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Drought impacts on phloem transport have attracted attention

only recently, despite the well-established, and empirically

verified theories on drought impacts on water transport in

plants in general. This is because studying phloem transport is

challenging. Phloem tissue is relatively small and delicate, and

it has often been assumed not to be impacted by drought, or

having insignificant impact on plant function or survival

compared to the xylem. New evidence, however, suggests that

drought responses of the phloem might hold the key for

predicting plant survival time during drought or revival capacity

after drought. This review summarizes current theories and

empirical evidence on how drought might impact phloem

transport, and evaluates these findings in relation to plant

survival during drought.
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Introduction
Predictions for future climate suggest an increase in

drought frequency and severity especially in the mid-

latitudes and low-latitudes [1]. This has brought up a

concern about future agricultural and forest productivity.

Reductions in productivity could be significant enough to

have a major impact on human wellbeing [2,3]. Vegetation

decline could also accelerate global warming through the

altered carbon and water cycles [4]. These predictions are

supported by a large number of observed ecosystem-scale

forest mortality events during the past 20 years [5]. The

scientific community has reacted by an increased interest

in developing methods for predicting plant survival under

drought [6–10]. The most commonly used concept in

these models is based on the theories about xylem vul-

nerability to embolism [11�], and its connection to stoma-

tal closure [12,13]. These theories suggest that during
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drought water tension in the xylem increases leading to

embolization of xylem conduits. To prevent catastrophic

loss of xylem conductivity plants close their stomata

before a water tension threshold is reached. This threshold

depends on plant species and is linked with xylem vul-

nerability to embolism [11�]. Even after stomatal closure,

plants slowly lose water through the bark and cuticular

tissue of leaves. Stomatal closure does not completely

prevent additional embolism [14�,15�], but it significantly

reduces water loss rates and embolism propagation.

The theories on xylem vulnerability to drought and its

connection to stomatal closure point are robust and sup-

ported by a wealth of empirical evidence [11�,13,16,17],
but the predictive power of this approach concerning

plant survival time is limited [9,11�,18]. We lack knowl-

edge on how to define the needed thresholds of cata-

strophic hydraulic failure [19,20]. Findings on a meta-

analysis of 19 recent plant mortality studies on 26 species

around the world suggests that 60% or higher loss of

conductivity leads to mortality (defined as loss of leaves

or cessation of respiration [21�]), while many other studies

have used thresholds on 50–88% [19,20]. Other open

questions include how fast plants would die once a

threshold is reached [8], and how availability of new or

stored carbohydrates, and their use impact these thresh-

olds, and survival or revival capacity after drought [22,23].

Considerations of drought impacts on phloem transport

and xylem–phloem interactions could be a key for resolv-

ing these challenges [24,25�]. Theoretically, limitations in

phloem transport influence allocation and redistribution

of carbohydrate reserves, possibly speeding up mortality

via carbon starvation [24,26,30]. These limitations might

feed directly back to stomatal closure during drought [27].

There is also evidence that reduction in carbohydrate

reserves or turgor loss of the phloem tissue are best

predictors of plant survival time during extreme drought

[28–30], even if loss of xylem conductivity might be the

final manifestation of death of the plant [30,31]. Phloem

transport is also important for plant defenses against her-

bivore and pathogens [25�,31]. This might explain part of

the high correlation of carbohydrate reserves with survival

time (R2 > 0.9) in datasets where mortality was facilitated

by insects [8,29]. Therefore, understanding drought

impacts on phloem transport and the role of xylem–phloem

interactions during drought is essential for improving pre-

dictions of vegetation responses to environmental stress.

How could drought affect phloem transport?
Xylem and phloem are hydraulically connected, and

they tend to be in hydraulic equilibrium at all relevant
www.sciencedirect.com
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time scales [32]. This implies that increasing xylem

water tension during drought is sensed by the phloem

tissue. To maintain functionality and avoid losing water

to the transpiration stream during drought, phloem

tissue water potential needs to be adjusted osmotically

to match that of the xylem [27,33]. This osmotic adjust-

ment could be obtained by increasing carbohydrate

concentration in the phloem conduits and cells sur-

rounding the conduits. But increasing carbohydrate

concentration increases the solute viscosity exponen-

tially [34]. For example, in pine, under severe drought

when the xylem water potential drops below roughly

�4 to �5 MPa (estimation made for pine anatomy using

the FinnSim model [7]), the sugar concentration

required to balance phloem and xylem water potentials

increases to a level where fluid viscosity leads to sig-

nificant increase in phloem flow resistance possibly

blocking the conduits [33,35,36�]. If phloem osmoreg-

ulation is too slow or fails, water would flow from the

phloem to the xylem resulting in turgor loss and col-

lapse of the tissue (Figure 1) [35]. At the onset of

drought, growth also often declines before stomatal

closure [37,38]. This reduces the strength of carbohy-

drate sinks [39] slowing phloem transport down even if

transport was not limited by any other mechanism.

Instead of leading to phloem malfunction, mild

drought might thus mostly affect phloem transport

rates.
Figure 1

Diameter

Phloem

Xylem

W
at

er

Moist conditions

Phloem
conduit

Semiperme
conduit wal

Sugar

A schematic presentation on how drought impacts the whole stem, highligh

solute concentrations in the phloem can maintain hydraulic equilibrium with

During drought (right), the tissues shrink, high solute concentrations in the p

to the drying xylem.

www.sciencedirect.com 
What do we know about drought impacts on
phloem transport?
There is little information about whether carbohydrate

transport at tissue water potentials close to the viscosity

limit occurs, even if the hypothesis about the importance

of such transport for plant survival is plausible. This is

because measuring phloem transport requires elaborate

non-destructive techniques [40–42], and few studies have

focused on transport under drought. Indirect evidence

based on changes in non-structural carbohydrate pools

during drought give ambivalent results. Shoot soluble

sugar pools have been observed to increase after stomatal

closure at �5 MPa leaf water potential in Juniperus mono-
sperma [29]. But a comparable change in starch was

observed suggesting that perhaps this change was due

to local starch-to-sugars conversion rather than phloem

transport. Studies on Picea abies saplings suggest that

carbohydrates were not transported to the roots during

a drought that lead to mortality [43,44], supporting the

view of lack of phloem transport during severe drought.

On the other hand, Pinus edulis trees that survived longest

during a lethal drought consumed their carbohydrate

reserves to a higher degree than trees that died faster

supporting the view that access to carbohydrate reserves

differs even within species and promotes survival [30].

Whether phloem sap viscosity increases to levels that

might induce phloem blockage is also an open question.
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ting a phloem conduit. In moist conditions (left) even relatively low

 the xylem and pull water from the transpiration stream to the phloem.

hloem cells and conduits are needed to keep the water from flowing
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For this to happen, and be relevant for plant survival

during drought, the plant will need to transport carbohy-

drates at tissue water potentials close to or below �4 MPa

(the threshold depending on phloem anatomy) [32,33].

Most desiccation avoiding (isohydric) plants never reach

such tissue water potentials before stomatal closure. For

these plants, the viscosity limitation may become impor-

tant during redistribution of resources after stomatal

closure [35]. Desiccation tolerant (anisohydric) plants that

produce new carbohydrates at low leaf water potentials

seem to reach such water potentials, but only in very arid

conditions [29,45–48]. These plants may have different

mechanisms for maintaining phloem transport or reduc-

ing the need for phloem transport. They could, for

example store new photosynthetic products in the leaves

[29] and release them in small quantities together with

salt ions that do not increase fluid viscosity as much as

carbohydrates [49]. The viscosity build-up also requires

phloem conduits that are hydraulically relatively isolated

from their surroundings. If the conduits are hydraulically

well connected to their surroundings, phloem transport

will be protected from effects of increasing viscosity by

water readily entering and exiting the conduit and dilut-

ing the solution with increasing sugar concentration [34]

as long as water is available. In that case, however, the risk

for tissue turgor loss and requirements for fast osmoregu-

lation would be higher than if the hydraulic conductivity

between the xylem and the phloem was low [34,50,51].

There is little empirical information on the hydraulic

conductivity between the xylem and the phloem. Some

indirect measurements on temperate deciduous hard-

wood species suggest that the conductivity is of similar

order of magnitude as has been reported for aquaporins

(10�14 m s�1 Pa�1) [52], but modeling studies often use

values two or more orders of magnitudes larger than that

[33,53]. Aquaporins have been found in phloem conduit

cell membranes in some species [54��], and they are a very

interesting solution to controlling the trade-off between

viscosity build-up and turgor failure during drought. They

can be readily formed and closed by the plant [55]

allowing quick control of the hydraulic conductivity,

and therefore also control of immediate osmoregulatory

needs and phloem vulnerability to decreasing xylem

water potential.

As of today, most studies on drought impacts on plant

hydraulics, however, use plants that close the stomata at

high leaf water potentials (desiccation avoiding plants)

[21�], in which case no drought-induced limitation to

phloem transport besides possible reduction in carbon

sinks, should exist. Eventually, these plants will also

reach low tissue water potentials that can block phloem

transport [30], but few studies continue long enough to

allow plants reach this point and test possible needs for

phloem transport in these conditions. Many studies also

report an initial increase in leaf non-structural
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carbohydrate pools during drought, which is usually

attributed to drought limiting growth before stomatal

closure [24,26]. Interestingly, a study on desiccation

avoiding Pinus edulis suggests that phloem transport lim-

itations could also be involved. In that study phloem

turgor collapsed (cells collapsed) two weeks before per-

manent stomatal closure during drought [30]. This study

also shows that the rate at which carbohydrates are used

after stomatal closure may depend on water availability.

Some individuals can reduce the consumption rate with

declining water availability increasing their survival time.

If water is available, phloem transport will continue until

carbohydrate reserves are consumed if stomata were

forced to close, for example, by shading or CO2 removal,

[44]. In this case phloem turgor collapses even at rela-

tively high xylem water potential [30] when osmoregula-

tory resources are consumed. At this stage, also the xylem

embolizes even if the soil moisture content was at field

capacity, indicating that the integrity of the phloem is

important for maintaining xylem function [30]. This is a

possible explanation to why phloem turgor collapse can

predict plant survival time so well.

What kind of phloem would be best for
facilitating transport during drought?
Structurally, to maintain transport capacity of the phloem

at low tissue water potentials, it would be beneficial to

have the conduits surrounded by living cells that can

control their water content and serve as a water reservoir

relatively independently of the xylem. These kinds of

structures seem to be common in leaves and stems of

many angiosperms [56]. Many plants also show bands of

fibers between rows of phloem conduits [56] that could

provide mechanical resistance against phloem collapse.

Maintaining phloem turgor under drought would be

easier if the xylem and the phloem were hydraulically

relatively isolated. But at the same time, even in non-

drought conditions, the only source of replacement water

for the phloem tissue (including conduits and other cells)

is through the xylem, and some hydraulic connection is

thus essential. One could hypothesize that a system with

lowest possible hydraulic conductivity between the

xylem and the phloem that does not lead to viscosity

blockage of flow at low tissue water potentials would be

optimal.

The combined impacts of conduit anatomy and wall

permeability on sugar transport in conduits with semi-

permeable walls can be summarized by considering the

ratio of flow resistance in axial and radial direction, the

Münch number (Figure 2) [53,35]. If the flow resistance in

axial direction increases to the order of magnitude of the

resistance in radial direction, efficiency of axial transport

would be severely impacted. The axial resistance

increases with increasing viscosity, and conduit length

(Figure 2), while radial resistance decreases with increas-

ing wall permeability. Axial flow resistance is also lower in
www.sciencedirect.com
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Figure 2
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The Münch number describes the ratio of axial and radial flow resistance in cylindrical conduits with semi-permeable walls. It is the ratio of fluid

viscosity (h), conduit length (L) squared and wall permeability Lp to conduit radius (r) cubed. At low Münch numbers axial transport in phloem

conduits is efficient. At low tissue water potentials, having low wall permeability, and short and wide conduits would be a benefit.

Figure 3
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An X-ray tomography image of the xylem–phloem boundary in Pinus

edulis. Bordered pits are found at the last cell wall of the xylem

connecting it to the first cell layer of cambium connecting the xylem

and the phloem.
wide than narrow conduits. Based on these arguments it

looks like that at a set conduit wall permeability, short and

wide conduits would be better for maintaining phloem

transport at low tissue water potentials than long and
www.sciencedirect.com 
narrow conduits. There is, however much unknown about

phloem transport and anatomy [57]. Even the effective

transport length of conduits is somewhat unclear because

of the observations that sieve plates or other obstructive-

looking structures may not obstruct the axial flow [58].

Therefore, accurate estimates of flow limitations during

drought are still challenging. New evidence on phloem

anatomy of two coniferous species that have become the

model species of drought responses of desiccation avoid-

ing and tolerant plants (Pinus edulis and Juniperus mono-
sperma, respectively) also indicates that the xylem and the

cambial layer can be connected by bordered pits (Fig-

ure 3), and there is an abundance of sieve pores connect-

ing the phloem conduits to form a conduit network rather

than a tissue of single conduits (S. Sevanto, unpublished

data). If these findings are verified by future studies, our

current views of how plants control drought impacts on

phloem transport might change dramatically.

Conclusions
Theoretical work on drought impacts on phloem transport

indicates that the hydraulic conductivity between the

xylem and the phloem, and between phloem conduits

and their immediate environment determines how and

when phloem transport becomes impaired during

drought. Whether these predictions match the reality

requires more experimental work on phloem anatomy
Current Opinion in Plant Biology 2018, 43:76–81
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and function, especially under drought conditions. In the

few studies that have addressed phloem transport during

drought, integrity of the phloem seems to be essential for

plant survival and it comes out as one of the best pre-

dictors of plant survival time. However, more studies on

whether and how plants might promote or control phloem

integrity during drought are needed before the true

impacts of phloem transport on plant survival during

drought can be assessed.
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