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Highlights: 

 
1. Based on complex network theory, we study the reliability in 

interdependent smart grid systems. 

2. We focus on understanding the structure of smart grid systems and 

studying the underlying network model, their interactions, and 

relationships. 

3. We show that how cascading failures occur in the interdependent smart 

grid systems. 

4. Based on percolation theory, we also study the effect of cascading failures 

effect and reveal detailed mathematical analysis of failure propagation in 

such systems. 

5. We analyze the reliability of our proposed model caused by random 

attacks or failures by calculating the size of giant functioning components 

in both networks. 
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Abstract: Complex network theory is a useful way to study many real complex systems. In this paper, 

a reliability analysis model based on complex network theory is introduced in interdependent smart 

grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying 

the underlying network model, their interactions, and relationships and how cascading failures occur in 

the interdependent smart grid systems. We propose a practical model for interdependent smart grid 

systems using complex theory. Besides, based on percolation theory, we also study the effect of 

cascading failures effect and reveal detailed mathematical analysis of failure propagation in such 

systems. We analyze the reliability of our proposed model caused by random attacks or failures by 

calculating the size of giant functioning components in interdependent smart grid systems. Our 

simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond 

which the smart gird systems collapse. Also we determine the critical values for different system 

parameters. In this way, the reliability analysis model based on complex network theory can be 

effectively utilized for anti-attack and protection purposes in interdependent smart grid systems. 

Keywords: Complex network; Smart gird systems; Percolation theory; Cascading failures;  

1. Introduction 

In recent years, the application of smart grid system 
[1] ~ [5]

 in our lives is becoming 

more and more extensive. To a certain extent, the smart grid system has changed our 

way of life. Generally, the smart grid systems depend on two main networks: grid 

network (conventional power grid) and communication network (providing control 

function and communication function). In the work-in-progress, smart grid systems 

need power generation
[6]

 using different kinds of energy sources e.g., fossil-fuels, 

solar, wind, geothermal, transmission of energy from source to destination, intelligent 

distribution by monitoring the demand of power in different regions, monitoring the 

power usage by customers using smart meters, and integrating other facilities e.g., 

plugged-in-electrical vehicles
[7]

. In this way, the smart grid systems change 

significantly and improve the energy usage efficiency in the last few years. 

  In smart grid systems
 [3] ~ [5]

, communication network needs grid network to support 

power energy, while power stations are controlled by communication network. Thus, 

the two networks are connected and mutually interdependent. Then smart grid 

systems can be regarded as interdependent systems 
[8]~[9]

. However, for interdependent 

system architecture, the failures in one network can lead to the cascading risk in 

another. For example, the breakdown of a power station network 
[10] 

could lead the 

corresponding cascading failure of some nodes in communication network, while in 

reverse faults in communication network might cause failures of the power station 
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network. Especially, the cascading failures may even occur recursively between the 

two interdependent grid network and communication network. We call it cascade of 

failures. Cascading failures are big issues in such coupled networks. Understanding 

the underlying cascading failures patterns to protect interdependent smart grid 

systems is quite necessary. 

  In order to improve the reliability of the smart grid systems, it is necessary to 

explore the cascading failures in interdependent smart gird systems. Recently many 

researchers have paid more attentions in this research field. Currents research 
[11]~[14]

 

in smart gird systems mainly focuses on failures about load balancing and load 

distribution. Most of these techniques rely on methods commonly used in distributed 

systems. An architecture for distributed generation way, which can help prevent 

cascading failures, is described in Ref.[15]. However, fault analysis and the impact of 

communication network on power grid were not mentioned. Optimization 

mechanisms have been used to balance demand and supply in Ref.[16]. Besides, the 

researcher has deeply investigated load distribution attack to provide effective 

prevention on false data injection
 [17]

. Fault location method in smart grid has been 

investigated in Ref.[18]. Obviously, existing work on modelling smart gird systems is 

mainly about extracting properties from physical systems and assumed associated 

cyber system and matching with some physical network families. For example, 

Hartmann et al. [18] proposed an mechanism that generates random topology power 

grids featuring the same topology and electrical characteristics generated from the real 

world. Toft and Maasoumy et al. 
[19]~[20]

 focused on the challenges of modeling smart 

grid systems that arise from the intrinsic heterogeneity and sensitivity to timing. 

Specific technologies applied in some smart grid systems include hybrid system 

modeling and heterogeneous models of computation, the use of domain-specific 

ontologies to strengthen modularity, and the joint modeling of functionality and 

implementation architectures 
[21]

. From discussed above, we can see that most of the 

previous research works don’t clearly present a mathematical analytical framework to 

not only analyze propagation process of cascading failures, but also present better 

model which is more fault tolerant. 

  In this paper, the aims are to reveal the reliability influence of the smart grid 

systems under random attack strategy. The results can provide guidance for safety 

design and protection of smart grid systems. It is difficult to establish a theoretical 

analysis model for the above research. Therefore, a numerical analysis based 

interdependent networks model is used to dynamically simulate the cascading failure 

process, where reasonable explanation of results is also presented. The outline of the 

paper is as follows: we discuss how we construct a theory model of interdependent 

smart grid systems in Section 2. In Section 3, we analyze the cascading failures 

process and define the problems we try to study. Section 4 indicates the extensive 

simulation results and more analysis points. Conclusions are summarized in Section 5. 

 



2. Model descriptions 

In this section, we mainly focus on modeling the interdependent smart grid systems. 

And we will describe more details about the types of the two interdependent networks 

and the relationship between them. Meanwhile, we will introduce the process of 

cascading failures by analyzing a simple network model. 

2.1 Notations 

For simplicity, we use network A, B stands for the power grid network and 

communication network respectively. The number of power grid network and 

communication network are assumed to have   and    respectively. In Table 1 we 

list some key notations in theoretical analysis. 

Table 1: Key Notations in Theoretical Analysis 

  ,    The number of nodes in communication and power grid network 

AiN  , BjN   
The number of nodes in communication and power grid network which 

have supporting interlink at stage i and j.  

i , j  The fraction of nodes that have supporting interlink at stage i and j.  

AiN , BjN  
The number of nodes in communication and power grid network which 

belong to the giant component at stage i and j. 

i , j  The fraction of nodes that belong to the giant components  

A
k , 

B
k  The average degree of network A and network B. 

 

2.2 Model Construction 

We consider the smart grid system consisting of two interdependent networks 
[22]~[24]

, 

i.e., the power grid and communication networks. In the actual scene, we can see that 

the number of nodes in the communication network is much larger than the number of 

nodes in the power network. So the number of nodes in the communication network is 

different with the number of nodes in the power network. Simply put, we assume that 

the number of nodes in the two networks is proportional in our model. In this paper, 

we stipulate that   /   are equal to 1:3. It means that one node in the power grid 

network supports three nodes in the communication network. And the degree 

distribution of the nodes in these two networks follows the passion distribution. 

  We refer to the connection of nodes in a single network as intra links. Without loss 

of generality, we consider the two interdependent networks as ER networks. Besides, 



we refer to the connection of nodes in two networks as inter links. The intra links and 

inter links are undirected. In the smart grid systems, the attack never directly happens 

on the power grid network; these attacks are generally attack the communications 

network. So we assume that attacks occur in the communication network initially. 

When the communication network is attacked, we assume that a node can maintain 

the function only if the following two conditions are satisfied [3], [4]: 

1) The node has at least one inter link with a node that functions. 

2) The node belongs to the giant component of its own network. 

  At the beginning we remove          of nodes in   . Due to the failure of these 

nodes, the intra links and inter links of these nodes are also removed. Owing to the 

dependence of the two networks, in the next step, some nodes fails in    because of 

lose their inter links. As the cascading failure, the power grid network also becomes 

fragment, according to the condition 2). In the remaining nodes there will be some 

nodes fail again. The failure of these nodes will lead to the further failure of nodes in 

the communication network. In the case, this failure will continue recursively between 

the two interdependent networks. Finally, this process will reach two stable states that 

one is that nodes in both networks are completely failure, other one is that the giant 

component is mutually inter connected without further cascading failures. 

  In order to understand the cascading failure process, we establish a simple model to 

simulate the failure process, as shown in Figure 1. 

 

  

(a)                      (b)                     (c) 

 



 

                      (d)                     (e) 

Figure 1: A simple case of cascading failure process. (a) Each node in network A depends on one 

node in network B. But each node in network B depends on three nodes in network A. The intra 

links are shown by arcs. The inter links are shown by straight lines. (b) The nodes in the shadow 

are attacked. (c) The nodes that are attacked and the edges connected to these nodes are all 

removed. (d) The nodes that are not in the giant component are removed, and meanwhile remove 

the edges connected to these nodes. (e) The second node in network B is removed because the 

nodes that have not dependent nodes in network A. then repeat the process of (c) and (d). Finally 

the system reaches a steady state that no further links and nodes are removed. 

3. Theoretical analysis 

Next, we give a mathematical analysis of the cascading failure process in the model of 

interdependent smart grid system. In order to analyze this process, we will make use 

of generating function and percolation theory 
[5]~[7]

. Here, we define the generating 

function of the degree distributions in network A as, 

0 ( ) ( ) k

A Ak
G z P k z  

Where ( )AP k  is the degree distribution of network A. As described above, the 

network A satisfy ER network model whose degrees are Poisson-distributed. The 

generating functions of the underlying branching processes is  

A1 0 0G ( ) ( ) / (1)A Az G z G   

  When random removed of fraction 1-p of nodes, the degree distribution of the 

remaining nodes will change, then the generating function of the new distribution also 

change [1]. We know that it is equal to the generating function of the original 

distribution with argument 1 (1 )p z   [24]
. After removed in the beginning, the 

number of remaining nodes is 1 AAN p N   , the fraction of nodes that belong to the 

giant component of network 1AN   is  

(1) 

(2) 



 0( ) 1 1 (1 )A A Ag p G p f     

Where Af  is a function of p. The relationship between Af  and p can be represented 

by the following transcendental equation [6], [7]: 

 1 1- (1- )A A Af G p f  

In the network B we can also get the same result. Based on this theory, we can get the 

following derivation process. 

3.1 Random Failure in Network A 

  We assume random attack or random break happen in systems, then we begin our 

analysis with random removal of a fraction 1-p of nodes in A. After the initial remove 

in the this stage, the failure is caused by the fragmentation of the 1AN   which  

1 1A A AN p N N      

Where 
1  is the proportion of 1AN   to the entire network A, 1 p  . The number of 

the giant component 1AN  of 1AN   is  

1 1 1 1 1 1( ) ( )A A A A A AN g N g N N              

The fraction of functioning nodes after the first stage failures is  

1 1 1( )Ag      

 

3.2 Cascading Effects in Network B 

  Since the nodes in network B depend on the nodes in network A, the removed 

nodes in network A will lead to the failure of nodes in network B. In the first stage, we 

can obtain the fraction of the remaining nodes in network A. Owing to one node in 

network B connect with three nodes in network A, corresponding fraction of nodes 

remains functional in network B. The expected number of nodes that still remain 

functional is  

3 3 2

2 1 1 1 1 21 (1 ) ( 3 3 )B B B BN N N N                    

3 2 2

2 1 1 1 1 1 1 13 3 ( 3 3) ( )Ag                     

The number of the giant component 2BN  of 2BN   is  

2 2 2 2 2 2( ) ( )B B B B B BN g N g N N              

2 2 2( )Bg      

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 



3.3 Further Failures in Network A 

  We will analyze what happens during cascading process. After the first stage, we 

know that one node in network B can be connected to one node, two nodes, or three 

nodes in network A, and other nodes don’t connected. Table 2 shows the proportion 

of the number of nodes in the network A to which the nodes in the network B are 

connected. 

Table 2: The proportion of the number of nodes in the network A to which the nodes in the 

network B are connected. 

0 1 2 3 

3

1(1 )  1 2

3 1 1(1 )C      2 2

3 1 1(1 )C      3

1  

 

There is no relationship between the intra links and inter links, then after failures in 

the second stage, the proportion of nodes in network B that are connected to the 

number of nodes has changed, as Table 3 shows.  

Table 3: The proportion of the number of nodes in the network A after the nodes in the network 

B being removed in the second stage. 

1 2 3 

1 2 3

3 1 1 1(1 ) / 1 (1 )C           2 2 3

3 1 1 1(1 ) / 1 (1 )C           3 3

1 1/ 1 (1 )      

 

  Now we can compute the number of functional nodes due to the fragmentation of 

functional nodes in network B. 

1 2 2 2 3 3

3 2 3 1 1 3 1 1 1 1(1 ) 1 (1 ) 2 3 / 1 (1 )A BN N C C                              

3 1 2( )A B AN g N      

From 1AN  to 3AN  , we know that 

1 3 2 1(1 ( ))A A B AN N g N      

Now we borrow an idea from [1], owing to all the nodes that were removed in the 

stage of the beginning attack do not belong to 2BN , 1AN  and 1AN  , the removal of these 

nodes from 1AN  is equivalent to the removal of the same fraction of nodes from 1AN  . 

Thus  

1 3 2 1 2 1(1 ( )) =(1 ( ))A A B A B AN N g N g N           

The fraction of nodes that removed from network A in third stage is 

1 2 1 1 21 (1 ( )) 1 ( )B Bg g                

Thus, we can obtain that  

(12) 

(13) 

(14) 

(15) 

(16) 



3 1 2( )Bg       

The number of the giant component 3AN  of 3AN   is 

3 3 3 3( )A A A AN g N N         

3 3 3( )Ag      

 

3.4 More Fragments in Network B Again 

  Due to the failures in the third stage, some nodes in network B will be removed. 

Here we can compute the number of remaining nodes, 

 
3 3 2

4 3 3 3 31 1 ( 3 3 )B B BN N N              
 

 

From 2BN to 4BN  , we know that 

3 2

2 4 3 3 3 2 21 ( 3 3 ) /B B BN N N               

As we show in the third stage 

3 2

2 4 3 3 3 2 21 ( 3 3 ) /B B BN N N               

Then, the fraction of nodes that removed from network B in fourth stage is  

3 2 2

2 2 3 3 3 2 1 3 3 31 (1 ( 3 3 ) / ) 1 ( 3 3) ( )Ag                            

So  

2

4 1 3 3 3( 3 3) ( )Ag             

The number of the giant component 4BN  of 4BN   is 

4 4 4 4( )B B B BN g N N         

And we can obtain the fraction of functional nodes as 

4 4 4( )Bg      

 

3.5 Transcendental Equations for Cascading Failures 

  According to the previous analysis process, we can get the recursion relations of the 

fraction of nodes that removed from network in each stage 

2

2 1 2 1 2 1 2 1

2 1 1 2

( 3 3) ( )

( )

i i i A i

i B i

g

g

    

  

  



        


   
 

Where 1 p  . So the Eq. (27) can be written as 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 



2

2 2 1 2 1 2 1

2 1 2

( 3 3) ( )

( )

i i i A i

i B i

p g

p g

   

 

  



       


  
 

In next section we will give a detailed analysis of Eq. (28).  

4. Numerical simulations 

Although we have obtained the recursion relations between the two networks in the 

cascading failure process, no one knows in which stage the cascading failures will 

stop. Our main goal is to get the final size of the giant connected component. We 

denote the fraction of nodes that remain functional in network A and in network B as 

A 
and B 

 respectively. When the cascading process stops, the giant components 

in the two networks have no further fragments. In this way, we can get the following 

equivalence relationship, 

2 2 2 2 2

2 1 2 1 2 3

i i i

i i i

  

  

 

  

   


   
 

For simplicity, we denote 2 2 2 2 2y i i i   
     and 2 1 2 1 2 3i i ix     

      

( 0 , 1x y  ). Where ( )A Ax g x

   and ( )B By g y


   

  On the basis of the equation (28) and the simplicity of 2i and 2 1i 
 ,we can get  

2

( )

( ( )) 3 ( ) 3 ( )

B

A A A

x p g y

y p x g x x g x g x

 


          

 

This equation group have one trivial solution, x=0 and y=0 for any p. Excluding y we 

can obtain a single equation 

2( ( )) 3 ( ) 3 ( )B A A Ax p g p x g x x g x g x            
 

This equation be solved graphically (Fig 1). Firstly we draw the straight line z x , 

and then we draw the curve 2( ( )) 3 ( ) 3 ( )B A A Az p g p x g x x g x g x            
 in 

the different p value. From Fig.2, when the value of p is very small, the curve doesn’t 

intersect the straight line in 0 1x  . As the value of P increases, the straight line 

intersects the curve for the first time in p=0.42, which the curve touches the straight 

line at a single point. When P continues to grow, two intersections will appear. So we 

can estimate that the critical threshold is 0.42cp  . 

(29) 

(30) 

(31) 

(28) 



 

Figure 2: Solution of the equation (30). Both networks are ER networks, and the average degree 

of the two networks is 4. 

 

Next, we will use simulation experiments to verify the correctness of our 

mathematical analysis. In the experiment, we use random remove to represent the 

random attacks on the network. 

 

4.1 Simulation Setup 

In the simulation setting, we generate two interdependent networks using ER model. 

In our design, each node in network B is randomly connected to three nodes in 

network A. Then we randomly remove the fraction (1-p) of nodes from network A. 

After that, the initial attack will cause the cascading failures. Our experiment will 

simulate the cascading failure process at each step. When nodes have no more failures, 

the process will stop. 

 

4.2 Results and Analysis 

First we compare the fraction of remaining nodes 2i  and 2 1i   in the case of 

different p, with the same average degree. As shown in Fig 3, we compared three 

group experiments in which only the average degree of the two networks is different. 

For the value of p is from 0.2 to 1.0. From Fig. 3, we can see that as the average 

degree increases, the remaining number of nodes in the network grows synchronously 

until the cascading process stops. This phenomenon indicates that as the average 

degree of the network increases, the connection between the networks is more closely, 



which means the smart grid is more reliable. Besides, in Fig. 3, we can also observe 

that 2 1 0i    when 2 0i   and it indicates that the network will disintegrate when 

the other network disintegrate in the coupled interdependent network. 

 

Figure 3: The fraction of survivals in both networks. In our simulation both networks are ER 

networks with the same average degree 4
A B

k k  . The number of communication network 

and power grid are 9000, 3000 respectively.  

 

  In order to verify the correctness of our theoretical analysis, we take several values 

near the critical threshold cp . For each value, we can get the probability of having a 

giant component using the experiment. Fig. 4a shows that the system will disintegrate 

when 0.40p  , but has a giant component when 0.45p  . In the scope of [0.40, 0.45], 

the system may have a giant component or not. From Fig. 4b, we know that the curve 

tends to rise linearly near 0.42. Thus the transition at cp  is continuous which   

indicate it is second-order transition. But when the number of nodes in the network is 

large enough, it will only have the first-order transition.  



 

(a) 

 

(b) 

Figure 4:The probability of having a giant component. (a) both networks are ER networks with 

the same average degree 4
A B

k k  , The number of communication network and power 

grid are 9000, 3000 respectively. (b) both networks are ER networks with the same average degree 



4
A B

k k  , too. But we do four group experiments with different nodes number. The 

simulation results are in agreement with our analytical results. 

 

  We now show how the system reliability depends on the different values of average 

degree. In Fig 5(a), the blue line is the case where the two networks have the same 

average degree of the nodes. The red line and the yellow line are the case where the 

two networks have the different average degree of the nodes. In Fig 5(b), the average 

degree of nodes in each group of experiments is different. From the Fig 5(a) and Fig 

5(b), we can get the same conclusion as Figure 3. 

 

(a) 



 

(b) 

Fig 5: The fraction of survivals 2i  and 2 1i  . The number of communication network and power 

grid are 9000, 3000 respectively. Both networks are ER networks. The initial attack (1-p) occurs in 

network A. 

  From Fig.3~Fig.5, we show that the fraction of survivals 2i  and 2 1i   have no 

connection with the number 
A

N  and BN . In other words, it is determined by the 

distribution of degrees of nodes in the network and the fraction of removed (1-p) in 

the beginning. And then, we can draw the conclusion that the reliability of smart grid 

system becomes robustness with the increase of average degree. In this way, when we 

design robustness smart grid systems, we need to increase the inner average degree 

and then we can make the interdependent smart grid systems invulnerability to resist 

random attacks or random breakdown. So for real interdependent smart grid systems, 

our analysis shows that if we keep the average degree in a high level, the system 

reliability in terms of random failure or random breakdown remains in a reliable level.   

5 Conclusions 

We study the reliability and cascading risk of a smart gird system in which a cyber 

network overlays a grid network. To check the network reliability against random 

nodes failures, we estimate the fraction of nodes that still remain functional after the 

cascading failures process stops, and then we can obtain the correct results by 



simulation experiment. Our findings show that there is always a critical threshold 

value. If the percentage of failing nodes is greater than the critical value, the 

interdependent smart gird systems will collapse. Our theory analysis and simulation 

experiment also show that, if both networks satisfy the same degree distribution, the 

system reliability does not have the direct connection with the system size. 

  However, our proposed analysis model still has some limitations which could be 

our future work. For instance, we consider both networks are ER networks while the 

realistic settings are scale-free. Meanwhile, the giant components could not always 

work in reality. It is also of interest to study models that are more realistic than the 

existing ones in this paper. Clearly, there are still many open questions about 

interdependent smart grid systems. We are currently investigating related work along 

this avenue.    
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