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Abstract. Rooted plane trees are reduced by four different operations on the fringe. The
number of surviving nodes after reducing the tree repeatedly for a fixed number of times
is asymptotically analyzed. The four different operations include cutting all or only the
leftmost leaves or maximal paths. This generalizes the concept of pruning a tree. The results
include exact expressions and asymptotic expansions for the expected value and the variance
as well as central limit theorems.
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1. Introduction

Plane trees are among the most interesting elementary combinatorial objects;
they appear in the literature under many different names such as ordered trees,
planar trees, planted plane trees, etc. They have been analyzed from various
aspects, especially due to their relevance in Computer Science. Two particu-
larly well-known quantities are the height, since it is equivalent to the stack size
needed to explore binary (expression) trees, and the pruning number (pruning
index), since it is equivalent to the register function (Horton–Strahler number)
of binary trees. Several results for the height of plane trees can be found in
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Figure 1. Removal of (old) leaves / paths

[3,7,22], for the register function, we refer to [4,9,17], and for results on the
connection between the register function and the pruning number to [4,27].

Reducing (cutting-down) trees has also been a popular research theme dur-
ing the last decades [15,19,21]: according to a certain probabilistic model, a
given tree is reduced until a certain condition is satisfied (usually, the root is
isolated).

In the present paper, the point of view is slightly different, as we reduce a
tree in a completely deterministic fashion at the leaves until the tree has no
more edges. All these reductions take place on the fringe, meaning that only
(a subset of) leaves (and some adjacent structures) are removed. We consider
four different models:

– In one round, all leaves together with the corresponding edges are
removed (see Sect. 2).

– In one round, all maximal paths (linear graphs), with the leaves on one
end, are removed (see Sect. 3). This process is called pruning.

– A leaf is called an old leaf if it is the leftmost sibling of its parents. This
concept was introduced in [2]. In one round, only old leaves are removed
(see Sect. 4).

– The last model deals with pruning old paths. There might be several
interesting models related to this; the one we have chosen here is that in
one round maximal paths are removed, under the condition that each of
their nodes is the leftmost child of their parent node (see Sect. 5).

The four tree reductions are illustrated in Fig. 1. We describe these reduc-
tions more formally in the corresponding sections.

The first model is clearly related to the height of the plane tree, and the
second one to the Horton–Strahler number via the pruning index [24,27]. While
there are no surprises about the number of rounds that the process takes here,
we are interested in how the fringe develops. The number of leaves and nodes
altogether in the remaining tree after a fixed number of reduction rounds is
the main parameter analyzed in this paper.
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For the sake of simplicity, we will use the same notation for each of the
following reduction analyses. In case we need to compare objects from two
different sections, we will distinguish them by adding appropriate superscripts.

The random variable Xn,r models the tree size after reducing a plane tree
of size n (that is chosen uniformly at random among all trees with n nodes)
r-times iteratively according to one of our four reductions. If a tree does not
“survive” r rounds of reductions, we consider the size of the resulting tree to
be 0. In particular, for r = 0, the given plane tree is not changed and Xn,0 = n.

As we will see, a key aspect of the analysis of Xn,r is the translation of the
algorithmic description of the reduction into an operator Φ that acts on the
corresponding generating functions.

In Sect. 2, the reduction cutting away all leaves from the tree is discussed.
Section 2.1 contains all necessary auxiliary concepts required in order to study
the r-fold application of this reduction. In Sect. 2.2, we determine the operator
Φ acting on the corresponding generating function explicitly and prove some
direct consequences. Then, in Sect. 2.3 we give the analysis of the behavior
of Xn,r by computing explicit expressions and asymptotic expansions for the
factorial moments of Xn,r as well as a central limit theorem.

Section 3 is devoted to the study of the reduction that cuts away all paths.
As we will see in Sect. 3.1, we can actually obtain all results regarding the
behavior of Xn,r as consequences of the corresponding results in Sect. 2. In
Sect. 3.2, we analyze the asymptotic behavior of the expected number of paths
required to construct a plane tree of size n, i.e. the number of paths we can
cut away until the tree cannot be reduced any further.

Sections 4 and 5 are devoted to the analysis of reductions removing only
leftmost leaves and leftmost paths from the tree, respectively. In particular, in
Sect. 5.3, we study the total number of old paths that can be removed from a
tree until it cannot be reduced any further.

On a general note, the computationally heavy parts of this paper have been
carried out with the open-source computer mathematics system SageMath [23],
and the corresponding worksheets are available for download. In particular,
there are the following files:

• treereductions.ipynb for most of the asymptotic computations in
Sects. 2, 3, and 4,

• old paths.ipynb for most of the asymptotic computations in Sect. 5,
• factorial moments leaves.ipynb for computation of the factorial

moments in Theorem 1,
• factorial moments old paths.ipynb for computation of the factorial

moments in Theorem 6.

Additionally, in order to run these computations yourself, you also need to
download the following two utility files:

https://benjamin-hackl.at/downloads/treereductions/treereductions.ipynb
https://benjamin-hackl.at/downloads/treereductions/old_paths.ipynb
https://benjamin-hackl.at/downloads/treereductions/factorial_moments_leaves.ipynb
https://benjamin-hackl.at/downloads/treereductions/factorial_moments_old_paths.ipynb
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Figure 2. Symbolic equation for plane trees

• identities common.py,
• conditional substitution.py.

All these files including some instructions on how to use them can be found at
https://benjamin-hackl.at/publications/treereductions/.

2. Cutting leaves

2.1. Preliminaries

In this part of the paper we investigate the effect of the tree reduction that
cuts away all leaves from a given tree. However, before we can do so, we require
some auxiliary concepts, which we discuss in this section. Most importantly, we
need a generating function counting plane trees with respect to their number of
inner nodes and leaves, which is intimately linked to Narayana numbers. The
generating function presented in the following proposition is actually well-
known (see, e.g. [10, Example III.13]).

Proposition 2.1. The generating function T (z, t) which enumerates plane trees
with respect to their internal nodes (marked by the variable z) and leaves
(marked by t) is given explicitly by

T (z, t) =
1 − (z − t) −

√
1 − 2(z + t) + (z − t)2

2
. (1)

Proof. This can be obtained directly from the symbolic equation describing
the combinatorial class of plane trees T , which is illustrated in Fig. 2. In
particular, � and represent leaves and internal nodes, respectively.

The symbolic equation translates into the functional equation

T (z, t) = t +
zT (z, t)

1 − T (z, t)
,

which yields (1) after solving it for T (z, t) and choosing the appropriate branch.
�

https://benjamin-hackl.at/downloads/treereductions/identities_common.py
https://benjamin-hackl.at/downloads/treereductions/conditional_substitution.py
https://benjamin-hackl.at/publications/treereductions/
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In the context of plane trees, the so-called Narayana numbers count the
number of trees with a given size and a given number of leaves (cf. [6]). As
these numbers will appear throughout the entire paper, we introduce them
formally and investigate some properties within the following statements.

Definition. The Narayana numbers are defined as

Nn,k =
1
n

(
n

k − 1

)(
n

k

)

for 1 ≤ n and 1 ≤ k ≤ n, and N0,0 = 1. All other indices give Nn,k = 0.
Combinatorially, for n ≥ 1 the Narayana number Nn,k corresponds to the
number of plane trees with n edges (i.e. n + 1 nodes) and k leaves. The Nara-
yana polynomials are defined as

Nn(x) =
n∑

k=1

Nn,kxk−1

for n ≥ 1 and N0(x) = 1, and the associated Narayana polynomials are defined
as

Ñn(x) = x · Nn(x)

for n ≥ 0. Note that

Nn(1) = Ñn(1) = Cn =
1

n + 1

(
2n

n

)

is the nth Catalan number.

Remark. The generating function 1
z T (z, z) = 1−√

1−4z
2z enumerates Catalan

numbers, see [5, Theorem 3.2], and the generating function T (z, tz) enumerates
Narayana numbers

T (z, tz) = zt +
∑

n≥2

n−1∑

k=1

Nn−1,kzntk =
∑

n≥1

znÑn−1(t). (2)

We will frequently use this relation in the form

T (z, t) =
∑

n≥1

znÑn−1

( t

z

)
. (3)

Furthermore, it is easily checked that T (z, tz) satisfies the ordinary differential
equation

(1 − 2(t + 1)z + (1 − t)2z2)
∂

∂z
T (z, tz)

−((1 − t)2z − t − 1)T (z, tz) = t(1 + z − tz).

Extracting the coefficient of zn+2 then yields the recurrence relation

(n + 3)Ñn+2(t) − (2n + 3)(t + 1)Ñn+1(t) + n(t − 1)2Ñn(t) = 0 (4)

for n ≥ 0.
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The following proposition gives another useful property of associated
Narayana polynomials.

Proposition 2.2. Let n ≥ 0, then we have the relation

tn+1Ñn

(1
t

)
= (1 − t)[n = 0] + Ñn(t). (5)

Proof. This relation follows from extracting the coefficient of zn+1 from the
identity T (tz, z) = T (z, tz) + (1 − t)z with the help of (3).

While it is straightforward to prove that the identity is valid by means of
algebraic manipulation, we also give a combinatorial proof.

From a combinatorial point of view, both generating functions T (tz, z) and
T (z, tz) enumerate plane trees where z marks the tree size, the only difference
is that the variable t enumerates inner nodes in T (tz, z) and leaves in T (z, tz).
We want to show that for trees of size n ≥ 2, these two classes are equal,
resulting in T (tz, z) − z = T (z, tz) − tz.

To construct an appropriate bijection between the class of trees of size n
with k leaves and the class of trees of size n with k inner nodes we need to
have a closer look at the well-known rotation correspondence [10, I.5.3], which
is a bijection between plane trees of size n and binary trees with n − 1 inner
nodes. In fact, the leaves in the binary tree are strongly related to the leaves
and inner nodes of the original tree:

– Left leaves in the binary tree are only attached to those nodes whose com-
panions in the plane tree have no children, i.e., to those who correspond
to leaves in the plane tree.

– Right leaves, on the other hand, are attached to nodes whose companion
nodes in the plane tree have no sibling to the right of them. This means
that for every node with children, i.e., for every inner node, there is
precisely one rightmost child and thus precisely one right leaf in the
binary tree.

The bijection between the two tree classes can now be described as follows:
given some tree of size n and k leaves, apply the rotation correspondence in
order to obtain a binary tree. Then mirror the binary tree by swapping all left
and right children. Transform this mirrored tree back by means of the inverse
rotation correspondence, and the result is a plane tree of size n and k inner
nodes as mirroring the binary tree swapped the number of left and right leaves
in the tree. This proves the proposition. �

Derivatives of the associated Narayana polynomials defined above will occur
within the analysis of a reduction model later, which is why we compute some
special values in the following proposition.

Proposition 2.3. Evaluating the rth derivative of the associated Narayana poly-
nomials at 1, i.e. Ñ

(r)
n (1), gives the number of trees with n + 1 nodes where
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precisely r leaves are selected and labeled from 1 to r. In particular, for n ≥ 1
we have

Ñ ′
n(1) =

1
2

(
2n

n

)

, Ñ ′′
n (1) = (n − 1)

(
2n − 2
n − 1

)

.

Proof. The combinatorial interpretation follows immediately by rewriting

Ñ (r)
n (1) =

n∑

k=1

Nn,kkr,

where we used the notion kr = k(k − 1) · · · (k − r + 1) for the falling factorial.
Explicit values can be obtained by differentiating (2) r-times with respect to
t, then setting t = 1 and extracting the coefficient of zn+1. �

Remark. By the combinatorial interpretation of Proposition 2.3 we find that
Ñ ′

n(1) = 1
2

(
2n
n

)
enumerates the number of leaves, summed over all trees with

n+1 nodes. At the same time, as there are Cn = 1
n+1

(
2n
n

)
such trees, the total

number of nodes in these trees is
(
2n
n

)
. This implies that exactly half of all

nodes in all trees of a given size are leaves!
In fact, this interpretation also motivates a second, purely combinatorial

proof of the explicit value of Ñ ′
n(1): the bijection correspondence maps trees

of size n+1 to binary trees with n inner nodes. In the proof of Proposition 2.2
we already observed that the number of left leaves in the binary tree obtained
from the rotation correspondence is equal to the number of leaves in the plane
tree.

As binary trees with n inner nodes have n + 1 leaves, and as there are Cn

binary trees with n inner nodes, the total number of leaves in all binary trees
with n inner nodes is

(
2n
n

)
. By symmetry, there have to be equally many left

leaves as right leaves—which proves that there are 1
2

(
2n
n

)
left leaves, and thus

Ñ ′
n(1) = 1

2

(
2n
n

)
.

In addition to the polynomials related to the Narayana numbers, there is
another well-known sequence of polynomials that will occur throughout this
paper.

Definition. Fibonacci polynomials are recursively defined by

Fr(z) = Fr−1(z) + zFr−2(z)

for r ≥ 2 and F0(z) = 0, F1(z) = 1.

For many identities involving Fibonacci numbers, there is an analogous
statement for Fibonacci polynomials. The identity presented in the following
proposition will be used repeatedly throughout this paper.
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Proposition 2.4 (d’Ocagne’s Identity). Let s, r ∈ Z≥0 where s ≥ r. Then we
have

Fr+1(z)Fs(z) − Fr(z)Fs+1(z) = (− z)rFs−r(z). (6)

Proof. The left-hand side of (6) can be expressed as the determinant of(
Fr+1(z) Fr(z)
Fs+1(z) Fs(z)

)

. At the same time, for r, s ≥ 1 we can write

(
Fr+1(z) Fr(z)
Fs+1(z) Fs(z)

)

=
(

Fr(z) Fr−1(z)
Fs(z) Fs−1(z)

)(
1 1
z 0

)

.

Combining these two observations yields

Fr+1(z)Fs(z) − Fr(z)Fs+1(z) = det
(

Fr+1(z) Fr(z)
Fs+1(z) Fs(z)

)

= det
(

1 0
Fs+1−r(z) Fs−r(z)

)

det
(

1 1
z 0

)r

,

which proves the statement. �

Observe that setting s = r + 1 in (6) yields the identity

Fr+1(z)2 − Fr(z)Fr+2(z) = (− z)r, (7)

which we will make heavy use of later on.
An important tool in the context of plane trees is the substitution z =

u/(1+u)2, which allows us to write some expressions in a manageable form. It
is easy to check that with this substitution, we can write Fibonacci polynomials
as

Fr(− z) =
1 − ur

(1 − u)(1 + u)r−1
. (8)

The fact that this substitution also works for Fibonacci polynomials is not
that surprising, as zFr(− z)/Fr+1(− z) is the generating function of plane trees
with height ≤ r (see [3]).

2.2. Leaf-reduction and the expansion operator

The reduction ρ : T \ { } → T we want to investigate now can be explained
very easily. For any tree τ ∈ T \ { } we obtain the reduced tree ρ(τ) simply
by removing all leaves from τ . Repeated application of ρ to a tree is illustrated
in Fig. 3.

It is easy to see that this operator is certainly not injective: there are many
trees that reduce to the same tree. However, it is also easy to see that ρ is
surjective, as we can always construct an expanded tree that reduces to any
given tree τ by attaching leaves to all leaves of τ .
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�→ �→ �→

Figure 3. Illustration of the “cutting leaves”-operator ρ

In fact, the operator ρ−1 mapping trees τ ∈ T to the set of preimages is
easier to handle from a combinatorial point of view. This is because we can
model the expansion of trees in the language of generating functions.

Proposition 2.5. Let F ⊆ T be a family of plane trees with bivariate generating
function f(z, t), where z marks inner nodes and t marks leaves. Then the
generating function of ρ−1(F), the family of trees whose reduction is in F , is
given by

Φ(f(z, t)) = (1 − t)f
( z

(1 − t)2
,

zt

(1 − t)2
)
. (9)

Proof. It is obvious from a combinatorial point of view that the operator Φ
has to be linear. Thus we only have to determine how a tree represented by
an arbitrary monomial zntk, i.e. a tree τ with n inner nodes and k leaves, is
expanded.

In order to obtain all possible tree expansions from τ , we perform the fol-
lowing operations: first, all leaves of τ are expanded by appending a nonempty
sequence of leaves to each of them. Then, every inner node of τ is expanded
by appending (possibly empty) sequences of leaves between two of its children
as well as before the first and after the last one.

In terms of generating functions, expanding the leaves of τ corresponds to
replacing t by zt/(1 − t). Expanding the inner vertices is a bit more involved:
by considering that every inner node has precisely one more available position
to attach new leaves than it has children we find that there are 2n + k − 1
available positions overall within τ . Therefore we find

Φ(zntk) = zn
( zt

1 − t

)k 1
(1 − t)2n+k−1

,

which, as Φ is linear, immediately proves (9). �
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Corollary 2.6. The generating function for plane trees T (z, t) satisfies the func-
tional equation

T (z, t) = t + Φ(T (z, t)). (10)

Proof. This follows directly from the fact that ρ : T \ { } → T is surjective,
i.e. ρ−1(T ) = T \ { }. �

Corollary 2.7. Narayana numbers satisfy the identity

Nn+k−1,k =
k∑

�=1

(
2n + k − � − 2

k − �

)

Nn−1,�

for n ≥ 2, k ≥ 1.

Proof. The result follows from extracting the coefficient of zntk from both
sides of (10). �

Remark. Note that in [1] there is a very short proof based on Dyck paths for
this identity, and actually the argumentation there is strongly related to our
tree reduction here: by the well-known glove bijection, it is easy to see that
cutting away all leaves of a plane tree translates into removing all peaks within
the corresponding Dyck path.

We are now interested in determining a multivariate generating function
enumerating plane trees with respect to the tree size as well as the size of the
tree after applying the tree reduction ρ a fixed number of times.

Proposition 2.8. Let r ∈ N0. The trivariate generating function Gr(z, vI , vL) =
GL

r (z, vI , vL) enumerating plane trees whose leaves can be cut at least r-times,
where z marks the tree size, and vI and vL mark the number of inner nodes
and leaves of the r-fold cut tree, respectively, is given by

Gr(z, vI , vL) = Φr(T (zvI , tvL))|t=z

=
1 − ur+2

(1 − ur+1)(1 + u)
T

(
u(1 − ur+1)2

(1 − ur+2)2
vI ,

ur+1(1 − u)2

(1 − ur+2)2
vL

)

.

(11)

Proof. First, observe that formally, we can obtain the generating function enu-
merating plane trees that can be reduced at least r-times with respect to their
size by considering Φr(T (z, t))|t=z. If we additionally track some size parame-
ter like the number of inner nodes or the number of leaves before the expansion
by marking their size with vI and vL, then we obtain a generating function for
plane trees that can be reduced at least r-times where vI and vL mark inner
nodes and leaves in the original tree and z marks the size of the expanded
tree. From a different point of view, z marks the size of the original tree and
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vI and vL mark the number of inner nodes and leaves of the r-fold reduced
tree, meaning that we have

Gr(z, vI , vL) = Φr(T (zvI , tvL))|t=z,

which proves the first equation in (11).
As Φ is linear, we are mainly interested in finding a representation for

Φr(zntk)|t=z. To do so, we consider the strongly related operator

Ψ(f(z, t)) := f
( z

(1 − t)2
,

zt

(1 − t)2
)
.

It is easy to prove by induction that iterative application of Φ can be expressed
in terms of Ψ via

Φr(f(z, t)) = Ψr(f(z, t))
r−1∏

j=0

(1 − Ψj(t)),

which means that we can concentrate on the investigation of the linear operator
Ψ. Note that Ψ is also multiplicative, meaning that Ψr(zntk) = Ψr(z)nΨr(t)k.

Again by induction, it is easy to show that the recurrences

Ψr+1(t) =
zΨr(t)

∏r
j=0(1 − Ψj(t))2

and Ψr+1(z) =
z

∏r
j=0(1 − Ψj(t))2

hold for r ≥ 0. Now define fr := Ψr(t)|t=z and gr := Ψr(z)|t=z. We prove
by induction that these quantities can be represented by means of Fibonacci
polynomials as

fr =
zr+1

Fr+2(− z)2
and gr =

zFr+1(− z)2

Fr+2(− z)2

for r ≥ 0, where the recurrence relations from above, the identity (7) as well
as the relation

r−1∏

j=0

(1 − fj) =
Fr+2(− z)
Fr+1(− z)

for r ≥ 0 play integral parts in the proof.
With these explicit representations, we find

Φr(zntk)|t=z = Ψr(zntk)|t=z

r−1∏

j=0

(1 − fj) =
zn+k(r+1)Fr+1(− z)2n−1

Fr+2(− z)2n+2k−1
. (12)

Then, using (8) and rewriting the right-hand side of (12) in terms of u, where
z = u/(1 + u)2, yields

Φr(zntk)|t=z =
1 − ur+2

(1 − ur+1)(1 + u)

(
u(1 − ur+1)2

(1 − ur+2)2

)n (
ur+1(1 − u)2

(1 − ur+2)2

)k

.

By linearity, we are allowed to apply Φr to every summand in the power series
expansion of f(z, t) separately—which proves the statement. �
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The generating function Gr(z, v, v) tells us how many nodes (marked by v)
are still in the tree after r reductions. For the sake of brevity we set Gr(z, v) :=
Gr(z, v, v). It is completely described in terms of the function T (z, t), although
in a non-trivial way. Results about moments and the limiting distribution can
be extracted from this explicit form.

With the help of the mathematics software system SageMath [23], the gen-
erating function Gr(z, v) can be expanded. For small values of r, the first few
summands are

G1(z, v) = vz2 + (v2 + v)z3 + (v3 + 3v2 + v)z4

+ (v4 + 6v3 + 6v2 + v)z5 + O(vz6),
G2(z, v) = vz3 + (v2 + 3v)z4 + (v3 + 5v2 + 7v)z5 + (v4 + 7v3 + 18v2 + 15v)z6

+O(vz7),
G3(z, v) = vz4 + (v2 + 5v)z5 + (v3 + 7v2 + 18v)z6

+(v4 + 9v3 + 33v2 + 57v)z7 + O(vz8).

As announced in the introduction, we investigate the behavior of the ran-
dom variable Xn,r = XL

n,r that models the number of nodes which are left
after reducing a random tree τ with n nodes r-times. In case the r-fold appli-
cation of ρ to τ is not defined, we consider the resulting tree size to be 0, i.e.,
the random variable Xn,r = 0 for these trees. Note that the tree τ is chosen
uniformly at random among all trees of size n. With the help of the generating
function Gr(z, v) we are able to express the probability generating function of
Xn,r as

EvXn,r =
an,r + [zn]Gr(z, v)

Cn−1
(13)

where an,r is the number of trees of size n which are empty after reducing
r-times. We have an,r = Cn−1 − [zn]Gr(z, 1).

In addition to Xn,r, we also consider the random variables In,r and Ln,r

that model the number of inner nodes and leaves, respectively, that remain
after reducing a random tree with n nodes r times. The generating functions
corresponding to In,r and Ln,r are Gr(z, v, 1) and Gr(z, 1, v), respectively.

The relations Xn,r
d= In,r + Ln,r and In,r

d= Xn,r+1 hold by the combina-
torial interpretation of the operator Φ.

2.3. Asymptotic analysis

We find explicit generating functions for the factorial moments of the random
variables Xn,r, In,r, and Ln,r.
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Proposition 2.9. The dth factorial moments of Xn,r, In,r and Ln,r are given
by

EXd
n,r = EId

n,r−1

=
1

Cn−1
[zn]

∂d

∂vd
Gr(z, 1)

∣
∣
∣
v=1

=
1

Cn−1
[zn]

udd!
(1 + u)(1 − ur+1)d(1 − u)d−1

Ñd−1(ur) (14)

and

ELd
n,r =

1
Cn−1

[zn]
udr+2d(1 − u)d!

(1 + u)(1 − ur+2)d(1 − ur+1)d
Ñd−1

( 1
u

)
(15)

where z = u/(1 + u)2 for d ∈ Z≥1.

Remark. For d ≥ 2, udÑd−1(u−1) can be replaced by Ñd−1(u) in (15), see (5).

Proof. We use the abbreviations

a :=
u(1 − ur+1)2

(1 − ur+2)2
, b :=

ur+1(1 − u)2

(1 − ur+2)2
, c :=

1 − ur+2

(1 − ur+1)(1 + u)
.

We consider the exponential generating function of ∂d/(∂v)dGr(z, v) to be a
Taylor series and obtain

∑

d≥0

1
d!

∂d

∂vd
Gr(z, v)qd = Gr(z, v + q).

By Proposition 2.8, extracting the coefficient of qd yields

∂d

∂vd
Gr(z, v)

∣
∣
∣
v=1

= d![qd]Gr(z, 1 + q) = d!c[qd]T (a(1 + q), b(1 + q)).

We have

T (a(1 + q), b(1 + q))

=
1 − (a − b)(1 + q) −

√
1 − 2(1 + q)(a + b) + (1 + q)2(a − b)2

2

=
1 − (a − b) − (a − b)q

2

−
√

1 − 2(a + b) + (a − b)2 − 2q(a + b − (a − b)2) + q2(a − b)2

2
.

By using the fact that

1 − 2(a + b) + (a − b)2 = Δ2 for Δ =
(1 − u)(1 − ur+1)

1 − ur+2
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and by choosing α and β such that

α + β =
a + b − (a − b)2

Δ2
, α − β =

a − b

Δ
,

we obtain

T (a(1 + q), b(1 + q))

=
Δ
2

( 1
Δ

− (α − β) − (α − β)q −
√

1 − 2q(α + β) + q2(α − β)2
)

=
Δ( 1

Δ − 1 − (α − β))
2

+ ΔT (αq, βq).

Extracting the coefficient of qd for d ≥ 1 yields

∂d

∂vd
Gr(z, v)

∣
∣
∣
v=1

= cd!Δ[qd]
∑

d≥1

αdqdÑd−1

(β

α

)
= cd!ΔαdÑd−1

(β

α

)

where (3) has been used.
Noting that

α =
u

(1 − u)(1 − ur+1)
and β =

ur+1

(1 − u)(1 − ur+1)

completes the proof of (14).
For the proof of (15), we proceed in the same way and use the identity

T (a, b(1 + q)) =
1 − Δ − (a − b)

2
+ ΔT (α′q, β′q)

for

α′ =
ur+2

(1 − ur+1)(1 − ur+2)
, β′ =

ur+1

(1 − ur+1)(1 − ur+2)
.

�

From the proof of Proposition 2.9, we extract the following identities for
the modified Narayana polynomials.

Remark. For d ∈ Z≥1 the power series identities
∑

n≥1

(
n

d

)
un−d(1 − ux)2n+d−1(1 − u)d−1

(1 − u2x)2n−1
Ñn−1

(x(1 − u)2

(1 − ux)2
)

= Ñd−1(x)

(16)
∑

n≥1

un−2d(1 − ux)2n−d−1(1 − u)2d−1

(1 − u2x)2n−d−1d!
Ñ

(d)
n−1

(x(1 − u)2

(1 − ux)2
)

= Ñd−1

( 1
u

)

(17)

hold, where Ñ
(d)
n−1 denotes the dth derivative of Ñn−1.
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Proof. In the proof of Proposition 2.9, we showed that

∂d

∂vd
cT (av, bv)

∣
∣
∣
v=1

= cd!ΔαdÑd−1

(β

α

)
.

Expanding the left side using (3) and evaluating the derivative yields (16)
(where ur has been replaced by the independent variable x).

The identity (17) is proved in the same way. �

Corollary 2.10. The expected value of Xn+1,r is explicitly given by

EXn+1,r =
1

Cn

∑

�≥1

((
2n

n + 1 − �(r + 1)

)

−
(

2n

n − �(r + 1)

))

.

Proof. Using Proposition 2.9 and Cauchy’s integral formula, we have

CnEXn+1,r = [zn+1]
ur+1

(1 + u)(1 − ur+1)

=
1

2πi

∮

γ

ur+1

(1 + u)(1 − ur+1)
dz

zn+2

=
1

2πi

∮

γ̃

ur+1(1 − u)(1 + u)2n

1 − ur+1

du

un+2
,

where γ is a circle around 0 with a sufficiently small radius such that γ′, the
image of γ under the transformation, is a small contour circling 0 exactly once
as well.

Expanding (1−ur+1)−1 into a geometric series and exchanging integration
and summation, we obtain

CnEXn+1,r =
∑

�≥1

[un+1−�(r+1)](1 − u)(1 + u)2n,

which implies the result. �

Having determined a closed form for this generating function allows us to
analyze the asymptotic behavior of Xn,r in a relatively straightforward way.

Theorem 1. Let r ∈ N0 be fixed and consider n → ∞. Then the expected size
and the corresponding variance of an r-fold cut plane tree are given by

EXn,r =
n

r + 1
− r(r − 1)

6(r + 1)
+ O(n−1), (18)

and

VXn,r =
r(r + 2)
6(r + 1)2

n + O(1). (19)

The factorial moments are asymptotically given by
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EXd
n,r =

1
(r + 1)d

nd

+
d

12(r + 1)d
(dr2 − 4dr − 3r2 − 6d + 6r + 6)nd−1 + O(nd−3/2)

for d ≥ 1. Note that all O-constants above depend implicitly on r.

Proof. In a nutshell, we want to extract the growth of the derivatives of the
generating functions ∂d

∂vd Gr(z, 1), as dividing these quantities by Cn−1 yields
the factorial moments. We want to extract the growth by means of singularity
analysis (cf. [8]).

In order to do so, we first need to establish the location of the dominant
singularity of these generating functions, which are explicitly given in (14).

The singularities of (14) are roots of unity in terms of u. Substituting back
u = (1 −

√
1 − 4z )/(2z) − 1 maps these roots of unity to real numbers greater

than or equal to 1/4 and only u = 1 is mapped to z = 1/4. Thus z = 1/4 is
the dominant singularity of (14). A more detailed treatment of these analytic
properties of the substitution z = u/(1 + u)2 can be found in [11, Proposition
2.3].

As N0(x) = 1, we obtain the expansion

1
2(r + 1)

(1 − u)−1 − 1
4

+
r2 − r − 3
24(r + 1)

(1 − u) + O((1 − u)2)

for the function on the right-hand side of (14) with d = 1. Then, the expansion

(1 − u)−κ = 2−κ(1 − 4z)−κ/2 + 2−κκ(1 − 4z)−(κ−1)/2

+ 2−κ κ(κ − 1)
2

(1 − 4z)−(κ−2)/2 + O((1 − 4z)−(κ−3)/2) (20)

for fixed κ ∈ C yields

1
4(r + 1)

(1 − 4z)−1/2 +
r2 − r − 3
12(r + 1)

(1 − 4z)1/2 + O((1 − 4z)3/2)

+power series in (1 − 4z).

By singularity analysis, the nth coefficient, normalized by Cn−1, is asymptot-
ically

EXn,r =
n

r + 1
− r(r − 1)

6(r + 1)
+ O(n−1)

using

Cn−1 = 4n−1 1
n3/2

√
π

(
1 +

3
8
n−1 + O(n−2)

)
.

The higher order factorial moments follow similarly by expanding the func-
tion on the right-hand side of (14) for general d > 1 around u = 1 with the
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help of SageMath, where in particular the explicit values of the derivatives of
the Narayana polynomials from Proposition 2.3 are required.

Singularity analysis of the resulting expansion yields the expression given in
the statement of the theorem. Finally, note that the variance can be computed
by using

VXn,r = EX2
n,r + EXn,r − (EXn,r)2.

�

Theorem 2. The size Xn,r of the tree obtained from a random plane tree with
n nodes by cutting it r-times is, after standardization, asymptotically normally
distributed for n → ∞ and fixed r, i.e.,

Xn,r − n

r + 1√
r(r + 2)
6(r + 1)2

n

d−→ N (0, 1).

To be more precise, for x ∈ R we have

P

(
Xn,r − nμ√

σ2n
≤ x

)

=
1√
2π

∫ x

−∞
e−t2/2 dt + O(n−1/2),

with μ = 1
r+1 and σ2 = r(r+2)

6(r+1)2 and where the O-constant depends implicitly
on r.

As In,r−1
d= Xn,r, the same also holds for this random variable.

The rest of this section is devoted to the proof of this central limit theorem.
In order to derive the fact that the number of remaining nodes after r reduc-
tions is asymptotically normally distributed, we first show that the number
of nodes that are deleted after r reductions is asymptotically normally dis-
tributed. Then, as the sum of the number of remaining nodes and the number
of deleted nodes is equal to the original tree size, we obtain immediately that
the number of remaining nodes has to be asymptotically normally distributed
as well.

We begin by considering the function Fr : T → N0 which maps a plane tree
τ to the number of nodes that are deleted when reducing the tree r times, i.e.
the difference between the size of τ and the size of ρr(τ). Let τn now denote a
plane tree with n nodes.

For the sake of convenience, we consider Fr(τn) to be n if r is larger than
the maximal number of reductions that can be applied to τn before the tree
cannot be reduced further. In particular, this means that Fr( ) = 1 for r ≥ 1.

It is easy to see that the parameter Fr(τn) is a so-called additive tree param-
eter, meaning that

Fr(τn) = Fr(τi1) + · · · + Fr(τi�
) + fr(τn)
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holds, where τi1 , . . . , τi�
are the subtrees rooted at the children of the root of

τn, and fr : T → {0, 1} is a toll function recursively defined by

fr(τn) =

{
1, if Fr−1(τik

) = ik for all k = 1, . . . , �,

0, otherwise,

for r ≥ 1 and f0(τn) = 0.
In order to prove asymptotic normality for additive tree parameters, we

can use [25, Theorem 2], which requires us to show that the expected value of
the toll function is exponentially decreasing in n. This is done in the following
lemma.

Lemma 2.11. The expected value of fr(τn) is exponentially decreasing in n.

Remark. Of course, n − Fr(τn) is also an additive parameter. However, the
expected value of the corresponding growth function is not exponentially
decreasing.

Proof. Define

qn,r = E(fr(τn)) = P(Fr−1(τik
) = ik for all k = 1, . . . , �) = P(Fr(τn) = n)

and the corresponding generating function

Qr(z) =
∑

n≥1

Cn−1qn,rz
n.

Observe that Fr(τn) = n holds if and only if τn has height less than r, as
removing all leaves from a tree reduces its height by precisely one. Therefore,
the generating function Qr(z) is the generating function enumerating trees of
height less than r.

It is well-known (cf. [3]) that the generating function for plane trees of
height less than r can be expressed in terms of Fibonacci polynomials as

Qr(z) =
zFr−1(− z)

Fr(− z)
.

The roots of Fr(− z) are also well-known and can be written as αj,r =
(4 cos2(jπ/r))−1 for j = 1, . . . , 
(r − 1)/2�.

Thus Qr(z) is a rational function and its coefficients have the form

Cn−1qn,r =
∑

j

cj,rα
−n
j,r

for constants cj,r. We have |αj,r| > 4. As

Cn−1 ∼ 4n−1

√
π n3/2

,

there exists a constant c ∈ (0, 1) such that qn,r = O(cn). �
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�→

Figure 4. Illustration of the “cutting paths”-operator ρ

Thus, by the strategy discussed above, we find that not only Fr(τn) but
also Xn,r = n − Fn,r is asymptotically normally distributed.

Remark. Note that the fact that F1(τn) is asymptotically normally distributed
means that the Narayana numbers are asymptotically normally distributed, see
for example [5, Theorem 3.13].

As sketched above, Lemma 2.11 allows us to apply [25, Theorem 2] in order
to prove that Fr(τn), and therefore also Xn,r = n − Fr(τn) is asymptotically
normally distributed. All that remains to prove is that the speed of convergence
is O(n−1/2).

We do so by noting that the proof for asymptotic normality in Wagner’s
theorem is based on [5, Theorem 2.23], where a version of Hwang’s Quasi-
Power Theorem [14] without quantification of the speed of convergence is used.
Replacing this argument with the multi-dimensional quantified version given
in [13] then gives us the desired speed of convergence of O(n−1/2).

3. Cutting paths

3.1. The expansion operator and results

Let P denote the combinatorial class of paths, i.e. trees in which every node
is either a leaf or has precisely one child. The tree reduction ρ : T \ P → T
which we will focus on in this section reduces a tree by cutting away all paths
of the tree. This operation is illustrated in Fig. 4.

Analogously to our approach in Sect. 2.2, we first determine the correspond-
ing expansion operator Φ. In order to do so, we need the generating function
for the family of paths P, which is given by P = P (z, t) = t

1−z . For the sake
of readability, we omit the arguments of P .
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Proposition 3.1. Let F ⊆ T be a family of plane trees with bivariate generating
function f(z, t), where z marks inner nodes and t marks leaves. Then the
generating function for ρ−1(F), the family of trees whose reduction is in F , is
given by

Φ(f(z, t)) = (1 − P )f
( z

(1 − P )2
,

zP 2

(1 − P )2
)
. (21)

Proof. The fact that Φ is a linear operator is obvious from a combinatorial
point of view, meaning that we may concentrate on some tree τ with n inner
nodes and k leaves, represented by zntk.

We follow the proof of Proposition 2.5 and observe that all possible tree
expansions of τ can be obtained by the following operations: the leaves of τ
are expanded by appending a sequence of at least two paths to each of them.
Note that appending a single path to a leaf is not allowed, because this would
just extend the path ending in that leaf, which causes ambiguity. Then, the
inner nodes are expanded as well by appending (possibly empty) sequences of
paths to the 2n + k − 1 available positions between, before, and after their
children.

Translating this expansion to the language of generating functions yields

Φ(zntk) = zn
( zP 2

1 − P

)k 1
(1 − P )2n+k−1

,

which proves (21). �

Corollary 3.2. The generating function for plane trees T (z, t) satisfies the func-
tional equation

T (z, t) = P + Φ(T (z, t)). (22)

Proof. The surjectivity of ρ implies ρ−1(T ) = T \ P, which proves the state-
ment after translating this into the language of generating functions with the
help of Φ. �

In the following proposition, we determine the generating function Gr(z, vI ,
vL) measuring the effect of applying the path reduction r times on the size
of the tree. Most interestingly, we will see that the path connection is in fact
strongly related to the leaf reduction from the previous section.

Proposition 3.3. The trivariate generating function Gr(z, vI , vL) = GP
r (z, vI ,

vL) enumerating plane trees whose paths can be cut at least r-times, where z
marks the tree size and vI and vL mark the number of inner nodes and leaves
of the r-fold cut tree, respectively, is given by
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Gr(z, vI , vL) = Φr(T (zvI , tvL))|t=z

=
1 − u2r+1

(1 − u2r+1−1)(1 + u)

× T

(
u(1 − u2r+1−1)2

(1 − u2r+1)2
vI ,

u2r+1−1(1 − u)2

(1 − u2r+1)2
vL

)

,

where z = u/(1 + u)2.

Proof. By the same reasoning as in the proof of Proposition 2.8, the generating
function we are interested in is Gr(z, vI , vL) = Φr(T (zvI , tvL))|t=z, meaning
that we want to study the iterated application of Φ. To do so, we consider the
strongly related operator

Ψ(f(z, t)) := f
( z

(1 − P )2
,

zP 2

(1 − P )2
)
.

The relation

Φr(f(z, t)) = Ψr(f(z, t))
r−1∏

j=0

(1 − Ψj(P ))

can be proved easily by induction and enables us to determine the behavior of
Φ via Ψ.

First of all, for r ≥ 0 and r ≥ 1, the respective relations

Ψr(z) =
z

∏r−1
j=0(1 − Ψj(P ))2

and Ψr(P ) =
z(Ψr−1(P ))2

∏r−1
j=0(1 − Ψj(P ))2 − z

can be proved easily by induction. Also observe that we can write Ψr(t) =
Ψr(z)Ψr−1(P )2. Now let fr = Ψr(z)|t=z, gr = Ψr(t)|t=z, and hr = Ψr(P )|t=z.

With the help of the identity
∏r

j=0(1 + u2j

) = 1−u2r+1

1−u we are able to prove
the explicit formula

hr =
u2r+1−1(1 − u)

1 − u2r+2−1
=

z2r+1−1

F2r+2−1(− z)
, (23)

where z = u/(1 + u)2 and the second equation is a consequence of (8).
Using (23), we immediately find

fr =
u(1 − u2r+1−1)2

(1 − u2r+1)2
=

zF2r+1−1(− z)2

F2r+1(− z)2
and

gr =
u2r+1−1(1 − u)2

(1 − u2r+1)2
=

z2r+1−1

F2r+1(− z)2
.

Putting everything together yields
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Φr(zntk)|t=z =
zn+(2r+1−1)kF2r+1−1(− z)2n−1

F2r+1(− z)2n+2k−1

=
1 − u2r+1

(1 − u2r+1−1)(1 + u)

(u(1 − u2r+1−1)2

(1 − u2r+1)2

)n(u2r+1−1(1 − u)2

(1 − u2r+1)2

)k

,

which directly implies the statement. �

The following result shows that there is an intimate connection between
the “cutting leaves”-reduction from Sect. 2 and the “cutting paths”-reduction,
as can be seen after comparing the statement of Proposition 2.8 with the
statement of Proposition 3.3.

Corollary 3.4. The generating function Gr(z, vI , vL) = GP
r (z, vI , vL) measur-

ing the change in size after cutting away all paths from plane trees r times
is equal to the generating function GL

2r+1−2(z, vI , vL) measuring the change in
size after cutting away all leaves from plane trees 2r+1 − 2 times.

This connection is now especially important for the analysis of the random
variable Xn,r = XP

n,r modeling the number of nodes that are left after reducing
a random tree τ with n nodes r times by removing all paths. In fact, it follows
that

XP
n,r

d= XL
n,2r+1−2,

meaning that the asymptotic analysis of the factorial moments of XP
n,r as well

as the limiting distribution follow directly from the corresponding results in
Sect. 2.3.

Theorem 3. Let r ∈ N0 be fixed and consider n → ∞. Then the expectation
and variance of the random variable Xn,r = XP

n,r can be expressed as

EXn,r =
n

2r+1 − 1
− (2r − 1)(2r+1 − 3)

3(2r+1 − 1)
+ O(n−1), (24)

and

VXn,r =
2r+1(2r − 1)
3(2r+1 − 1)2

n + O(1). (25)

The factorial moments are asymptotically given by

EXd
n,r =

nd

(2r+1 − 1)d

+
d

12(2r+1 − 1)d
(4r+1d − 2r+4d − 3 · 4r+1 + 9 · 2r+2 + 6d − 18)

+ O(nd−3/2).
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Furthermore, Xn,r = XP
n,r is asymptotically normally distributed, i.e., for

x ∈ R we have

P

(
Xn,r − μn√

σ2n
≤ x

)

=
1√
2π

∫ x

−∞
e−t2/2 dt + O(n−1/2)

for μ = 1
2r+1−1 and σ2 = 2r+1(2r−1)

3(2r+1−1)2 . All O-constants in this theorem depend
implicitly on r.

3.2. Total number of paths

In the context of this reduction it is interesting to investigate the total number
of paths needed to construct a given tree. To determine this parameter we can
reduce the tree repeatedly and count the number of leaves. The sum of the
number of leaves over all reduction steps is equal to the number of paths, which
follows from the observation that leaves mark the endpoints of all paths.

Formally, given the random variable Pn,r counting the number of leaves in
the rth reduction of a tree of size n, we want to analyze the random variable
Pn :=

∑
r≥0 Pn,r.

Proposition 3.5. The expected number of paths needed to construct a uniformly
random tree of size n satisfies

EPn =
1

Cn−1
[zn]

1 − u

1 + u

∑

r≥1

u2r

(1 − u2r )(1 − u2r−1)
, (26)

where z = u/(1 + u)2.

Proof. As a consequence of Proposition 3.3, the bivariate generating function
enumerating plane trees where z marks the tree size and v marks the number
of leaves after r path reductions can be written as

1 − u2r+1

(1 − u2r+1−1)(1 + u)
T

(
u(1 − u2r+1−1)2

(1 − u2r+1)2
,
u2r+1−1(1 − u)2

(1 − u2r+1)2
v

)

.

By differentiating this generating function once with respect to v and setting
v = 1 afterwards, we obtain an expression where Cn−1EPn,r can be extracted
as the coefficient of zn. By (15) with d = 1 and r replaced by 2r+1 − 2, we
have

EPn,r =
1

Cn−1
[zn]

1 − u

1 + u

u2r+1

(1 − u2r+1)(1 − u2r+1−1)
.

Summation over r ≥ 0 and shifting the index of summation by one completes
the proof. �

Our strategy for determining an asymptotic expansion for EPn as given
in (26) is based on the Mellin transform.
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Theorem 4. For n → ∞, the expected number of paths required to construct a
uniformly random tree of size n is given by the asymptotic expansion

EPn = (α − 1)n +
1
6

log4 n − γ + 4(α − 1) log 2 + log 2 + 24ζ ′(−1) + 2
12 log 2

+δ(log4 n) + O(n−1/4), (27)

where

δ(x) :=
1

log 2

∑

k∈Z\{0}
(−1 + χk)Γ(χk/2)ζ(−1 + χk)e2kπix (28)

with χk = 2kπi
log 2 is a fluctuation with mean 0 and α :=

∑
k≥1 1/(2k − 1) ≈

1.606695, γ is the Euler–Mascheroni constant and ζ is the Riemann zeta func-
tion.

Remark. The constant α appears in the asymptotic analysis of digital search
trees (see e.g. [18]).

Proof. In order to obtain an asymptotic expansion from (26), we rewrite

P (z) =
1 − u

1 + u

∑

r≥1

u2r

(1 − u2r )(1 − u2r−1)
=

u

1 + u

∑

r≥1

(
u2r−1

1 − u2r−1
− u2r

1 − u2r

)

where z = u/(1 + u)2. The main task in obtaining an asymptotic expansion of
P (z) is to provide a precise analysis of this sum, which we carry out via the
Mellin transform. We consider the function

f(t) :=
∑

r≥1

e−(2r−1)t

1 − e−(2r−1)t
−

∑

r≥1

e−2rt

1 − e−2rt
,

obtained from substituting u = e−t in the sum above. With

A(s) :=
∑

r≥1

1
2rs

((1 − 2−r)−s − 1) =
∑

�≥1

(
� + s − 1

�

)
1

2s+� − 1

we find that the corresponding Mellin transform of this difference of harmonic
sums is given by

f∗(s) = Γ(s)ζ(s)A(s)

with fundamental strip 〈1,∞〉. In order for the inversion formula to be valid,
we need to show that f∗(s) decays sufficiently fast along vertical lines in the
complex plane. While Γ(s) and ζ(s) are well-known to decay exponentially and
grow polynomially along vertical lines, respectively, the Dirichlet series A(s)
has to be investigated in more detail.

We want to estimate the summands in

A(s) − s

2s+1 − 1
=

∑

r≥1

1
2rs

(
(1 − 2−r)−s − 1 − s

2r

)
.
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To do so, we consider g(x) = (1 − x)−s as a function of a real variable. By
means of the integral form of the Taylor approximation error we find

∣
∣g(2−r) − g(0) − g′(0) · 2−r

∣
∣ =

∣
∣
∣
∣
∣

∫ 2−r

0

s(s + 1)(1 − t)−s−2(2−r − t) dt

∣
∣
∣
∣
∣

≤ |s| |s + 1| 2−r

∫ 2−r

0

|1 − t|− Re s−2
dt

≤ |s| |s + 1| 2−2r(1 − 2−r)− Re s−2,

where the last inequality is valid under the assumption that Re s > −2. Using
this estimate, we find

|A(s)| ≤
∣
∣
∣
∣A(s) − s

2s+1 − 1

∣
∣
∣
∣ +

∣
∣
∣
∣

s

2s+1 − 1

∣
∣
∣
∣

≤
∣
∣
∣
∣

s

2s+1 − 1

∣
∣
∣
∣ + |s| |s + 1|

∑

r≥1

1
(2r − 1)Re s+2

,

where the sum converges for Re s > −2. Therefore, A(s) has polynomial growth
in Im s for Re s > −2 and Im s = 2πi

log 2

(
k + 1

2

)
, where k ∈ Z and |k| → ∞,

as well as on vertical lines with Re s > −2 and Re s �= −1. This implies that
f∗(s) decays sufficiently fast, and thus the inversion formula states

f(t) =
1

2πi

∫ 2+i∞

2−i∞
Γ(s)ζ(s)A(s)t−s ds, (29)

which is valid for real, positive t → 0 (and thus u → 1− and z → (1/4)−, as we
have z = u/(1 + u)2 and u = e−t). In order to extract the coefficient growth
(in terms of z) with the help of singularity analysis, we require analyticity in a
larger region (cf. [8]), e.g. in a complex punctured neighborhood of 1/4 with1

|arg(z − 1/4)| > 2π/5.
Substituting back t for z, we find

t = − log
(

1 −
√

1 − 4z

2z
− 1

)

= 2
√

1 − 4z +
2
3
(1 − 4z)3/2 + O((1 − 4z)5/2),

which implies

|arg t| =
1
2

|arg(1 − 4z)| + o(1)

so that we have the bound |arg t| < 2π/5 for t → 0, given that the restriction
on the argument in terms of z is satisfied.

1Note that the bound 2π/5 is somewhat arbitrary: the argument just needs to be less than
π/2.
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With the help of our estimates on f∗(s) that we discussed above, we find
that

∣
∣f∗(s)t−s

∣
∣ = O

(
|Im(t)|4 |t|− Re(s) exp

(
− π

10
|Im(s)|

))
(30)

for −3/2 ≤ Re s ≤ 2 and Im s = 2πi
log 2

(
k + 1

2

)
, where k ∈ Z and |k| → ∞. This

is a consequence of combining the quantified growth of Γ(s) (see [20, 5.11.3])
and the growth of ζ(s) (see [26, 13.51]) with the facts that A(s) is of order
O(Im(s)2) and s

2s+1−1 is of order O(Im(s)) for s taking values in the specified
region.

We can evaluate (29) by shifting the line of integration from Re(s) = 2 to
Re(s) = − 3/2 and collecting the residues of the poles we cross. This yields

f(t) =
∑

p∈P

Ress=p(f∗(s)t−s) +
1

2πi

∫ −3/2+i∞

−3/2−i∞
f∗(s)t−s ds,

where P = {−1, 1} ∪ {−1 + χk | k ∈ Z \ {0}}. For the error term we use the
estimate above and find

1
2πi

∫ −3/2+i∞

−3/2−i∞
f∗(s)t−s ds = O(|t|3/2).

Evaluating the residues yields

f(t) = A(1)t−1 +
1

12 log 2
t log t +

log 2 + 2γ + 24ζ ′(−1)
24 log 2

t

+
∑

k∈Z\{0}

1
log 2

Γ(χk)ζ(−1 + χk)t1−χk + O(|t|3/2).

Note that with α :=
∑

k≥1 1/(2k − 1), we have A(1) = α − 1.
When substituting back in order to obtain an expansion in terms of z →

1/4, we have to carefully check that the error terms within the sum of the
residues at χk for k ∈ Z\{0} can still be controlled. Considering that for some
exponent κ, we have the expansion

t−κ = (1 − 4z)−κ/2(1 + O(1 − 4z))−κ/2,

we get
∣
∣
∣(1 + O(1 − 4z))−κ/2 − 1

∣
∣
∣ =

∣
∣
∣exp

(
− κ

2
log(1 + O(1 − 4z))

)
− 1

∣
∣
∣

≤
∣
∣
∣
κ

2

∣
∣
∣ |log(1 + O(1 − 4z))| exp

( ∣
∣
∣
κ

2

∣
∣
∣ |log(1 + O(1 − 4z))|

)

=
∣
∣
∣
κ

2

∣
∣
∣ O(1 − 4z) exp

( ∣
∣
∣
κ

2

∣
∣
∣ O(1 − 4z)

)
.

Setting κ = − 1+χk shows that the errors that we sum are of order O(|k| (1−
4z) exp(|k|O(1 − 4z))). Choosing z sufficiently close to 1/4 ensures that the
exponential growth is negligible compared to the exponential decay proved
in (30).

http://dlmf.nist.gov/5.11.E3
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�→ �→ �→ . . . �→

Figure 5. Illustration of the “cutting old leaves”-operator ρ

Finally, it is easy to see that the factor u
1+u can be rewritten as 1−√

1−4z
2 .

Multiplying our expansion of f(t) with this factor and substituting back yields
the expansion

P (z) =
α − 1

4
(1 − 4z)−1/2 − α − 1

4
− 1

24 log 2
(1 − 4z)1/2 log(1 − 4z)

+
2γ − 2α log 2 + 5 log 2 + 24ζ ′(1)

24 log 2
(1 − 4z)1/2

+
1

log 2

∑

k∈Z\{0}
Γ(χk)ζ(−1 + χk)(1 − 4z)(1−χk)/2 + O((1 − 4z)3/4).

Applying singularity analysis, normalizing the result by Cn−1, and rewrit-
ing the coefficients of the contributions from the poles at − 1 + χk via the
duplication formula for the Gamma function (cf. [20, 5.5.5]) then proves the
asymptotic expansion for EPn. �

4. Cutting old leaves

4.1. Preliminaries

In this section we consider a slightly more complex reduction: instead of remov-
ing all leaves, we just remove all leftmost leaves. Following [2], we call a leaf
that is a leftmost child an old leaf.

In order to describe the corresponding expansion in the language of gen-
erating functions, we need to change our underlying combinatorial model of
trees in a way that specifically marks old leaves.

Let L be the combinatorial class of plane trees where � marks old leaves
and marks all nodes that are neither old leaves nor parents thereof. Now,
as a first step we determine the bivariate generating function L(z, w) of L.

http://dlmf.nist.gov/5.5.E5
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L = +
∑

n≥0

L L · · · L

n

+
∑

n≥0

L − L L · · · L

n

Figure 6. Symbolic equation for plane trees w.r.t. old leaves

Proposition 4.1. The generating function L(z, w) enumerating plane trees with
respect to old leaves � (marked by the variable w) and all nodes that are
neither old leaves nor parents thereof (marked by z) is given by

L(z, w) =
1 −

√
1 − 4z − 4w + 4z2

2
. (31)

For n ≥ 2 there are Ck−1

(
n−2
n−2k

)
2n−2k plane trees of size n (meaning n nodes

overall) with k old leaves.

For example in Fig. 5, the original tree corresponds to z3w3 because it has
three old leaves (dashed nodes) and three nodes which are neither old leaves
nor parents of old leaves.

Proof. We consider the symbolic equation describing the combinatorial class
L of plane trees with respect to old leaves, which is illustrated in Fig. 6. The
functional equation that can be derived from the symbolic equation by marking
� with w and with z is

L(z, w) = z +
w + z(L(z, w) − z)

1 − L(z, w)
. (32)

Solving this equation and choosing the correct branch of the root yields (31).
To extract coefficients of L(z, w), we rewrite it as

L(z, w) =
1
2

(

1 − (1 − 2z)

√

1 − 4w

(1 − 2z)2

)

=
1
2

(

1 −
∑

k≥0

(
1/2
k

)
(−1)k4kwk

(1 − 2z)2k−1

)

(33)

= z +
∑

k≥1

Ck−1
wk

(1 − 2z)2k−1
= z +

∑

k≥1
n≥0

Ck−1

(
n + 2k − 2

n

)

2nwkzn.

(34)

�
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Φ−→ + +

Figure 7. All possible expansions of an old leaf

As we will see in the next section, the polynomials defined below will play a
similar role for the “old leaves”-reduction as the Fibonacci polynomials played
for the “leaves”- and “paths”-reduction.

Definition. The polynomials Br(z) are the generating functions of binary trees
w.r.t. the number of internal nodes of height ≤ r satisfying

Br(z) = 1 + zBr−1(z)2 (35)

for r ≥ 1 and B0(z) = 1.

4.2. The expansion operator and asymptotic results

As described in the previous section, we now concentrate on the reduction
ρ : L → L, which removes all old leaves from a tree. Note that ρ( ) = , as
the root itself is not an old leaf. We begin our analysis of this reduction by
determining the expansion operator Φ.

Proposition 4.2. Let F ⊆ L be a family of plane trees with bivariate generating
function f(z, w), where z marks nodes that are neither old leaves nor parents
thereof and w marks old leaves. Then the generating function for ρ−1(F), the
family of trees whose reduction is in F , is given by

Φ(f(z, w)) = f(z + w, (2z + w)w). (36)

Proof. The linearity of Φ is obvious from the combinatorial interpretation,
meaning that we can focus on the expansion of any tree represented by znwk,
i.e. a tree with n nodes that are neither old leaves nor parents thereof and k
old leaves.

Figure 7 illustrates all three possibilities to expand an old leaf �:

– appending an old leaf to the parent of �, which turns the original old
leaf into ,

– appending an old leaf to � itself, which turns the parent into ,
– appending old leaves both to � and its parent.



340 B. Hackl et al. AEM

In terms of generating functions, this means that w is substituted by 2zw+
w2.

Furthermore, the nodes represented by can optionally be expanded by
attaching an old leaf to them, otherwise they stay as they are. This option
corresponds to the substitution z �→ z + w.

There are no more operations to expand the tree, so putting everything
together yields

Φ(znwk) = (z + w)n(2zw + w2)k,

which proves the statement. �

An immediate consequence of the fact that ρ : L → L is surjective is the
following corollary.

Corollary 4.3. The generating function for plane trees L(z, w) satisfies the
functional equation

Φ(L(z, w)) = L(z, w).

We now focus on determining the generating function measuring the change
in tree size after repeatedly applying the reduction ρ.

Proposition 4.4. Let r ∈ N0. The bivariate generating function Gr(z, v) =
GOL

r (z, v) enumerating plane trees, where z marks the tree size and v marks
the size of the r-fold cut tree, is given by

Gr(z, v) = Φr(L(zv, wv2))|w=z2 = L(zBr(z)v, z(Br+1(z) − Br(z))v2),

where Br(z) are the polynomials enumerating binary trees of height ≤ r w.r.t.
the number of internal nodes.

Proof. First, note that the size of a tree with k old leaves and n nodes that are
neither old leaves nor parents thereof is actually n+2k, as parents of old leaves
are not explicitly marked. This explains why we have to substitute w = z2 in
order to arrive at the tree size.

In contrast to the previous sections, the operator Φ is already linear and
multiplicative, meaning that we have

Φr(znwk) = Φr(z)nΦr(w)k.

Investigation of the repeated application of Φ to z and w leads to the recur-
rences

Φr(z) = Φr−1(z) + Φr−1(z)2 − Φr−2(z)2 and Φr(w) = Φr+1(z) − Φr(z)

for r ≥ 2 and r ≥ 0, respectively. With the recurrence for the polynomials Br

from (35) it is easy to prove by induction that

Φr(z)|w=z2 = zBr(z)
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for r ≥ 0. Thus, we also find Φr(w)|w=z2 = z(Br+1(z) − Br(z)). Overall, we
obtain

Φr(znwk)|w=z2 = zn+kBr(z)n(Br+1(z) − Br(z))k,

which, by the linearity of Φ, proves the proposition. �

For the next step in our analysis, we turn to the random variable Xn,r =
XOL

n,r which models the size of the tree that results from reducing a random
tree τ with n nodes r-times.

As we have ρ( ) = (and thus no trees vanish completely), the probability
generating function for this random variable is simply

EvXn,r =
[zn]Gr(z, v)

Cn−1
.

While the height polynomials Br(z) make it very difficult to obtain general
results for the factorial moments of Xn,r, special moments like expectation
and variance are no problem, and even a central limit theorem is possible.

Theorem 5. Let r ∈ N0 be fixed and consider n → ∞. Then the expected
tree size after deleting the old leaves of a tree with n nodes r-times and the
corresponding variance are given by

EXn,r = (2 − Br(1/4))n − B′
r(1/4)

8
+ O(n−1), (37)

and

VXn,r =

(

Br(1/4) − Br(1/4)2 +
(2 − Br(1/4))B′

r(1/4)
2

)

n + O(1). (38)

All O-constants in this theorem depend implicitly on r.
Additionally, the random variable Xn,r is asymptotically normally dis-

tributed for fixed r ≥ 1, i.e.
Xn,r − μn√

σ2n

d−→ N (0, 1),

where μ = (2 − Br(1/4)) and σ2 =
(
Br(1/4) − Br(1/4)2 + (2−Br(1/4))B′

r(1/4)
2

)
.

Proof. First of all, we observe that Propositions 4.1 and 4.4 combined with
the recursion Br(z) = 1+zBr−1(z)2 allow us to write the bivariate generating
function as

Gr(z, v) =
1 −

√
1 − 4zv(Br(z)(1 − v) + v)

2
.

The asymptotic expansion for the expected value EXn,r can now be obtained
by determining

1
Cn−1

[zn]
∂

∂v
Gr(z, v)|v=1 =

1
Cn−1

[zn]
z(2 − Br(z))√

1 − 4z
.
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By means of singularity analysis we find

EXn,r = (2 − Br(1/4))n − B′
r(1/4)

8
−

(
3B′

r(1/4)
16

+
3B′′

r (1/4)
128

)

n−1

+O(n−2),

which proves (37). For the second factorial moment we obtain

EX2
n,r =

1
Cn−1

[zn]
∂2

∂v2
Gr(z, v)|v=1

=
1

Cn−1
[zn]

(
2z2(2 − Br(z))

(1 − 4z)3/2
+

2z(1 − Br(z))
(1 − 4z)1/2

)

,

which yields

EX2
n,r = (2 − Br(1/4))2n2

+
(

2Br(1/4) − Br(1/4)2 − 2 +
(2 − Br(1/4))B′

r(1/4)
4

)

n

+
(2 − Br(1/4))B′′

r (1/4)
64

− B′
r(1/4)2

64
− Br(1/4)B′

r(1/4)
8

+ O(n−1).

The variance can now be obtained via VXn,r = EX2
n,r + EXn,r − (EXn,r)2,

which proves (38).
In order to show the asymptotic normality of Xn,r we investigate the ran-

dom variable n − Xn,r, which counts the number of nodes that are deleted
after reducing some tree r times. Observe that this quantity can be seen as an
additive tree parameter Fr defined recursively by

Fr(τn) = Fr(τi1) + Fr(τi2) + · · · + Fr(τi�
) + fr(τn) and Fr( ) = 0

where τn is some tree of size n, τi1 up to τi�
are the subtrees rooted at the

children of the root of τn, and fr : L → {0, 1, . . . , r−1} is a toll function defined
by

fr(τn) =
r−1∑

j=0

{
1 if ρj(τn) has an old leaf attached to its root,
0 otherwise,

for r ≥ 1. Now, as fr(τn) enumerates the number of old leaves deleted from
the root of τn after r reductions, Fr(τn) equals the total number of deleted
nodes after r reductions.

The fact that r is fixed implies that fr is not only bounded, but also a
so-called local functional, meaning that the value of fr(τn) can already be
determined from the first r levels of τn. This is because one application of ρ
can reduce the distance between the root of the tree and the closest old leaf
by at most one. Thus all old leaves that are deleted from the root during r
reductions have to be found within the first r levels of τn.
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�→ �→

Figure 8. Illustration of the “cutting old paths”-operator ρ

As we have now established that fr is both bounded and a local func-
tional, we are able to apply [16, Theorem 1.13], which proves that n − Xn,r

is asymptotically normally distributed. Thus Xn,r is asymptotically normally
distributed as well, which proves the statement. �
Remark. In [7], the asymptotic behavior of a sequence strongly related to
Br(1/4) was studied: in Sect. 4, the authors define a sequence fn such that
fr+1 = 1

2 − Br(1/4)
4 , in our notation. They prove the asymptotic expansion

fn = 1
n+log n+O(1) . This allows us to conclude that the asymptotic behavior of

Br(1/4) can be described as

Br(1/4) = 2 − 4
r

+
4 log r

r2
+ O(r−2)

for r → ∞.

5. Cutting old paths

5.1. The expansion operator

As in previous sections, we adapt the “old leaves” reduction to remove all “old
paths”. That is, the tree reduction ρ : L → L in this section reduces a tree
by removing all paths that end in an old leaf. This operation is illustrated in
Fig. 8, where � marks old leaves and marks all nodes that are neither old
leaves nor parents thereof.

Obviously, we also need the combinatorial class of paths P for our analysis.
The bivariate generating function of P is given by P = P (z, w) = w

1−z , where
w and z mark � and , respectively. Also, we omit the arguments of P for the
sake of readability. Now, we determine the shape of the expansion operator Φ.

Proposition 5.1. Let F ⊆ L be a family of plane trees with bivariate generating
function f(z, w), where z marks nodes that are neither old leaves nor parents
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thereof and w marks old leaves. Then the generating function for ρ−1(F), the
family of trees whose reduction is in F , is given by

Φ(f(z, w)) = f(z + P, zP + P 2). (39)

Proof. With the linearity of the operator Φ being obvious from a combinatorial
point of view, we only have to investigate the expansion of any tree represented
by znwk, i.e. a tree with n nodes that are neither old leaves nor parents thereof
and k old leaves.

There are two options to expand an old leaf �:
– either appending an old path to the parent of �, which turns the old leaf

into ,
– or an old path is appended to both the parent of � and to � itself.

Note that just appending an old path to � is not a valid expansion as this
introduces ambiguity. This is the same argument that we also used in the proof
of Proposition 3.1. Overall, this means that Φ has to map w to zP + P 2.

On the other hand, the nodes represented by can optionally be expanded
by attaching an old path. Otherwise they stay as they are. Overall, this implies
Φ(z) = z + P .

Putting everything together, we immediately arrive at the statement of the
Proposition. �

Analogously to the previous reductions, the surjectivity of ρ : L → L implies
the following corollary.

Corollary 5.2. The generating function for plane trees L(z, w) satisfies the
functional equation

Φ(L(z, w)) = L(z, w).

In order to carry out a detailed analysis of this reduction, we need infor-
mation about the iterated application of Φ to L(zvI , wv2

L), which leads to
the generating function Gr(z, vI , v

2
L) measuring the change in tree size after r

applications of the reduction. The following proposition deals with determining
this generating function.

Proposition 5.3. Let r ∈ N0. The trivariate generating function Gr(z, vI , v
2
L) =

GOP
r (z, vI , v

2
L) enumerating plane trees, where z marks the tree size, vL marks

all old leaves, and vI marks all nodes that are neither old leaves nor parents
thereof, is given by

Gr(z, vI , v
2
L) = Φr(L(zvI , wv2

L))|w=z2

= L

(
u(1 − ur+1)

(1 + u)(1 − ur+2)
vI ,

ur+2(1 − u)2

(1 + u)2(1 − ur+2)2
v2

L

)

,

where z = u/(1 + u)2.
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Proof. Observe that the operator Φ is already linear and multiplicative, which
is why we can concentrate on finding suitable expressions for Φr(z) and Φr(w).

First of all, for r ≥ 1 the recurrences

Φr(z) = Φr−1(z) + Φr−1(P ), Φr(w) = Φr−1(P )Φr(z)

follow immediately from (39). Furthermore, the relation

Φr(P ) = P

r∏

j=1

Φj(z)
1 − Φj(z)

can easily be proved by induction. Then, by setting fr := Φr(z)|w=z2 the
recurrences above translate to

fr = fr−1 + z
r−1∏

j=0

fj

1 − fj
.

As a next step, we show by induction that fr can be expressed in terms of
Fibonacci polynomials as

fr =
zFr+1(− z)
Fr+2(− z)

,

where in particular (7) was used. As a consequence, we find

Φr(P )|w=z2 = fr+1 − fr =
zFr+2(− z)
Fr+3(− z)

− zFr+1(− z)
Fr+2(− z)

=
zr+2

Fr+2(− z)Fr+3(− z)
.

This allows us to express gr := Φr(w)|w=z2 as

gr = Φr−1(P )|w=z2 · fr =
zr+2

Fr+2(− z)2
.

Finally, as we have Φr(znwk)|w=z2 = fn
r gk

r , substituting z = u/(1 + u)2 and
using (8) completes the proof. �

5.2. Analysis of tree size and related parameters

We investigate the behavior of the random variable Xn,r = XOP
n,r which models

the number of nodes remaining after reducing a random tree τ with n nodes
r-times. The tree τ is chosen uniformly among all trees of size n. Analogously
to the “old leaf”-reduction from the previous section, we also have ρ( ) =
for the “old path”-reduction, meaning that no trees vanish completely. For the
sake of convenience we set Gr(z, v) := Gr(z, v, v2), allowing us to write the
probability generating function of Xn.r as

EvXn,r =
[zn]Gr(z, v)

Cn−1
.
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With the help of Proposition 5.3, it is easy to obtain expressions for the facto-
rial moments EXd

n,r for fixed d by differentiating Gr(z, v) d-times with respect
to v and setting v = 1 afterwards. General expressions for d ≥ 2 (coinciding
with the value given for d = 2) are available but less pleasant.

Lemma 5.4. The factorial moments of Xn,r are

EXn,r =
1

Cn−1
[zn]

u(1 + ur+1)
(1 + u)(1 − ur+2)

,

EXn,r(Xn,r − 1) =
2

Cn−1
[zn]

(1 + u)ur+2

(1 − u)(1 − ur+2)2

and

EXd
n,r =

d!
Cn−1

[zn]
1 − u

1 + u

(
u(1 + ur+1)

(1 − u)(1 − ur+2)
+

u

1 − u

√
1 − ur

1 − ur+2

)d

× Ñd−1

(
2u2r+2 − ur+2 + 2ur+1 − ur + 2

(1 + u)2ur

+
2(1 + ur+1)(1 − ur+2)

ur(1 + u)2

√
1 − ur

1 − ur+2

)

for d ≥ 2.

Proof. The expressions for d ∈ {1, 2} can be obtained by differentiation. We
consider the general case here.

We use the abbreviations

a =
u(1 − ur+1)

(1 + u)(1 − ur+2)
, b =

ur+2(1 − u)2

(1 + u)2(1 − ur+2)2
, Δ =

1 − u

1 + u
.

By the same argument as in the proof of Proposition 2.9, we have

∂d

∂vd
Gr(z, v)

∣
∣
∣
v=1

= d![qd]L(a(1 + q), b(1 + q)2).

By using (31), we rewrite L(a(1 + q), b(1 + q)2) as

L(a(1 + q), b(1 + q)2) =
1 −

√
(1 − 2a − 2aq)2 − 4b(1 + q)2

2

=
1−

√
(1−2a)2−4b−2q(2a(1−2a)+4b)+q2(4a2 − 4b)

2
.

We have

(1 − 2a)2 − 4b = Δ2,

√
4a2 − 4b

Δ2
=

2u

1 − u

√
1 − ur

1 − ur+2
.

We choose α and β such that

α + β =
2a(1 − 2a) + 4b

Δ2
, α − β =

√
4a2 − 4b

Δ2
.
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This results in

L(a(1 + q), b(1 + q)2) = Δ
1
Δ − 1 + q(α − β)

2

+ Δ
1 − q(α − β) −

√
1 − 2q(α + β) + q2(α − β)

2

= Δ
1
Δ − 1 + q(α − β)

2
+ ΔT (αq, βq).

Using (3) to extract the coefficient of qd for d ≥ 1 yields

∂d

∂vd
Gr(z, v)

∣
∣
∣
v=1

= d!Δ
(

α − β

2
[d = 1] + αdNd−1

(
β

α

))

.

Inserting everything concludes the proof of the proposition. �

Corollary 5.5. The expected value of Xn+1,r is explicitly given by

EXn+1,r =
1

Cn

⎛

⎝

(
2n

n

)

+
∑

j≥0

((
2n

n− (j + 1)(r + 2) + 1

)

−
(

2n

n− j(r + 2)− 1

))⎞

⎠ .

Proof. From Lemma 5.4, we obtain

CnEXn+1,r = [zn+1]
(1 + ur+1)u

(1 + u)(1 − ur+2)

and proceeding as in Corollary 2.10 we obtain the given result. �

By expanding the expressions in Lemma 5.4 and using singularity analysis,
we obtain the asymptotic growth of the expected value and the variance.

Theorem 6. Let r ∈ N be fixed and consider n → ∞. Then the expected size
and the corresponding variance of an r-fold cut plane tree are given by

EXn,r =
2n

r + 2
− r(r + 1)

3(r + 2)
+ O(n−1),

and

VXn,r =
2r(r + 1)
3(r + 2)2

n + O(1).

For d ≥ 3, the dth factorial moment is

EXd
n,r =

2d−1d

(2d − 3)(r + 2)d
nd +

(
2d − 5
d − 2

) √
rπ d

2d−3(r + 2)d−1/2
nd− 1

2 + O(nd−1).

All O-constants in this theorem depend implicitly on r.
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Besides the analysis of the tree size, we are also interested in how the
numbers of nodes represented by � and develop when the tree is reduced
repeatedly. Formally, this means that we consider the random variables X�

n,r

and Xn,r counting the number of old leaves and the number of all nodes that
are neither old leaves nor parents thereof, respectively. By construction, the
relation

Xn,r = 2 · X�
n,r + Xn,r (40)

holds.
The bivariate generating functions corresponding to these random variables

can be obtained directly from Proposition 5.3. We have

G�
r (z, v) = Gr(z, 1, v), Gr (z, v) = Gr(z, v, 1).

In contrast to Xn,r, the dth factorial moments for X�
n,r and Xn,r have

simpler expressions.

Proposition 5.6. Let d ∈ N. Then the dth factorial moments of X�
n,r and Xn,r

are given by

EX�
n,r

d
=

(2d − 2)d−1

Cn−1
[zn]

1 − u

1 + u

urd+2d

(1 − ur+2)2d
(41)

and

EXn,r =
1

Cn−1
[zn]

u(1 − ur+1)(1 + ur+2)
(1 + u)(1 − ur+2)2

(42)

as well as

EXn,r

d
=

1
Cn−1

[zn]
(1 − ur+1)dud2dd!

(1 − u)d−1(1 + u)(1 − ur+2)2d
Ñd−1(ur+2) (43)

for d > 1.

Proof of Proposition 5.6. As in the proof of Lemma 5.4, we use the abbrevia-
tions

a =
u(1 − ur+1)

(1 + u)(1 − ur+2)
, b =

ur+2(1 − u)2

(1 + u)2(1 − ur+2)2
, Δ =

1 − u

1 + u
.

Then, using (33), we get

∂d

∂vd
G�

r (z, v) =
∂d

∂vd
L(a, bv) = −1 − 2a

2

(1
2

)d(
1 − 4bv

(1 − 2a)2
)1/2−d (−4b)d

(1 − 2a)2d
.

Setting v = 1 and using the fact that

(1 − 2a)2 − 4b = Δ2 (44)

proves (41).
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For deriving ∂d/(∂v)dGr (z, v), we proceed as in the proof of Proposi-
tion 2.9. The crucial identity is

L(a(1 + q), b) = Δ
1
Δ − 1 + (α′ − β′)q

2
+ ΔT (α′q, β′q)

with

α′ =
2u(1 − ur+1)

(1 − ur+2)2(1 − u)
,

β′

α′ = ur+2.

This implies (42) and (43).
�

As in Sect. 2.3, the above proof exhibits some identities:

Remark. For d ∈ Z≥1, the power series identities
∑

n≥0
k≥1

un+kxk(1 − x)n(1 − u)2k

(1 + u)n+2k(1 − ux)n+2k
kdCk−1

(
n + 2k − 2

n

)

2n

= (2d − 2)d−1 udxd(1 − u)
(1 − ux)2d(1 + u)

(45)

and
∑

n≥0
k≥1

un+kxk(1 − x)n(1 − u)2k

(1 + u)n+2k(1 − ux)n+2k
ndCk−1

(
n + 2k − 2

n

)

2n

=
(1 − x)dud2dd! Ñd−1(ux)

(1 − u)d−1(1 + u)(1 − ux)2d
(46)

hold.

Proof. We replace ur+1 by x in the proof of Proposition 5.6 and expand L by
(34). �

The asymptotic behavior for the factorial moments of X�
n,r and Xn,r can

now be extracted quite straightforwardly by means of singularity analysis from
the representation given in Proposition 5.6.

Theorem 7. Let r ∈ N0 be fixed and consider n → ∞. Then the expected number
of old leaves as well as the expected number of nodes that are neither old leaves
nor parents thereof in an r-fold “old path”-reduced tree and the corresponding
variances are given by the asymptotic expansions

EX�
n,r =

1
(r + 2)2

n +
(r + 3)(r + 1)

6(r + 2)2
+ O(n−1), (47)

EXn,r =
2(r + 1)
(r + 2)2

n − (r2 + 3r + 3)(r + 1)
3(r + 2)2

+ O(n−1),
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VX�
n,r =

(r + 3)(r + 1)
3(r + 2)4

n + O(1), (48)

VXn,r =
2(r3 + 4r2 + 6r + 6)(r + 1)

3(r + 2)4
n + O(1).

Additionally, for fixed d ≥ 2 the behavior of the factorial moments of X�
n,r and

Xn,r is given by

EX�
n,r

d
=

1
(r + 2)2d

+ O(nd−1) (49)

and

EXn,r

d
=

2d(r + 1)d

(r + 2)2d
nd + O(nd−1), (50)

respectively. All O-constants in this theorem depend implicitly on r.

5.3. Total number of old paths

Similarly to our approach for counting the total number of paths required to
construct a given tree from Sect. 3.2, we can also analyze the number of “old
path”-segments within a random tree of size n. Formally, this corresponds to
an analysis of the random variable Sn :=

∑
r≥0 X�

n,r.

Theorem 8. The expected number of “old path” segments within a uniformly
random tree of size n is given asymptotically by

ESn =
(

π2

6
− 1

)

n − π2

36
− 1

12
− π2

120n
+ O(n−2) (51)

for n → ∞.

Proof. As we have Sn =
∑

r≥0 X�
n,r, we can use (41) to write

ESn =
∑

r≥0

EX�
n,r =

1
Cn−1

[zn]
1 − u

1 + u

∑

r≥0

ur+2

(1 − ur+2)2
.

The main part of this analysis consists in determining an appropriate expansion
of the sum in the last equation via the Mellin transform.

By setting u = e−t and by means of expanding via the geometric series, we
find

∑

r≥0

ur+2

(1 − ur+2)2
=

∑

r,λ≥0

λuλ(r+2) =
∑

r,λ≥0

λe−tλ(r+2) =: f(t).

It is easy to determine the corresponding Mellin transform

f∗(s) = Γ(s)ζ(s − 1)(ζ(s) − 1)
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with fundamental strip 〈2,∞〉. The poles of f∗(s) are located at s ∈ {2, 1} ∪
−2N0. As this function behaves very nicely along vertical lines because of the
exponential decay and the polynomial growth of the gamma function and the
zeta function, respectively, we can use the inversion theorem to find

f(t) =
1

2πi

∫ 3+i∞

3−i∞
f∗(s)t−s ds

for t → 0. Analyticity in a larger (complex) region can be obtained analogously
to the approach in the proof of Theorem 4.

Shifting the line of integration to Re(s) = − 5 and collecting residues, we
find

f(t) =
∑

p∈{2,1,0,−2,−4}
Res(f∗(s), s = p)t−p +

1
2πi

∫ −5+i∞

−5−i∞
f∗(s)t−s ds.

As in the proof of Theorem 4, the integral can be estimated with an error of
O(|t|5). However, for the sake of simplicity, we will use the contribution from
the singularity at s = − 4 as the expansion error. Effectively, we obtain

f(t) =
(

π2

6
− 1

)

t−2 − 1
2
t−1 +

1
8

− 1
240

t2 + O(t4)

for t → 0. Multiplication by the factor 1−u
1+u , expansion of everything in terms

of z → 1/4, carrying out singularity analysis, and normalizing the result by
dividing by Cn−1 yields the result. �

6. Future work

It seems likely that similar results also hold for reductions where one can cut
a different structure as long as it is allowed to cut a single leaf. An example
is cutting either single leaves or cherries (a root with two children). At least
a formulation as an operator as in (9) seems possible in general. How much
information about the moments and the central limit theorem can be extracted
from that may vary (as it varies in this article already). Also the case of cutting
old structures might be more difficult to handle in general.
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