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4. Extended Decision Model Incorporating Cost-
Stickiness 

In 1994 Noreen and Soderstrom formulated two important statements:119 
First, the relation between overhead costs and activities is not strictly 
proportional and second, whereas the design of more sophisticated cost 
systems incorporating the non-proportional cost behavior may be costly, in 
an environment where costs are decision relevant, the implementation of 
such accounting methods is recommended.  

This phenomenon has already been targeted in Germany in the early thirties 
of the last century, e.g. Strube (1936) investigated and documented cost 
behavior patterns. The asymmetry of overhead costs to changes in activity 
has been documented since then in many publications.120 Naming the 
phenomenon “sticky”, Anderson, Banker and Janakiraman (2003) refer with 
this term to differences in the extent of increases and decreases in costs 
corresponding to equivalent in-/decreases in activity. A good example is the 
German economy, where labor costs can more easily be increased than 
decreased in times of economic downturn, because of union power and strict 
labor laws.121  

Up to this point managerial research has focused on discovering and 
explaining the sticky costs phenomenon. Homburg (2004) develops a method 
for binary portfolio decisions, incorporating asymmetric cost-behavior. 
Building on this methodology, this chapter widens the focus on pricing 
decisions incorporating sticky cost-behavior. The assumption is, that costing 
systems neglecting cost stickiness are, for one, unable to reflect real cost 
consumption and therefore, for the other, lead to biased decisions.  

                                              
119 See Noreen and Soderstrom (1994), pp. 273-274. 
120 E.g. Noreen and Soderstrom (1997); Anderson, Banker and Janakiraman (2003); Banker, 

Byzalov and Plehn-Dujowich (2014). 
121 See Banker and Chen (2006), p. 26, or Calleja, Steliaros and Thomas (2006), p. 133. 
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To find evidence for this assumption the research framework of the previous 
chapter is changed in the following: Cost-stickiness is included in the 
benchmark model. But instead of having only one type of noisy models, this 
approach uses two different noisy models: one neglecting and one 
incorporating cost-stickiness.122 The details of the sticky implementation will 
be covered in depth later. For now let’s assume the BM considers cost 
stickiness and the performance of non-sticky noisy models, i.e. the heuristics 
are kept unchanged, is measured analogously to the approach of chapter 3. 
In accordance with the above formulated assumption the performance of the 
noisy model should drop. 

The line of argument is as follows: Demand changes lead to short-term 
capacity changes over time, in addition to the installed and per period 
available long-term capacity. It can be assumed, that due to cost-stickiness, 
these capacity adjustments are costly and short-term installed capacity can 
only be disinvested, if needed, at a premium. Based on the mechanics of the 
(unchanged) NM, the NM is unable to adjust its cost allocation process to 
changes in demand over time. Additionally it is unable to cope with different 
costs for capacity buildup and divestment. The NM allocates costs via 
heuristics directly to products. The heuristics yield activity costs which are 
stable over time and are therefore unable to reflect changes in demand nor 
to align costs in respect to the direction of resource adjustment. Therefore, 
leaving the heuristics unchanged, the NM should yield lower profits. 

Whereas it is a first goal of this chapter to show, that the performance of 
the NM drops, the main idea is to install NMs that are able to cope with 
the cost-stickiness effect. The key for this lies with the short-term capacity 
adjustments, as they are mainly driven by cost-stickiness. The size of short-
term adjustments itself is driven by fluctuations in market size (𝐴𝑖𝑡). Hence 
the NM adjustment should focus on these changes. It will be later discussed 

                                              
122 Since the research framework is identical in terms of how the research is conducted 

methodologically, a detailed description of the DOE phases as in Lorscheid, Heine and Meyer 
(2012) is neglected in the following.  
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how this adjustment takes place, but the - enhanced - new NM should 
therefore be able to yield lower profit errors.  

While the previous paragraphs abstractly touched on the approach, in the 
following the basic metrics will be introduced to answer the research 
questions of this chapter:  

(1) How big is the lever of the new NM? This is covered by comparing the 
new BM profits with the enhanced NM profits. 

(2) How severe is the loss in cost-system performance by neglecting cost-
stickiness? This is achieved by comparing the result of research 
question (1) with the delta in profits of the new BM against the old 
NM, i.e. the usage of the old heuristic set.  

(3) And lastly it can be shown how a NM hast to be designed to control 
for cost-stickiness. 

The answer to these questions are very important to researchers and 
practitioners, as this enables them for the first time to measure the loss 
caused by cost-stickiness and gives them a starting point of how to adjust 
their cost-systems in the future.      

The remainder of this chapter gives a broader introduction on cost-
stickiness, followed by how the research framework is transformed to model 
sticky cost behavior introducing an enhanced cost allocation process.  

4.1 A Side Note on Cost-Stickiness and its model 
implications 

The fundamentals behind cost-stickiness have been shortly addressed in the 
previous chapter. This chapter aims at backing the intuition of integrating 
cost stickiness into the decision model and documents its contribution to 
the literature body. Additionally it is also identified which source of cost-
stickiness will be implemented. It is neither a comprehensive overview of 
cost-stickiness nor a discussion of its empirical evidence, since this would 
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only add limited value for the development of the enhanced simulation 
model. 

Since Anderson, Banker and Janakiraman (2003) developed one of the 
central concepts to measure cost-stickiness, empirical evidence has been 
found also in cross country studies (e.g. Banker and Chen (2006)) or as an 
effect of incentive systems (Dierynck, Landsman and Renders (2012)).123 A 
new discussion led by Balakrishnan, Labro and Soderstrom (2014) and 
Banker and Byzalov (2014) on the used methodology and the role of cost 
structure towards sticky costs will be taken up in the discussion of the 
results.  

Independent of all the research efforts on finding evidence and explaining 
cost-stickiness, neither in practice nor in theory, traditional costing has been 
explicitly modified to control for sticky behavior in the relation between 
activity levels in the current, past or future period.124  

Where traditional costing only distinguishes between fixed and variable 
costs related to changes in activity volume, the sticky model adds costs 
resulting from resource commitment decisions.125 Because of their partly 
lumpy character the latter category cannot be changed as an immediate 
response to demand changes. Considering the question “why are costs 
lumpy”, prior research has come up with multiple considerations. 

Following Mahlendorf (2009) two basic differentiations group the source of 
sticky costs due to adjustment delays (unavoidable) and managers’ 
deliberate decisions (avoidable). The adjustment delay theory is straight 
forward: costs cannot be adjusted (mostly declined) in the same period as 
volume changes occur.126 This leads inevitably to idle capacity costs. On the 
other hand, the deliberate decisions theory clusters entrepreneurial intended 
and unintended cost sources. Unintended costs result from agency issues. 

                                              
123 For a detailed discussion of the cost-stickiness literature body I refer to Baumgarten (2012). 
124 See Banker, Byzalov and Plehn-Dujowich (2014), p. 840. 
125 See Anderson, Banker and Janakiraman (2003), p. 48. 
126 See Baumgarten, Bonenkamp and Homburg (2010), p. 3. 
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Instead of optimizing shareholder value, management maximizes its personal 
value. The buzz word in this context is empire building, meaning self-
centered management uses sales growth periods to build up capacity in their 
domain (i.e. employer stock in their own department), whereas they refrain 
from giving up these resources in periods of sale declines.127 The source of 
this behavior can be manifold: one possible argument is misleading incentive 
systems.128 

Incentive schemes are not the only factor driving the decision process. 
Another factor is expectations of future developments and the inherent 
consideration if an adjustment of capacity economically makes sense, i.e. the 
costs of adjustment are below the costs resulting from idle capacity. 
Whether adjustments have to be made in the first place, depends therefore 
on the prediction of future sales. It is more likely that management is willing 
to adjust capacity upwards in times of sales growth than in periods of 
economic distress. In the latter environment, management decision is not 
consequently a reduction of capacity, if the persistence of sales declines is 
expected to be short. Whereas managers aim to reduce adjustment costs, 
they trade off capacity utilization and respectively their cost over a longer 
period of time, against adjustment costs in the actual period.129  

Both, benchmark and noisy model do not incorporate agency theory 
elements. Therefore only the adjustment delay theory is reflected in the new 
approach. The following chapter covers the extension.  

4.2 The Extended Model Approach 

The aim of this chapter is to develop the extended model and clarify the 
design decisions. Recapitulating the introduced research questions, the 

                                              
127 See Chen, Lu and Sougiannis (2012); Kama and Weiss (2013), p. 203. 
128 See Dierynck, Landsman and Renders (2012), p. 1220; Banker, Byzalov and Plehn-Dujowich 

(2014), p. 847. 
129 See Banker, Byzalov and Plehn-Dujowich (2014), p. 860. 
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approach has to measure both, the effect of neglecting cost stickiness and 
the gain by incorporating it into decision making.  

The task of the BM model still is to reflect optimal decisions in an 
environment of perfect information. As it is the reference point, performance 
of the NM will be measured against it, it is obvious that this model has to 
incorporate cost stickiness. To separate it from the former BM, the cost-
stickiness enhanced BM will be identified by the index “ext” (𝐵𝑀𝑒𝑥𝑡). In 
addition we need two NM: one is the unchanged NM of the last chapter, 
from here on classified as the standard NM (𝑁𝑀𝑠𝑡𝑑). The second one is the 
new NM (𝑁𝑀𝑒𝑥𝑡), extended to control for cost-stickiness. Therefore the 
simulation process also has to be adjusted, first calculating the 𝐵𝑀𝑒𝑥𝑡, 
followed by the 𝑁𝑀𝑠𝑡𝑑 and subsequently the 𝑁𝑀𝑒𝑥𝑡. This alignment of the 
simulation will be the subject of chapter 4.2.3. 

4.2.1 The BM adjustment 
Following the cost-stickiness introduction, adjustments in capacity follow 
demand fluctuations. Moreover, reducing installed capacity is more costly 
than installing additional capacity. Lastly, built up resource costs of 
previous periods need to have an impact on the resource costs in the current 
period. This is basically what separates the standard 𝐵𝑀 (chapter 3) from 
the extended 𝐵𝑀𝑒𝑥𝑡.130 

𝑚𝑎𝑥
𝑃𝑖𝑡𝐵𝑀,𝑅𝑗𝑡,𝐿𝑗

∑ (∑(𝑃𝑖𝑡𝐵𝑀 − 𝑣𝑖)(𝐴𝑖𝑡 − 𝑏𝑖𝑃𝑖𝑡𝐵𝑀) − ∑ 𝜙𝑗𝑐𝑗𝑅𝑗𝑡
𝐽

𝑗=1
𝐼

𝑖=1
)𝑇

𝑡=1
− 𝑇 ∑𝑐𝑗𝐿𝑗

𝐽
𝑗=1

(28) 

Equation (28) displays the standard benchmark model. One could argue 
that the term ∑ 𝜙𝑗𝑐𝑗𝑅𝑗𝑡𝐽𝑗=1  already covers sticki-costs. Adjustments in 

                                              
130 See Banker, Byzalov and Plehn-Dujowich (2011), pp. 2–3. 
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capacity (𝑅𝑗𝑡) are time dependent and one unit of additional capacity costs 
the standard costs 𝑐𝑗 plus a premium rate in costs (𝜙𝑗 > 1).  
This only partially reflects the sticky-cost function. First, it does not 
differentiate between premiums for investing and divesting capacity. 
Second, capacity is only installed for one period.  

Hence the adjustment is threefold:  

(1) The premium 𝜙𝑗 is split into a premium for costs of building up 
capacity (𝜙𝑗+) and one for reducing capacity (𝜙𝑗−). Obviously the 
premium for divestments needs to be greater than the premium for 
investments (𝜙𝑗−>𝜙𝑗+). Consequently the costs for a short term 
capacity divestment of resource j (𝑐𝑗− = 𝜙𝑗−𝑐𝑗) is higher than the costs 
for investments (𝑐𝑗+ = 𝜙𝑗+𝑐𝑗). 

(2) The buildup of short-term capacities 𝑅𝑗𝑡 is now persistent, meaning 
that adjustments are still periodically possible, but built capacities 
from one period are now kept until they are used or divested. 
Therefore 𝑅𝑗𝑡  is the sum of resources of previous periods (𝑅𝑗𝑡−1 ), the 
current invest (𝑅𝑗𝑡+) and the divest (𝑅𝑗𝑡−). Hence, it is better to refer 
to these resources as mid-term capacity, instead of short-term 
capacity.  

(3) Due to the split in the cost premium and the resulting differences in 
costs for mid-term investments and respectively divestments, the 
profit function (see eq. (29)) needs to be adjusted. The sum ∑ (𝑐𝑗𝑅𝑗𝑡 + 𝑐𝑗+𝑅𝑗𝑡+ + 𝑐𝑗−𝑅𝑗𝑡−)𝐽𝑗=1  reflects these changes, incorporating 

costs for the already built up resources (𝑐𝑗𝑅𝑗𝑡), as well as for 
investments and divestments (𝑐𝑗+𝑅𝑗𝑡+ + 𝑐𝑗−𝑅𝑗𝑡−).  
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The optimal solution renders 𝑃𝑟𝑜𝑓𝑖𝑡𝐵𝑀𝑒𝑥𝑡 :  
𝑚𝑎𝑥𝑃𝑖𝑡𝐵𝑀𝑒𝑥𝑡,𝑅𝑗𝑡,,𝑅𝑗𝑡+,𝑅𝑗𝑡−,𝐿𝑗

  

∑  𝑇
𝑡=0

 
⎝
⎜⎜⎜⎜
⎛∑(𝑃𝑖𝑡𝐵𝑀𝑒𝑥𝑡 − 𝑣𝑖)(𝐴𝑖𝑡 − 𝑏𝑖𝑃𝑖𝑡𝐵𝑀𝑒𝑥𝑡)𝐼

𝑖=1
−

∑(𝑐𝑗𝑅𝑗𝑡 + 𝑐𝑗+𝑅𝑗𝑡+ + 𝑐𝑗−𝑅𝑗𝑡−)𝐽
𝑗=1 ⎠

⎟⎟⎟⎟
⎞ − 𝑇∑ 𝑐𝑗𝐿𝑗

𝐽
𝑗=1

 (29) 

subject to ∑𝑚𝑖𝑗
𝐼

𝑖=1
(𝐴𝑖𝑡 − 𝑏𝑖𝑃𝑖𝑡𝐵𝑀𝑒𝑥𝑡) − 𝑅𝑗𝑡 − 𝐿𝑗 ≤ 0 ∀𝑗, 𝑡,   

 (𝐴𝑖𝑡 − 𝑏𝑖𝑃𝑖𝑡𝐵𝑀𝑒𝑥𝑡) ≥ 0 ∀𝑖, 𝑡,  

 𝑅𝑗𝑡 =  𝑅𝑗𝑡−1 + 𝑅𝑗𝑡+ − 𝑅𝑗𝑡− ∀𝑗, 𝑡,  
 𝑐𝑗+ = 𝜙𝑗+𝑐𝑗 ∀𝑗,  
 𝑐𝑗− = 𝜙𝑗−𝑐𝑗 ∀𝑗,  
 𝑃𝑖𝑡𝐵𝑀𝑒𝑥𝑡, 𝑅𝑗𝑡, 𝑅𝑗𝑡+,𝑅𝑗𝑡−, 𝐿𝑗 ≥ 0 ∀𝑖, 𝑗, 𝑡.  

Decision variables: Non-decision variables:  

 𝑃𝑖𝑡𝐵𝑀𝑒𝑥𝑡 Optimal price for product i in 
period t of the BM 

𝐴𝑖𝑡 Market size per product i and 
period t 

 
𝐿𝑗 Initial long-term capacity for 

resource j (available every period) 
𝑏𝑖 Price elasticity of product i  

𝑅𝑗𝑡 Flexible mid-term capacity for 
resource j and period t 

𝑣𝑖 Variable cost of product i  
𝑅𝑗𝑡+ Invest in mid-term capacity for 

resource j and period t 
𝑐𝑗 Base resource costs of resource j  

𝑅𝑗𝑡− Disinvestment in mid-term capacity 
for resource j and period t 

𝑐𝑗+ 
Resource costs for additional 
resources 

 
 𝑐𝑗− Resource costs for divested 

resources 
 

 𝜙𝑗+ Premium price for investing in 
additional capacity of j 

 
 𝜙𝑗− Premium price for disinvesting 

capacity of j 
 

 𝑚𝑖𝑗 Resource consumption matrix 
for product i and resource j  

Based upon Balakrishnan and Sivaramakrishnan (2002), p. 12. 
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Aside from these changes the extended benchmark model follows the 
mechanics of the BM of chapter 3. Over a planning horizon of t=1,…T 
periods the 𝐵𝑀𝑒𝑥𝑡 optimizes prices and capacities simultaneously for 
products i=1,…,I and resources j=1,…,J. 

4.2.2 The NM adjustment 
As discussed in the introduction of this chapter, we need two noisy models, 
the standard 𝑁𝑀𝑠𝑡𝑑 and the extended 𝑁𝑀𝑒𝑥𝑡. The extension itself has only 
been shortly addressed and is the subject of this chapter.  

As already stated, the allocation process of costs needs to be refined. If one 
follows this line of thought, two elements need to be incorporated into the 
NM: The change in demand over time and the direction of resource changes, 
i.e. buildup or reduction of capacity. 

An obvious starting point would be the heuristics, which steer the allocation 
process. This is maybe an intuitive starting point for the adjustment. But 
for two reasons it is hardly possible to control for cost-stickiness at this 
level.  

𝑚𝑎𝑥𝑃𝑖𝑡𝑁𝑀𝑠𝑡𝑑 ∑ ∑(𝑃𝑖𝑡𝑁𝑀𝑠𝑡𝑑 − 𝑣𝑖 − 𝐴𝐵𝐶𝑖 )(𝐴𝑖𝑡 − 𝑏𝑖𝑃𝑖𝑡𝑁𝑀𝑠𝑡𝑑)𝐼
𝑖=1

𝑇
𝑡=1

(30) 
The heuristic output is essentially the activity cost vector 𝐴𝐵𝐶𝑖. According 
to the profit function of the standard 𝑁𝑀𝑠𝑡𝑑 (30), these costs are 
independent of the produced quantity 𝑞𝑖𝑡 = (𝐴𝑖𝑡 − 𝑏𝑖𝑃𝑖𝑡𝑁𝑀𝑠𝑡𝑑). Setting the 
activity costs for product i, the 𝑁𝑀𝑠𝑡𝑑 subsequently optimizes the prices 𝑃𝑖𝑡𝑁𝑀𝑠𝑡𝑑 and consequently also the production quantity. Hence at the time 
the 𝑁𝑀𝑠𝑡𝑑 sets activity costs, the production quantity has not been 
determined. In addition, as covered in section 3.1.4, the capacity decision 
has not taken place. A distinction between costs of resource increase and 
decrease is therefore impossible. 

Focusing on the capacity decision another aspect comes into play: Resources 
are used across products, therefore only the complete portfolio decision 
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determines the needed resource quantities. Ceteris paribus, a sticky cost-
factor taking into consideration changes in resource consumption triggered 
by changes in market size, can only be applied on a portfolio level. 

Further, it needs to be considered, that the higher the fluctuations in market 
size, the higher the fluctuations in demand are and the lesser the standard 𝑁𝑀𝑠𝑡𝑑 is able to cope with the effect. 

Homburg (2004) calls demand fluctuation, demand heterogeneity and 
develops a portfolio based driver, which controls for costs induced by these 
fluctuations. In the following a driver is developed to enhance the standard 𝑁𝑀𝑠𝑡𝑑, enabling the resulting extended 𝑁𝑀𝑒𝑥𝑡 to cope with cost stickiness.  

Homburg (2004)’s profit function is based on the alternation of different 
portfolio constellations, which are binary decisions: include a certain product 
in the mix or not. In this publication the price determines the product mix, 
therefore the approach is different to the underlying publication by 
Homburg (2004).  

The basic idea is to estimate the cost gap resulting from neglecting cost-
stickiness in the 𝑁𝑀𝑠𝑡𝑑 in comparison to the 𝐵𝑀𝑒𝑥𝑡. By closing this costing 
gap, the extended model 𝑁𝑀𝑒𝑥𝑡 should also be able to reduce the profit 
error towards the 𝐵𝑀𝑒𝑥𝑡. The question is, whether there exists a functional 
relation between the costs induced by demand heterogeneity and the 
resulting cost gap, emerging from capacity differences between the 𝑁𝑀𝑠𝑡𝑑 
and the 𝐵𝑀𝑒𝑥𝑡? 

The demand heterogeneity can be expressed as the change in demand 
between the actual and the previous period valued by the costs for these 
resources. More explicitly for the complete time frame the delta in quantity 
can be expressed as ∑ ⏐⏐⏐∑ 𝑚𝑖𝑗𝐼𝑖=1 [(𝑞𝑖𝑡) − (𝑞𝑖𝑡−1)]⏐⏐⏐𝑇𝑡=2 . The resource 
consumption matrix is used to trace back the quantity to resources. To 
economically quantify the heterogeneity, this delta needs to be valued by a 
cost factor incorporating the different cost-components for investments and 
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divestments (𝜙𝑗+𝑐𝑗 + 𝜙𝑗−𝑐𝑗 − 𝑐𝑗). In sum the resulting heterogeneity driver 
ℎ𝑐𝑠(𝑃𝑖𝑡) can be expressed as:131 

ℎ𝑐𝑠(𝑃𝑖𝑡) = ∑(𝜙𝑗+𝑐𝑗 + 𝜙𝑗−𝑐𝑗
𝐽

𝑗=1
− 𝑐𝑗)∑ ⏐⏐⏐⏐

⏐∑𝑚𝑖𝑗
𝐼

𝑖=1
[(𝐴𝑖𝑡 − 𝑏𝑖𝑃𝑖𝑡 )𝑇

𝑡=2
− (𝐴𝑖𝑡−1 − 𝑏𝑖𝑃𝑖𝑡−1)]⏐⏐⏐⏐

⏐
(31) 

Based upon Homburg (2004), p. 338 

In other terms, the heterogeneity driver expresses the error the standard 𝑁𝑀𝑠𝑡𝑑 makes by neglecting the costs of demand changes. By using the 
yielded prices 𝑃𝑖𝑡𝑠𝑡𝑑 by the 𝑁𝑀𝑠𝑡𝑑, one is able to calculate the error for each 
noisy model, i.e. calculating ℎ𝑐𝑠(𝑃𝑖𝑡𝑠𝑡𝑑).   
Hereby one component of the functional relation between 𝑁𝑀𝑠𝑡𝑑 and 𝐵𝑀𝑒𝑥𝑡 
has been identified. The other component is the capacity difference emerging 
from the inability of the 𝑁𝑀𝑠𝑡𝑑 to cope with the demand heterogeneity. To 
measure the capacity difference by the 𝑁𝑀𝑒𝑥𝑡 the pseudo capacity 
estimation of section 3.1.4 is used. In other terms, it is the economic 
valuation of the produced quantity 𝑥𝑖𝑡 by the activity costs 𝐴𝐵𝐶𝑖. The 
costs of capacity of the 𝐵𝑀𝑒𝑥𝑡 is obviously the sum of medium term and 
long term capacity valued by the corresponding cost vectors. The delta in 
costs between both models can therefore be expressed as: 

𝛥𝐶(𝑃𝑖𝑡𝑁𝑀𝑠𝑡𝑑) = ∑ ∑(𝑐𝑗𝐿𝑗 + 𝑅𝑗𝑡𝑐𝑗 + 𝑐𝑗+𝑅𝑗𝑡+ + 𝑐𝑗−𝑅𝑗𝑡−)𝐽
𝑗=1

𝑇
𝑡=1

− ∑ ∑𝐴𝐵𝐶𝑖
𝐼

𝑖=1
[(𝐴𝑖𝑡 − 𝑏𝑖𝑃𝑖𝑡𝑁𝑀𝑠𝑡𝑑)]𝑇

𝑡=1

(32) 

Based upon Homburg (2004), p. 338 

                                              
131 The subscript ‘cs’ identifies variables as cost-stickiness enhanced. 
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To recapitulate, the idea is to develop an extended 𝑁𝑀𝑒𝑥𝑡 that is able by 
closing the costing gap (in comparison to the 𝐵𝑀𝑒𝑥𝑡) caused by cost-
stickiness to yield better pricing decisions and hence higher profits. It was 
considered that therefore a cost driver on portfolio level needs to be 
developed. Generally speaking, the cost driver rate should reflect the 
structural error the 𝑁𝑀𝑠𝑡𝑑 generates. This error can be expressed as the 
resulting false capacity decision based on neglecting the demand 
heterogeneity. In addition one can state, that the higher the demand 
heterogeneity the higher the capacity error. In line with Homburg (2004), 
assuming the functional relation between ℎ𝑐𝑠 and 𝛥𝐶 is linear, the slope of 
this function can be considered the cost driver rate. Therefore in accordance 
with eq. (33) the slope 𝜋𝑐𝑠 describes how intense a change in heterogeneity (ℎ𝑐𝑠) effects the cost gap or in other words the cost error (𝛥𝐶) of the 𝑁𝑀𝑠𝑡𝑑. 

Following Homburg (2004) the functional relation between the demand 
heterogeneity and the delta in costs can therefore be expressed as follows: 

𝛥𝐶(𝑃𝑖𝑡𝑁𝑀𝑠𝑡𝑑)  = 𝛽0 + 𝜋𝑐𝑠ℎ𝑐𝑠(𝑃𝑖𝑡𝑁𝑀𝑠𝑡𝑑) + 𝜀 (33) 

Having identified 𝜋𝑐𝑠 two questions arise: How can 𝜋𝑐𝑠 be used to extend 
the standard noisy model and how will it be estimated. A detailed discussion 
of the method to estimate 𝜋𝑐𝑠 is the subject of section 4.2.3.  

Abstracting from the method to determine the cost driver rate 𝜋𝑐𝑠, the noisy 
model extension should value at the time of planning the demand 
heterogeneity for a given production program. In other words while setting 
the price 𝑃𝑖𝑡𝑁𝑀𝑒𝑥𝑡 the extended 𝑁𝑀𝑒𝑥𝑡 needs to incorporate the costs of the 
demand heterogeneity caused by setting the price 𝑃𝑖𝑡𝑁𝑀𝑒𝑥𝑡 . The demand 
heterogeneity for the current production program can be calculated by using 
eq. (31) and inserting 𝑃𝑖𝑡𝑁𝑀𝑒𝑥𝑡 into ℎ𝑐𝑠. The costs of the heterogeneity are 
reflected in the cost driver rate 𝜋𝑐𝑠. These costs reduce the estimated profit 
of the profit function known from the 𝑁𝑀𝑠𝑡𝑑:  
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𝑚𝑎𝑥𝑃𝑖𝑡𝑁𝑀𝑒𝑥𝑡 ∑∑(𝑃𝑖𝑡𝑁𝑀𝑒𝑥𝑡 − 𝑣𝑖 − 𝐴𝐵𝐶𝑖 )(𝐴𝑖𝑡 − 𝑏𝑖𝑃𝑖𝑡𝑁𝑀𝑒𝑥𝑡)𝐼
𝑖=1

𝑇
𝑡=1 − 𝜋𝑐𝑠ℎ𝑐𝑠(𝑃𝑖𝑡𝑁𝑀𝑒𝑥𝑡)

(34) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (𝐴𝑖𝑡 − 𝑏𝑖𝑃𝑖𝑡𝑁𝑀𝑒𝑥𝑡) ≥ 0 ∀𝑖, 𝑡  
  𝑃𝑖𝑡𝑁𝑀𝑒𝑥𝑡 ≥ 0 ∀𝑖, 𝑡.  

Based upon Homburg (2004), p. 339 

Eq. (34) illustrates the extended noisy model 𝑁𝑀𝑒𝑥𝑡. As discussed in section 
3.7, the heuristics tend to systematically underestimate full costs. This error 
is overcome in the 𝑁𝑀𝑒𝑥𝑡 by limiting the profits using sticky-costs factor 
equaling 𝜋𝑐𝑠ℎ𝑐𝑠(𝑃𝑖𝑡𝑁𝑀𝑒𝑥𝑡). 
4.2.3 Information & simulation flow and data 
To wrap up the previous sections, the steps to calculate the extended 𝑁𝑀𝑒𝑥𝑡 
are:  
1. Calculate the 𝐵𝑀𝑒𝑥𝑡 & 𝑁𝑀𝑠𝑡𝑑 
2. Estimate the cost driver rate 𝜋𝑐𝑠 based on step 1 
3. Calculate the 𝑁𝑀𝑒𝑥𝑡 
The common thread running through the simulation is almost the same as 
in chapter 3; first the benchmark system is simulated followed by the noisy 
models.  

The combination of market and production parameters has been kept equal 
to the former simulation. The total of parameters still yields 864 BMs, 
whereas the number of model variations for each of the 864 BMs has been 
inclined to have a broader information base for the regression. Additionally 
in comparison the former simulation used 10 model variations per parameter 
combination, this time 40 variations are processed - resulting in 34,560 BM 
observations. 

Since the focus of this research is no longer on the heuristics only, the set of 
heuristics has been minimized, leaving only the random and correlation size 
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method on the first stage and big pool as well as the average heuristic on 
the second stage. Since the number of activity pools has a monotonic relation 
to the delta in profits, for this approach only 3 levels of activity pools are 
used. This gives a total of 12 models (2 heuristics1 * 2 heuristics2 * 3 ACPs). 
Figure 11 provides an overview of the simulation flow, illustrating also the 
regression approach being outlined in the following. 

Let us focus on step 2 (see above). Basically a regression approach (the 
regression function is defined in eq. (33)) is used to determine the cost driver 
rate 𝜋𝑐𝑠. For simplification reasons - up to this point - it was abstracted 
from the method to calculate the cost driver rate 𝜋𝑐𝑠. To restate: the cost 
driver rate reflects the structural error a set of standard 𝑁𝑀𝑠𝑡𝑑 generates, 
by neglecting demand heterogeneity and cost-stickiness. The set of 𝑁𝑀𝑠𝑡𝑑 
is defined by identical variable outputs and usage of heuristics. Hence for 
this set, 𝜋𝑐𝑠 quantifies how severe the demand heterogeneity is undervalued. 
The set of 𝑁𝑀𝑠𝑡𝑑 encompasses capacity cost differences (∆𝐶) between a 𝐵𝑀𝑒𝑥𝑡 and a number of 𝑁𝑀𝑠𝑡𝑑, as well as the demand heterogeneity (ℎ𝑐𝑠) 
for each 𝑁𝑀𝑠𝑡𝑑.  

Finally, 𝜋𝑐𝑠 is calculated using a linear regression between Δܥ and the 
heterogeneity driver ℎ𝑐𝑠. As data points, the results from the standard (32) 
noisy models are used, across identical heuristic combinations and activity 
cost pools using the 40 simulation runs. The hereby estimated 𝜋𝑐𝑠 is 
subsequently used in the extended 𝑁𝑀𝑒𝑥𝑡 noisy model to estimate 𝑃𝐹𝑁𝑀𝑒𝑥𝑡 . 

The following example should clarify the approach: 
1. First choose a type of 𝑁𝑀𝑠𝑡𝑑 definition: hold the choice of heuristic 

combination (random + average) and the number of activity pools (3 
pools) static. 

2. For market and production parameters choose static parameters, e.g. 
a decreasing market, resource cost vector level eq. 0.5, etc. This yields 
comparable variable outputs and distributions. 

3. Use the resulting 40 𝐵𝑀𝑒𝑥𝑡 and 𝑁𝑀𝑠𝑡𝑑 combinations to estimate 𝜋𝑐𝑠. 
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Figure 11: Information and simulation flow (2nd simulation) 

∆𝑃𝐹𝑠𝑁𝑀𝑠𝑡𝑑 = 𝑃𝐹𝑠𝐵𝑀𝑒𝑥𝑡 − 𝑃𝐹𝑠𝑁𝑀𝑠𝑡𝑑 * ∆𝑃𝐹𝑠𝑁𝑀𝑒𝑥𝑡 = 𝑃𝐹𝑠𝐵𝑀𝑒𝑥𝑡 − 𝑃𝐹𝑠𝑁𝑀𝑒𝑥𝑡 * 

(35) 
(36) 
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1. Variable costs 

variance (VCV, 
2 level) 

2. Variable costs 
(2 level) 

3. Resource cost 
variance (RCV, 
3 level) 

4. Resource costs 
(2 level) 

5. Measurement 
error (3 level) 

6. Market growth 
(3 level) 

7. Resource 
sharing  
(4 level) 

⇒ 𝑙𝑒𝑣𝑒𝑙𝑓𝑎𝑐𝑡𝑜𝑟 = 233341 =864 combinations   
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1. Optimize profit extended 
benchmark model, see eq. 
(29). 

⇒ 40 samples 

⇒ ∆𝑃𝐹𝑠𝑁𝑀𝑠𝑡𝑑
⇒ ∆𝑃𝐹𝑠𝑁𝑀𝑒𝑥𝑡 
 𝑆 = 
BM*NM = 
864*40*12 
= 414,720  

 
2. For each 𝐵𝑀𝑒𝑥𝑡 calculate 

profit std. noisy model see 
eq. (30) for a combination of 
a. Heuristics 1 (2 level)  
b. Heuristics 2 (2 level) 
c. ACP (3 level) 

 

⇒ 𝑙𝑒𝑣𝑒𝑙𝑓𝑎𝑐𝑡𝑜𝑟
= 2231 = 12 combinations   
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3. Out of these 480 
𝐵𝑀𝑒𝑥𝑡/𝑁𝑀𝑠𝑡𝑑 data points, 
calculate for each 𝑁𝑀𝑠𝑡𝑑 
configuration the 40 capacity 
cost differences (∆𝐶) and 
demand heterogeneity (ℎ𝑐𝑠). 

4. Using this subset asses the 
cost driver rate 𝜋𝑐𝑠 by means 
of a linear regression, see eq. 
(33). 

5. Optimize the profit 𝑁𝑀𝑒𝑥𝑡. 
6. Repeat steps (3) to (5) for 

each 𝑁𝑀𝑠𝑡𝑑 configuration 
(12 times).  

*𝑠 ∈ 𝑆 (simulation runs), own depiction. 
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Finally, as in the standard simulation of chapter 3, the obtained prices  are 
used to calculate the corresponding profit errors, by using them in the BM 
as input variables and calculating the respective truly needed capacities. 
This is also an identical procedure as in the standard simulation used in 
chapter 3.2. 

In total this approach yields - by combining the 34,560 BM with 12 NM 
combinations of heuristics and cost pools - 414,720 observations. As in the 
previous chapter the optimization sometimes timed out, or no optimal 
solution was found, resulting in 348,000 observations (84% of the 414,720 
possible observations) in total. 

4.3 Hypothesis Development 

At the beginning of chapter 4 the basic research questions and motivation 
has been introduced. A central question is, if the enhanced noisy model 
(𝑁𝑀𝑒𝑥𝑡) is able to yield higher profits than the ordinary noisy model 
(𝑁𝑀𝑠𝑡𝑑) and if so, how great is lever of the enhanced approach. Homburg 
(2004) has already shown that the higher level cost driver is able to enhance 
the ABC performance. In theory, taking the results of the former simulation 
model into account, it is indicated that 𝑁𝑀𝑠𝑡𝑑 performance is highly 
correlated with product and demand heterogeneity: Looking again at Table 
13, it can be deducted that resource sharing and market growth have the 
first and third biggest effect on the profit error. As discussed in the “Based 
upon Balakrishnan and Sivaramakrishnan (2002), p. 12. 

Aside from these changes the extended benchmark model follows the 
mechanics of the BM of chapter 3. Over a planning horizon of t=1,…T 
periods the 𝐵𝑀𝑒𝑥𝑡 optimizes prices and capacities simultaneously for 
products i=1,…,I and resources j=1,…,J. 

The NM adjustment” section, the 𝑁𝑀𝑒𝑥𝑡 is designed to counter these profit 
decreasing effects. Hence (H1) is defined as follows: 
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(H1) The extended noisy model outperforms the standard noisy
model   

 

In addition, as discussed, the introduced driver takes the portfolio decision 
into account. The Heuristics on first- and second-stage are not changed in 
their implementation. Therefore the performance of both heuristics should 
not be affected, and hence the prediction is:   

(H2) The performance of heuristics on first- and second-stage is
comparable between both noisy models 

 

Lastly, since the new driver aims at better portfolio decisions, the 
differentiation of the product error into its four parts should indicate that 
DE and KE errors differ between both noisy models. As cost allocation on 
portfolio level should also lead to a better resource handling of the extended 
model, the CE error should be lower in the extended model.   

(H3) The extended model reduces DE, KE and CE in comparison
to the standard noisy model 

 

4.4 Research framework: Key metrics and analysis method 

The basic research setting is equal to chapter 3.4, including the definition 
of profit errors. The fundament still is an OLS regression, which will be 
presented subsequently. In addition a new metric is used in the descriptive 
section to compare the performance of the noisy models against each other.  

4.4.1 Variance of Profits 
This metric is used to capture the variance of the suboptimal noisy model 
profits, based on Labro and Vanhoucke (2007).132 The reference of this 
method is the maximum difference between noisy and benchmark model. 
                                              
132 Labro and Vanhoucke (2007) (p. 953) use this metric to control for the importance of a 

product and its allocated costs with respect to the portfolio. As closer the metric is to 1, 
only a few products account for the majority of cost in the portfolio, whereas the other 
products can be neglected. 
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This difference is set in relation to the sum of all differences between the 
benchmark profit and the noisy models’ profits: 

𝑉𝑎𝑟_𝑃𝐹𝑁𝑀𝑠𝑡𝑑 = ∑ (𝑃𝐹𝐵𝑀𝑒𝑥𝑡 − 𝑃𝐹ℎ𝑁𝑀𝑠𝑡𝑑)𝐻ℎ=1𝑚𝑎𝑥ℎ=1𝐻 (𝑃𝐹𝐵𝑀𝑒𝑥𝑡 − 𝑃𝐹ℎ𝑁𝑀𝑠𝑡𝑑) (37) 

𝑉𝑎𝑟_𝑃𝐹𝑁𝑀𝑒𝑥𝑡 = ∑ (𝑃𝐹𝐵𝑀𝑒𝑥𝑡 − 𝑃𝐹ℎ𝑁𝑀𝑒𝑥𝑡)𝐻ℎ=1𝑚𝑎𝑥ℎ=1𝐻 (𝑃𝐹𝐵𝑀𝑒𝑥𝑡 − 𝑃𝐹ℎ𝑁𝑀𝑒𝑥𝑡) (38) 
 ℎ = 1, … ,12 indicating (2 H1 * 2 H2 * 3 ACPs) 𝑛 = 1, … , 34,560 indicating the number of BM  

4.4.2 Regression Specifications 
In contrast to chapter 3.4.2 the regression models slightly differ from each 
other. Three different regression results are compared, (39) the environment 
and production parameter influences on the BM, (40) in addition to these 
parameters, the cost system design choices on both noisy models and (41) 
the impact of the new driver on the extended noisy model: 

𝑃𝐹𝐵𝑀𝑒𝑥𝑡 = 𝛽0 + 𝛽1𝑀𝑎𝑟𝑘𝑒𝑡 𝑔𝑟𝑜𝑤𝑡ℎ𝑖 + 𝛽2𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑠ℎ𝑎𝑟𝑖𝑛𝑔𝑖+𝛽3𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑠𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖 + 𝛽4𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑠𝑡𝑖+𝛽5𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡𝑖 + 𝛽6𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖+𝛽7𝑀𝑒𝑎𝑠𝑢𝑟𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟𝑖 + 𝜀𝑖

 (39) 

∆𝑃𝐹𝑖𝑁𝑀𝑠𝑡𝑑 = 𝛽0 + 𝛽1𝑀𝑎𝑟𝑘𝑒𝑡 𝑔𝑟𝑜𝑤𝑡ℎ𝑖 + 𝛽2𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑠ℎ𝑎𝑟𝑖𝑛𝑔𝑖+𝛽3𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑠𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖 + 𝛽4𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑠𝑡
+𝛽5𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡𝑖 + 𝛽6𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖+𝛽7𝑀𝑒𝑎𝑠𝑢𝑟𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟𝑖+𝛽8𝐴𝐶𝑃𝑖 + 𝛽9𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠1𝑖 + 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠2𝑖 + 𝜀𝑖

(40) 
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∆𝑃𝐹𝑖𝑁𝑀𝑒𝑥𝑡 = 𝛽0 + 𝛽1𝑀𝑎𝑟𝑘𝑒𝑡 𝑔𝑟𝑜𝑤𝑡ℎ𝑖 + 𝛽2𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑠ℎ𝑎𝑟𝑖𝑛𝑔𝑖+𝛽3𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑠𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖 + 𝛽4𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑠𝑡
+𝛽5𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡𝑖 + 𝛽6𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖+𝛽7𝑀𝑒𝑎𝑠𝑢𝑟𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟𝑖+𝛽8𝐴𝐶𝑃𝑖+𝛽9𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠1𝑖+𝛽9𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠2𝑖+𝜋𝑐𝑠 + 𝜀𝑖

(41) 

The regression specification encompasses one coefficient per categorical 
variable. The variable output can be found in Appendix B; results are 
illustrated in Table 18. 

4.5 Results 

4.5.1 Descriptive Results (H3) 
First of all, in comparison to the results of the simulation approach in 
chapter 3.5 the results in Table 17 (Panel A) indicate that both noisy models 
decline in overall performance. Even by reducing - in contrast to the first 
approach - variable as well as resource costs (see Appendix B), comparing 
on average the individual NM profits, there is a gap of approx. 20 million 
(𝑃𝐹𝑁𝑀 of 80 mio.133; 𝑃𝐹𝑁𝑀𝑠𝑡𝑑 of 58 mio.; 𝑃𝐹𝑁𝑀𝑒𝑥𝑡 of 60 mio.). The 
descriptive results also show that the extended 𝑁𝑀𝑒𝑥𝑡 on average yields 
higher profits, roughly 2 million. In addition, the 𝑁𝑀𝑒𝑥𝑡 is more volatile, 
suggested by the first and third quantile results as by the 𝑉𝑎𝑟_𝑃𝐹𝑁𝑀𝑒𝑥𝑡 , 
which is for almost every quantile higher than the 𝑉𝑎𝑟_𝑃𝐹𝑁𝑀𝑠𝑡𝑑. These 
first results support hypothesis (H1), indicating that the performance of the 
extended noisy model is superior to the standard model. 

Panel B documents the separation of the profit error for each noisy model 
into the four error types: product quantity error, drop error, keep error and 
capacity error. On first sight one might ask, how some of the key figures 
can be negative? Would that not imply, that the NM performs better than 
the BM. But this would only be the case, if the total (profit error) is 
negative, which it is not. 
                                              
133 See page 64. 
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Table 17: Profit and Profit Error Distributions 

Panel A: Standard Descriptives 

  Min. 1. Quant, Median Mean 3. Quant, Max. 

𝑃𝐹𝐵𝑀𝑒𝑥𝑡   56,378 k 104,310 k 160,802 k 179,540 k 252,675 k 379,536 k 

𝑃𝐹𝑁𝑀𝑠𝑡𝑑 -292,486 k  -1,586 k  28,798 k  57,549 k 122,811 k 320,617 k 

𝑃𝐹𝑁𝑀𝑒𝑥𝑡 -292,487 k  -3,152 k  31,648 k  59,665 k 124,322 k 320,617 k 

𝑉𝑎𝑟_𝑃𝐹𝑁𝑀𝑠𝑡𝑑 0.09 0.31 0.34 0.33 0.37 0.39 

𝑉𝑎𝑟_𝑃𝐹𝑁𝑀𝑒𝑥𝑡 0.17 0.32 0.35 0.34 0.37 0.39 

   

Panel B: Profit Error by Type 

 
Profit 
Error 

PQE DE KE CE

𝑁𝑀𝑠𝑡𝑑 122,029 k -36,838 k -20,581 k -12,027 k 191,476 k

𝑁𝑀𝑒𝑥𝑡 120,108 k -35,839 k  -4,628 k  -9,049 k 169,623 k

* Observations: 348,000, in thousands (k). 

In contrast Panel B documents, that both models achieve higher sales at 
the costs of over proportional high capacity costs. This finding is in line 
with the lower performance of both NM due to the cost sticky environmental 
setting. Supporting (H3) all profit error types are lower in the 𝑁𝑀𝑒𝑥𝑡.  

4.5.2 Regression Results (H1 & H2) 
The focus of this section lies on hypothesis (H1) and (H2). Therefore a 
deeper look into the drivers of the NM performance and the related 
heuristics is necessary. This is achieved by using the introduced regression 
(see section 4.4.2). The results are illustrated in Table 18, covering the BM 
profit and the profit errors of the standard and extended noisy models. 
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Table 18: Regression Results Non-Dummy Specification incl. 
the extended NM (cont’d)

 𝑷𝑭𝑩𝑴𝒆𝒙𝒕 𝑷𝒓𝒐𝒇𝒊𝒕𝑬𝒓𝒓𝒐𝒓
𝑵𝑴𝒔𝒕𝒅 𝑷𝒓𝒐𝒇𝒊𝒕𝑬𝒓𝒓𝒐𝒓

𝑵𝑴𝒆𝒙𝒕 
(Intercept) 91,979,159.34*** 99,078,213.67*** 94,459,091.06*** 

 (690.59) (161.40) (188.58) 

Market growth 104,307,246.24*** 18,466,718.09*** 16,143,203.91*** 

 (4,213.44) (82.13) (88.26) 

Resource sharing -3,244,638.69*** -2,774,168.08*** -2,426,465.79*** 

 (-136.73) (-40.35) (-42.39) 
Resource costs 
variance 1,094,118.94*** -3,844,235.98*** -3,889,407.49*** 

 (11.26) (-13.65) (-16.98) 
Total resource 
costs -2,490.87*** 2,674.71*** 2,812.55*** 

 (-1,254.20) (464.88) (598.75) 
Total variable 
costs -8,140.47*** -3,397.68*** -3,271.41*** 

 (-410.04) (-59.08) (-69.93) 
Variable costs 
variance 452,538.60*** 18,553.31 -33,014.78 

 (5.70) (0.081) (-0.18) 
Measurement 
error 

-141,359.70 6,747,575.75*** 6,820,814.84*** 

 (-1.16) (19.17) (23.82) 

ACP -4,104,133.10*** -5,429,943.91*** 

 (-146.69) (-238.53) 

Heuristics1 -5,465,248.36*** -1,251,959.70*** 

 (-47.52) (-13.38) 

Heuristics2 -28,404,768.17*** -27,433,893.62*** 

 (-97.46) (-115.28) 
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Table 18: Regression Results Non-Dummy Specification incl. 
the extended NM (cont’d)

 𝑷𝑭𝑩𝑴𝒆𝒙𝒕 𝑷𝒓𝒐𝒇𝒊𝒕𝑬𝒓𝒓𝒐𝒓
𝑵𝑴𝒔𝒕𝒅 𝑷𝒓𝒐𝒇𝒊𝒕𝑬𝒓𝒓𝒐𝒓

𝑵𝑴𝒆𝒙𝒕 
 
Market growth * 
Heuristics2 

-4,507,298.45*** -4,982,185.75*** 

 (-31.41) (-42.56) 
cost driver 
rate (𝜋𝑐𝑠) -7,475,117.69*** 

(-13.55) 

Adj. R2 0.98 0.52 0.64 
Num. obs. 348,000.00 348,000.00 348,000.00 

*
p < 0.001, 

**
p < 0.01, 

*
p < 0.05 

 
The findings are in line with the descriptive results, indicating that the 
overall performance of the extended noisy model is superior to the standard 
model, by ~5% points.134 

Also the rather poor overall performance using the basic random method 
and big pool (incorporated in the intercept) of both models is striking. Since 
the delta is greater than the 𝑃𝐹𝐵𝑀𝑒𝑥𝑡 , in both cases the NM effectively 
yields negative profits. This underlines the hypothesis (H1) that the 
extended system outperforms the standard model.  

The outlined results also in favor of H2 – heuristics perform equally in the 
standard and extended model - since the whole cost system design yields 
comparable results across both NM models: The heuristics on stage two, as 
well as the activity cost pools and the measurement error are on the same 
level. 

                                              
134 The relative performance is measured by dividing the profit error by the extended BM profit 

(𝑃𝐹𝑁𝑀𝑒𝑥𝑡
𝑃𝐹𝐵𝑀𝑒𝑥𝑡 ~1,0772; and 𝑃𝐹𝑁𝑀𝑠𝑡𝑑

𝑃𝐹𝐵𝑀𝑒𝑥𝑡 ~1,027;) using the intercepts. 
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The only real outlier are heuristics on the first stage. This result can be 
interpreted as the minor relevance of these heuristics because of the portfolio 
driver. Since the first-stage heuristic is responsible for the allocation of costs 
to activities, wrong cost allocation is healed on the portfolio level by the 
sticky cost driver rates and the heterogeneous driver (ℎ𝑐). The slightly 
bigger effect of the number of activity cost pools could be traced back to eq. 
(32): Activity costs have a direct impact on 𝛥𝐶 and subsequently cause a 
“double effect” (indirectly via the sticky costs 𝜋𝑐𝑠 and directly in eq. (33)) 
on the extended model results.  

Overall the results also suggest, that the model extension works as designed: 
One reason to incorporate the new driver was to improve the noisy models’ 
robustness against changes in market situations. This is supported by the 
less important influence of (approx. 2 million) market growth on the delta 
profits. In addition the sticky cost driver rate reduces the profit error 
(𝑁𝑀𝑒𝑥𝑡) essentially by approx. 7.5 million. However it needs to be stated, 
that the highest impact on profit errors lies with the usage of more 
sophisticated second-stage heuristics (i.e. the usage of the average instead 
of the big pool method). In contrast to the 7.5 million gain of the sticky 
drivers, advanced second-stage heuristics alone account for a lever of approx. 
27.5 million, not incorporating the interaction effect between better second-
stage heuristics and changes in market growth.     

4.5.3 The influence of cost structure 
Even if not directly comparable in absolute terms, but in direction, the 
simulation results of chapter 3 and the sticky simulation differ essentially. 
Whereas in the non-sticky simulation mainly the production parameters 
drove the performance of the models (resource sharing had the biggest 
effect), the sticky model is driven by the cost system design choices and 
market growth (accounting for the top 5 performance drivers only 
subsequently followed by production parameters).  

The higher effect of cost system related influences goes along with the design 
of the economic environment. Prior decisions on capacity have a higher 
persistence, and hence changes in cost allocation have ceteris paribus a 
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higher impact on profits. In addition costs are less controllable over time, 
since a decline in capacity is costly due to adjustment costs. Hence the cost 
structure becomes more important in a sticky environment, and has, as the 
results indicate a higher impact on profits. 

Balakrishnan, Labro and Soderstrom (2014) discuss in their work “Cost 
Structure and Sticky Costs” the influence of cost structure (neglection) on 
prior research results. They argue, that in the data samples used to measure 
cost stickiness, especially in the approach by Anderson, Banker and 
Janakiraman (2003), costs of resources are incorporated which are only 
partly or not at all adjustable over the considered time horizon. Whereas 
the assumption of their used metrics dictates that all costs need to be fully 
adjustable. 

While the simulation study in this chapter is far from fully incorporating 
these raised concerns, it also outlines the dependency of the profit realization 
on the underlying cost structure and supporting the raised concern by 
Balakrishnan, Labro and Soderstrom (2014). 

4.6 Discussion of the limitations of the new approach 

One may argue that even if the 𝑁𝑀𝑒𝑥𝑡 yields higher profits, to calculate the 
costs of the demand heterogeneity, one needs the optimal capacity decision 
of the 𝐵𝑀𝑒𝑥𝑡 and the 𝑁𝑀𝑠𝑡𝑑 pricing decisions and therefore the approach 
would be artificial.  
Simulations analyzes are artificial by heart, but never the less able to give 
answers to practical questions135: The idea is to outline the inefficiencies by 
neglecting the cost-stickiness effects in planning decisions. Moreover, the 
aim is to introduce a basic fundament of how cost-systems need to be refined 
to be able to control for cost-stickiness. 
Whereas the presented simulation approach is able to answer the design 
question, the above mentioned criticism points at the practical implication. 
By abstracting from the given approach a possible practical modeling 

                                              
135 See Harrison et al. (2007), p. 1243. 
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alternative could be measuring the information on demand heterogeneity 
and its inherent costs by an ex-post analysis of cost-systems. It is therefore 
possible to analyze planed and used capacity and their adjustment costs. 
Hereby a sticky factor as the heterogeneity cost driver rate can be estimated. 
Even an ex-ante analysis is possible, extrapolating the ex-post information 
to future periods. Hence a practical relevant implementation is possible. The 
simulation results underline, that this course of action could be profitable, 
because of more reliable profit forecasts. 
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