legends and figures, including statistical analysis performed, statistical significance and exact n values.

To identify differentially methylated DNA methylation probes, we used the Wilcoxon test followed by multiple testing using the Ben-
jamini-Hochberg (BH) method to estimate false discovery rate (Benjamini and Hochberg, 1995).

To identify proteins and microRNAs differentially expressed between tumors with low versus high stemness index, we used a t test
followed by multiple testing using BH.

P values for the association between stemness index and continuous clinical data were also computed using a t test followed by
multiple testing using BH.

DATA AND SOFTWARE AVAILABILITY

All data are available on the NIH Genomic Data Commons (GDC), https://gdc.cancer.gov/about-data/publications/
PanCanStemness-2018.
The workflow to reproduce the stemness index, including downloading PCBC and TCGA PanCan33 datasets, training a stemness
signature, and applying it to score TCGA samples can be accessed at https://bioinformaticsfmrp.github.io/PanCanStem_Web/.
An interactive portal with the results for enrichment of molecular and clinical features and Stemness Indices across all tumor sam-
ples/types can be accessed at https://bioinformaticsfmrp.github.io/PanCanStem_Web/ where the user can search for any gene or
molecular/clinical feature of interest.
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Figure S1. Validation of mRNAsi and mDNAsi, Related to Figures 1 and 3

(A) Comparison of MRNAsi and mDNAsi values, as scored by signatures learned from PCBC data by OCLR (x axis) and Random Forest (y axis).

(B) Validation of mMRNAsi in non-TCGA breast cancer (BRCA) samples (Reyngold et al., 2014) to define stemness status. Stratification of mMRNAsi according to
histology of TCGA samples (left) and of the validation cohort (right). IDC - invasive ductal carcinoma; ILC - invasive lobular carcinoma.

(C) Validation of stemness indices (NDNAsi and mRNAsi) in non-TCGA glioma samples (Sturm et al., 2012; Turcan et al., 2012) using our metric to define stemness
status. The validation sets were previously classified into molecular subtypes of TCGA gliomas. Stratification of stemness indices according to molecular
subtypes in the TCGA (left) and in the validation cohort (right).

(D) Correlation of stemness indices and estimated cell composition derived from deconvolution of tumor epigenomic features in TCGA breast cancer samples
(Onuchic et al., 2016).

(legend continued on next page)



(E) Stemness indices in tumor versus non-tumor samples across tissue type. Top plots show mRNAsi and bottom plots show mDNAsi. See list of Abbreviations of
the TCGA Tumor Types.

(F) Correlation of stemness indices across TCGA tumor types. Tumor types on the x axis are sorted by low-to-high correlation between mDNAsi and mRNAsi. See
list of Abbreviations of the TCGA Tumor Types. mMRNAsi, RNA-based stemness index. mDNAsi, DNA methylation-based stemness index. EREG-mRNAsi,
epigenetically regulated-mRNAsi.
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Figure S2. Validation of mMRNAsi and mDNAsi and Correlation of mRNAsi with EMT, Related to Figures 1 and 2

(A) Heatmaps of DNA methylation levels of probe signature used to derive the mDNAsi in: Progenitor Cell Biology Consortium (PCBC) dataset (left), TCGA normal
adjacent tissue (middle), and TCGA tumors (right). Columns represent samples. TCGA tumor samples are sorted from lowest to highest mDNAsi. Rows represent
the DNA methylation probe signature (219 probes), which is a combination of three DNA methylation-based signatures: differentially methylated probes stemness
index (DMPsi), enhancer stemness index (ENHsi), and epigenetically regulated-mDNAsi (EREG-mDNAsi) (see STAR Methods for detail). Annotation of probes are
provided in the left of the heatmaps. First column (mDNAsi) indicates to which signature the probe belong. Second column (genomic location) indicates the
genomic location annotation of each probe from the UCSC genome browser. Chromatin State columns indicates the chromatin state of pluripotent stem cells
(iPSC and ESC) from Roadmap (n = 9) (Kundaje et al., 2015).

(legend continued on next page)



(B) Scatterplots showing correlation of mMDNAsi (x axis) and mRNAsi (y axis) by tumor type. Samples are colored according to TCGA classification in: primary,

recurrent, metastatic, and non-tumors.
(C) Correlation between mRNAsi and mRNA expression of epithelial-to-mesenchymal transition (EMT) markers. The markers are grouped according to whether

they are associated with epithelial (pink) or mesenchymal (teal blue) phenotype.
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Figure S3. Mutation Enrichment Analysis in Correlation with the mRNAsi and mDNAsi, Related to Figures 3 and 4

(A) (Left Panel) Comparison of normalized enrichment scores (NES) in mDNAsi (x axis) and mRNAsi (y axis) computed by tumor type in the mutation enrichment
analysis. Positive and negative NES entail enrichment and depletion of a given mutation being associated with a high stemness index, respectively. The quadrants
and colors represent genes with agreement (I) or disagreement (ll) between the two distinct indices and being associated only with mDNAsi (lI) or associated only
with mRNAsi (IV) between the two distinct indices (V, not significant). (Right Panel) Stemness indices stratified by representative mutation status and tumor types.
(B) Relationship of mutations in epigenetic modifier genes and stemness indices mRNAsi (top) and mDNAsi (bottom). NES, normalized enrichment scores.
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Figure S4. Correlation of miRNA and Protein Expression against mRNAsi and mDNAsi, Related to Figures 3 and 4.

(A) (Left Panel) Comparison of miRNA expression associated with mDNAsi and mRNAsi. Log10-normalized FDR-adjusted P value is plotted for mDNAsi (x axis)
and mRNAsi (y axis) for each miRNA probe for each tumor type. If a particular miRNA is upregulated in samples with a high stemness index, the values are
multiplied by —1. The quadrants and colors represent proteins with agreement or disagreement between the two distinct indices. (Right Panel) Correlation of
stemness indices and representative miRNAs for selected tumor types.

(B) Comparison of protein expression associated with mDNAsi and mRNAsi (left panel). Log10 (FDR-adjusted P value) is plotted for mDNAsi (x axis) and mRNAsi
(y axis) for each protein for each tumor type. If the protein is upregulated in high stemness index, —1 is multiplied to log10 providing positive values. The quadrants
and colors represent proteins with agreement or disagreement between the two distinct indices. Right, correlation scores of stemness indices and representative
proteins and tumor types.

(C) Correlation of ANNEXIN1 and FOXM1 with mDNAsi (top) and mRNAsi (bottom) across tumor types.
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Figure S5. Tumor Pathology and Clinical Outcome in Correlation with the mRNAsi and mDNAsi, Related to Figures 3 and 4.
(A and B) Tumor pathology grade associations with mRNAsi (A) and mDNAsi (B) by TCGA tumors types.

(C) OS and PFS curves for four (quartile-based) categories of the relevant indices. The figure also includes the estimated (solid line) functional forms of the
dependence of the logarithm of hazard ratio (log-HR) of OS or PFS on the indices. The forms in general correspond to the ordering of the survival curves. For
selected indices and outcomes the estimated functional form suggests a non-monotonic relationship between log-HR and the index.
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Figure S6. Evaluation of CIBERSORT Estimates of Immune Cell Subpopulation Fractions in the Context of mRNAsi and mDNAsi, Related to
Figure 6

(A) Plots show correlations between the mRNAsi (top) and mDNAsi (bottom) and the estimated fraction of cells for a selected panel of immune cell types.
Additional correlations of stemness with estimated immune cell activity, computed as the difference between activated and resting population fractions, are
included for NK cells, CD4+ T cells and macrophages. Correlation with PD-L1 protein expression is included for reference and the tumor types are sorted ac-
cording to it.

(B) Moonlight dynamic recognition analysis to identify associations with the mRNAsi across tumor types.

See also Table S3.
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Figure S7. Connectivity Map, Related to Figure 7
Heatmap showing each compound (perturbagen) from the Connectivity Map that share gene targets in (rows). Sorted by descending number of targets.
See also Table S3.
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