Overcoming Business Process Reengineering Obstacles Using Ontology-based knowledge Map Methodology

Mahmoud AbdEllatif, Marwa Salah Farhan, Naglaa saeed shehata

PII: S2314-7288(17)30029-6
DOI: 10.1016/j.fcij.2017.10.006
Reference: FCIJ 25

To appear in: Future Computing and Informatics Journal

Received Date: 10 June 2017
Revised Date: 15 September 2017
Accepted Date: 10 October 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Overcoming Business Process Reengineering Obstacles Using Ontology-based knowledge Map Methodology

Mahmoud AbdEllatif
Information Systems Dept., Faculty of Computers & Information, Helwan University
Egypt

drmmlatif2025@yahoo.com

Marwa Salah Farhan
Information Systems Dept., Faculty of Computers & Information, Helwan University
Egypt

Marwa.salah@fci.helwan.edu.eg

Naglaa saeed shehata
Instructor at Helwan University
Egypt

nagla_sd@yahoo.com
Overcoming Business Process Reengineering Obstacles
Using Ontology-based knowledge Map Methodology

Keywords: business process reengineering, knowledge map, ontology, Analytic Hierarchical Processing

Abstract

Context: Business process reengineering (BPR) is identified as one of the most important solutions for organizational improvements in all performance measures of business processes. However, high failure rates 70% is reported about using it the most important reason that caused the failure is the focus on the process itself; regardless of the surrounding environment, and the knowledge of the organization. The other reasons are due to the lack of tools to determine the causes of the inconsistencies and inefficiencies.

Objective: This paper proposes Process Reengineering Ontology-based knowledge Map Methodology (PROM) to reduce the failure ratio, solve BPR problems, and overcome their difficulties.

Method: using an organizational ontology to show the structure and environment surrounding to organization's processes, using knowledge maps as an inference that succeeds to identify and find out the causes that lead to contradictions and inefficiencies, and using Analytical hierarchy processing to identify and prioritize processes of the business to be re-designed.

Results: through the proposed methodology all organizational processes are completely analyzed. Moreover, Analytical Hierarchy Processing technique is used to show the most important processes with high priority to be reengineered first then it is easy to discover any errors occurred during reengineering process through knowledge map so BPR is done successfully.

Conclusion: Apply the proposed methodology to inventory management shows how processes reengineering are done successfully and helping the organization to achieve its objectives.

1. Introduction

Today, the structure and behavior of the organizations have to be considered to help adaptation and evolution in a dynamic and more rapidly changing in the environment. Currently, the organizational changes are unexpected although they were expected in the past. New technology appeared the globalization of business processes and the changing of customer requirements are the most factors that affect the organization position among the market. The aims of most organizations are to grow with high performance, achieve excellent work, minimizing the cost of services and products, and add value to the customer through good understanding about their requirements. Consequently, they need to be efficiently and continually redesigned in a world of new technology, changes, and strong competitors and redesigned to actualize strategic and operational success. The causes of strategic failures of the organizations are the inefficiency of the business processes, the lack of innovation, entailing serious consequence for companies and its competitiveness. (Rao, L. et al, 2012)

BPR is defined as "a fundamental rethinking and radical redesign of business processes to achieve substantial improvements in all performance metrics such as cost, speed, quality, and service." Each of private and public organizations are either subject to use BPR or looking for an alternative methods which achieve the same results. Although a lot of organizations embraced the concept of BPR programs, only a few of them success, while the other fail with a high failure rate (e.g. 70%). (Rao, L. et al, 2012; Musa, M. A.et al, 2013)

Many factors affect the success of the BPR that will be explained in details below and these factors including the understanding of the environment in which the business process exists. As a result, organizations need techniques and integration of knowledge management models to understand the environment which includes processes, people, workers, customer, and tools.

The ontology contains a range of concepts and classifications, so it is developed to improve the comprehending structure of the organization and relationship between the organization goals it also used in the knowledge domain.

Knowledge map "is a representation of knowledge which reveals relationships of the sources of knowledge by using the metaphor of maps to display a certain place." It is a knowledge management technique that is used for different purposes, such as finding sources of knowledge or opportunities for knowledge creation, increases their participation and how they interact within the organization; identify the experiences and the ability to determine the terms of references. (Kim, K. Y. E. S. K.-Y et al, 2007)

Analytic Hierarchical Processing (AHP) "is a structured technique for organizing and analyzing complex decisions, based on mathematics and psychology".

In this paper, ontology is used to improve, build data and information structure. Also, knowledge map is used to identify and find out the causes that lead to contradictions and inefficiencies in the business processes reengineering depending on the ontology structure. Moreover, AHP is used in this paper to identify and prioritize processes of the business to be re-designed use the ontology to collect all information related to the business procedures that demand to be
reengineered. The organization may don’t have the resources to handle all processes at once so AHP is very important in this case.

This paper aims to propose a methodology to BPR to be successfully done through using ontology, AHP, and knowledge map. Therefore, all organizational processes will be analyzed and the most important process will be reengineered first. Then if any errors occurred the map will find why this error occurred, who are caused it, and where these errors are founded to make everything clear during BPR and tackle any obstacles.

The paper is organized into the following sections; the BPR, organizational ontology, and knowledge map are described in Section 2. Section 3 describes the BPR’s success and failure factors then BPR models and methodology are described and evaluated. After this, the PROM methodology is proposed finally the conclusion and the future suggestions are presented.

2. Theoretical background

This section presents the BPR theoretical concepts. It starts with the definition, analysis of the nature of BPR and the role of BPR in modern organization, followed by discussion of the business process reengineering environment linked to the significant of all support concepts such as knowledge map, organizational ontology and AHP. Then the environment structure is presented through BPR, selecting appropriate modeling tools both BPR and its environment and choosing the most successful methodology for BPR using ontology and knowledge map. Finally, criticism and contradictions are presented that are related to BPR.

2.1 Business Process Re-engineering

BPR Used since 1990 works on a large scale and had achieved many benefits, such as lower costs and increases production, improves products and increases customer satisfaction. There are many definitions for re-engineering processes and these definitions vary in focus.

BPR is defined as “A radical redesign of processes to gain significant improvements in cost, quality, and service” (Davenport, T.H. et al, 1990; Short, J.E et al, 1990). That means neglect all existing structures around the procedures, inventing new ways to end, accomplish work and get the job done in record time. Re-engineering is the re-renewal of the business process starts with assumptions and does not take anything for granted.

BPR is “an approach used to create a computer-based system for the management of the supply chain traceability information flows” (Hammer, M. et al, 1993;Champy, J. et al, 1993). It has emerged from key management traditional like systems thinking and scientific management. "The development of the Information system can be regarded as business process reengineering practice, either because it automates some human-based processes or because it replaces an existing legacy system" (Towers, S.et al, 1994). Also, BPR is defined as "Methodologies to change the internal business of the organization in response to environmental and requirements changes" (Covert, M. et al, 1997). Business process "is a group of logically related tasks using the firm's resources to provide customer-oriented results to support the organization's objectives" (Vergidis, K. et al, 2008).

Another definition is "the radical redesign fundamentally of a business process to gain dramatic improvements in performance measures such as quality, cost, speed, and service" (Abdi, N. et al, 2011). This definition contains keywords: fundamental, radical, dramatic and process, which implied that before reengineering it is necessary to understand the process and the fundamental business operation, while it ignores the underlying rules and assumptions of the traditional/old business processes and to radically redesign the business process for dramatic performance can be measured in terms of time, speed, cost, and quality.

Reengineering is achieving significant improvements in the performance of the organization and not just the work of amendments, for example, there are three companies used re-engineering. The first one found itself in big problems and there is no an alternative solution. The second company found itself in trouble as a result of environmental changes around it. The third company found itself subject to many pressures and conditions and there is no solution. These three companies found re-engineering the chance to solve their problems and meet their rivals. Business activities must be seen as a group of people or even a total of tasks that must be partitioned into processes which can be designed with more effective in both the manufacturing and service environment (Ozcelik, Y et al, 2010).

Business process management (BPM) is aiming to improve organizational performance, while BPM focuses on improving or reusing the processes of the organization. So, it differs from BPR in time, cost, and processes change.

BPR is known by many names, such as "core process redesign", "new industrial engineering" or "working smarter". BPR is commonly viewed as a top-down solution from a management perspective.

BPR can be done successfully if it considers all the success factors, use the organization processes and its environment knowledge around these processes.

2.2 Knowledge Map

A knowledge map has been defined as "a visual display of captured information and relationships"(Mansingh, G. et al, 2009; K.-M. Osei-Bryson.et al, 2009) and it is "a tool for presenting what knowledge resides where e.g. Media, People, organizational units or sources of knowledge outside the organization" and for indicating the models of knowledge flow (distribution, access, learning). A map "Is a drawing expressing physical relationships of the things that are important
places or through human history. People were inventing physical maps such as Atlas and cave drawings and his recent survey satellite scans and computer visualization in three dimensions. (MUSA, M. A. et al, 2014)

For example, a map includes Mind Map for improving memorization and Concept Map (Abdi, N. et al, 2011) for learning objects. A knowledge map “is a representation of knowledge which reveals relationships of the sources of knowledge by using the metaphor of maps, to display a certain place”. For instance, knowledge maps for new magazines, which launches new light on the subjects and their relationship by using the package to represent the concepts of the keys is possible to use lines to represent the relationships. The first step in knowledge mapping is to build an inventory of knowledge (i.e. the knowledge base) and develop the processes of knowledge sharing but this knowledge based on a tool to be ready for using this technique such as ontology (Kim, K. Y. E. S. K.-Y et al, 2007).

2.3 Organizational Ontology

Ontology is a "specification of a conceptualization". (Gruber, T. et al, 1993) This definition is one of the best and most reliable for ontology. It can be explained and interpreted well. Illustration meaning of the word conceptualization is a simplified view of the world.

In the sense that each range of knowledge must be based on the conceptualization and for each conceptualization is based on the objects and concepts and other entities which are supposed to have the same importance and relations existing among them.

It can also interpret the word world as referring to some of the topics or region-specific phenomena. The word specification which is the first part of the above definition means “a formal and declarative representation”. The ontology using formal language containing concepts and limitations in the data structure representation, and this means that the ontological representation must be a readable language However it is not considered a program that it represents knowledge, which is used by the program.

Ontology "is a group of knowledge terminology, including the semantic interconnections and the vocabulary, and some simple rules of inference and logic for some particular topic." (Burners-lee, lassile,o., handler,j. et al, 2001) The ontology is also known as the relationship between the concepts used in a certain domain of range. For instance, the ontology of "musician" may include instruments and how to play them, as well as albums and how to record them. Through different abstract levels, ontologies can be known as, the top level enterprise ontology, or specific domain of ontology. Higher level ontologies including a lot of concepts that can be reused by a much lower level ontology.

For the process of mining and analysis, the main objective of this work is the use of domain ontology and corporation level ontology which give analysis for the results that are closer to the actual operation of the corporation. Based on generic information which may be included in process execution data, data elements can be described by domain ontologies which are needed for multi-perspective analysis task, originator, event, time and data attributes. "specification of a conceptualization” definition is the most significant one for the ontology.

The ontology is very important to improve, build data and information structure for this it is developed appropriately because it contained a range of concepts, classifications and used in the programs and also in the knowledge domain. So ontology is created to improve the comprehending structure of the organization and relationship between the organization goals. The knowledge of the domain experts is created from the ontology and entrepreneurs, to know all the relation and the details of the organization data and the organization goals conformance. (TengkuAdil Tengkulzhar , T. T.et al, 2013). The ontology is produced for representing "who does what" and "who knows what" in the organization. It provides a knowledge perspective of an organization, just as it assists in the representation of knowledge that, is included in the main practices (i.e. the cases) of an organization. (Mansingh, G. et al, 2009; K.-M. Osei-Bryson et al, 2009).

The main component of the framework that needed for creating knowledge maps is dependent on the developing of the ontology of the domain knowledge. From that, it can be known “as a group of concepts and relationships. The refinement process was iterative and involved identifying further relationships and constraints.” (Musa, M. a. et al, 2013). Resulting ontologies should be used in all stages of business with given information of domain problem and the running of the knowledge-based system to generate new data and exploiting of the existing data before the emergence of the knowledge-based system. Continuing through displaying information in ontological contexts in various user interfaces and ending with decision support tasks built on data mining processes. (Burita, L. et al, 2013).

3. BPR Success and Failure factors

The critical success factors (CSF) of BPR described by many authors, to improve the implementation of BPR generally in all sectors. These factors include for example, “top management,” “commitment and support,” “education of manpower,” and all of these factors play a significant role in the success of BPR.

The common and the most important factors collected from previous studies (HABIB, M. N. et al , 2013). are categorized into four main and 17 subcategories (factors) while only one failure factor “category of resistance to change” is taken for this study. Figure1 shows BPR success factors including “egalitarian leadership,” “working environment,” “top management commitment,” “use of information technology” and ending with decision support tasks built on data mining processes.
3.1 Egalitarian Leadership

The main key in managements consists of employee involvement, leadership nature, and communication. Top managers should provide vision (share vision) to drive the changes. All employees should be more responsive to changes. All members of the BPR team should know and have more information about the process. Top management must raise awareness among employees through a communication channel, it is open and continuous to develop their abilities and to empower employee and cooperate in a new system within organizational decision making, should establish inter- and intra-organizational confidence and trust.

Through the use of groupware technology, the time needed to analyze the stages can be decreased and enable "top management" to actualize optimal process operation through the effective use of their ideas. (Abdolvand, Albadvi, and Ferdows et al., 2008).

3.2 Collaborative Working Environment

It is related to the equitable Culture, cooperation (cooperative environment) and it is an important factor in the success of BPR projects. Employees should work together in the same department within the organization and "interact in a friendly way" at the same time with each other. Employees should work in a cooperative environment through trust each other, and interact with each other in a friendly way, and make sure that the top management knew their roles "recognition among employees.

3.3 Top Management Commitment

Explicitly define strategic mission so it is necessary for redesigned. The strategic management is the most important departments in any existing organization as it contain senior officials and administrators who define the strategic directions of the organization. Senior management must be with the full knowledge of all the terms of the organization; it is intransitive to have a "sufficient knowledge about the BPR projects" and "factual forecasts of BPR results." (HABIB, M. N. et al., 2013)

3.4 Changes in Management System
It shows how the system change, improve the work and improve the performance of the organization through improving organizational processes and also, show how people and teams are affected by an organizational transition. The aim of change management is to ensure that the new system is used and can handle all procedures effectively.

3.5 Use of Information and Communication Technology (ICT)

ICT is presented as a natural factor of BPR and a critical component, which has a significant and continuous role in BPR projects. ICT includes "the areas of the information system, and communication technology, which provides members with the needed information. These bring effectiveness in realizing the CSF mentioned above by pulling human, business, and organization together". Through ICT

- Share database making information available at any places
- Use Telecommunication networks, allowing organization to be centralized and decentralized at the same time

BPR Failure Factor: Resistance to Change

Naturally, the change is a basic in BPR but usually human resists this change. This resistance is considered the most common problem of the BPR success. Employees resist changes due to what they will be in the future, the change which is made by BPR including authority loss, job loss, and getting anxious. (HABIB, M. N. et al, 2013) Figure 2 shows the BPR Failure Factors.

4. Related Work

This section explains several BPR models and methodologies containing many phases and steps that have advantages and disadvantages. It is important to recognize the strengths and weaknesses captured from each previous study related to the re-engineering processes, find out the advantages and disadvantages of these methodologies and make newly developed methodology for process re-engineering. Through this section BPR models are discussed to determine the limitations and useful sides of each model such as conceptual model, network model, simulation model, object oriented model and knowledge based model. All of these models try to solve BPR problems and achieve improvements for the business. All the features of previous methodologies can be integrated with the strengths points to create a new methodology with high success ratio.

Although different models are proposed for implementing business process redesign and there is no standard methodology for it. Some of the famous methodologies for BPR are Rao, et al. 2012, Valiris&Glykas 1999, Ozcelik 2010, Davenport and Short 1993, Eftekhar and Akhavan 2013, Hussein 2008, Vakola and Rezgui 2000, and Hussein1, B., et al. 2014. The main goal of BPR methodology is to redesign new processes and satisfy the organization's needs but during the implementation of BPR many problems occurred so, still need strong methodology to overcome BPR problems, achieve continuous improvements and identify the causes and effect of these problems these will be discussed with the proposed methodology ontology reengineering knowledge map in section 5.

4.1 Conceptual model "is a representation of a system, made of the composition of concepts which are used to help people know, understand, or simulate a subject the model represents". "Conceptual modeling is the activity of formally describing some aspects of the physical and social world around us for the purposes of understanding and communication." Conceptual model have many techniques and methods such as Data Flow Modeling, Entity Relationship Modeling, Event Driven Process Chain, Unified Modeling Language And State Transition Modeling.

A Conceptual model is used extensively in the development of process re-engineering models. (Powell, 2003) developed a framework and used conceptual models for explaining the role of information technology and how it was able to develop the re-engineering processes significantly on a large scale. An appropriate framework must be ready for the use of
information technology to improve the re-engineering processes in different areas of the organizations on large-scale; for example, there is a need for an appropriate framework to add value for customers and then clarify the role of information technology to process re-engineering. A conceptual model for BPR are proposed and applied in a case study with a cargo company in Malaysia. (Fithri, J. H. Y. a. S. et al., 2012).

The advantages of using conceptual model

- Enhance an individual's understanding of the represented system
- Introduce a domain of reference for system designers to extract system specifications
- Simplify conveyance of system details between stakeholders
- Document the system for future reference and give a means for collaboration.

4.2 Simulation model

Simulation modeling "is the process of creating and analyzing a digital prototype of a physical model to predict its performance in the real world. Simulation modeling is used to help designers and engineers understand whether, under what conditions, and in which ways a part could fail and what loads it can withstand". Simulation modeling can also help to predict fluid flow and heat transfer patterns. It analyses the approximate working conditions by applying the simulation software". (Ruth Sara et al., 2004).

Many organization use Simulation model because it is

- created faster than real time
- Safer and cheaper than conducting real-world experiments.
- more realistic than traditional experiments

4.3 Object-oriented model

This model appeared since the 1990s, object-oriented modeling "is an approach to modeling an application that is used at the beginning of the software life cycle when using an object-oriented approach to software development."
The object-oriented modeling approach creates the union of the application and database development and transforms it into a unified data model and language environment. Object-oriented modeling allows for object identification and communication while supporting data abstraction, inheritance and encapsulation. It consists of progressively developing object representation through three phases: analysis, design, and implementation. During the initial stages of development, the model developed is abstract because the external details of the system are the central focus. The model becomes more and more detailed as it evolves, while the central focus shifts toward understanding how the system will be constructed and how it should function. It is used by many programmers because it has many advantages including:

- Flexibility and re-use of modeling
- Can support any number of alternatives structures for the same set of data
- Facilitate Complex structures that are represented by composite objects, each object may contain other objects
- Provide communication between objects through methods

Object-oriented model hard to be understood by users and does not consider the strategic choices or implications in the re-engineering processes it can only represent part of the total system. (A. Gunasekaran & B. Kobu et al., 2002)

4.4 Integration Definition (IDEF) model "is a group of modeling languages used to implement systems and engineer software these languages are used in data functional modeling, simulation, object-oriented analysis, and knowledge acquisition". The developing of IDEF models for the analysis of business processes it has been motivated to improve the structure of manufacturing systems and the communication and increase productivity. Constructing an Integration Definition model is only one component of a full-scale processes modeling effort. Integration Definition 0 is an approach designed to model the actions, decisions, and organization activities or system. IDEF1 is a technique designed for both communication and analysis in the building of the requirements. The IDEF3 (Process Description Capture Method) is a method or a mechanism for a process to be collected and documented. (Ruth Sara et al., 2004).

The components of the IDEF family are IDEF0, IDEF1, IDEF2, and ... Figure 3 explains the different methods of the IDEF
4.5 Network model

"Is a database model conceived as a flexible way of representing objects and their relationships". This model is often used as it puts obligations to the workflow of the organization these obligations very important in business processes and represents these obligations in maps. So, it can be utilized from these maps in the design of business processes, support and use of information technology for the management of commitments quality standards and customer satisfaction to increase productivity. (A. Gunasekaran & B. Kobu et al, 2002) "A study of a complex scheduling process at George Mason University shows how the mapping notion and the method works" (Denning and Medinamora, 1995)

Network model differ from other models in its schema, which is viewed as a graph where relationship types are arcs and object types are nodes. Unlike other database models, the network model's schema is not confined to be a lattice or hierarchy; the hierarchical tree is replaced by a graph, which allows for more basic connections with the nodes.

The benefits of the network model include (Dale Janssen, 2016):

- Simple Concept: Similar to the hierarchical model, this model is simple and the implementation is effortless.
- Ability to handle more relationship types: The network model has the ability to handle one-to-one (1:1) as well as many-to-many (N: N) relationships.
- Accessing the data is simpler than hierarchical model.
- Data Integrity there's always a connection between the parent and the child segments
- Data Independence: is better in network models than the hierarchical models.

The drawbacks of the network model include:

- System Complexity
- Functional Flaws: Because a great number of pointers is essential, insertion, updates, and deletion become more complex.
- Lack of Structural Independence

4.6 Knowledge-based model "is a process of computer-aided usage of such knowledge models for the design of products, facilities or processes". Knowledge based is used to represent knowledge explicitly via tools such as ontologies and rules. Knowledge-based models include Expert Systems (ES) Artificial Intelligence (AI) and Database Management (DM). Decreasing the complexity of the analysis and modeling of BPR to facilitate the processes of re-engineering and finite knowledge-based models has been developed. However, this model needs further development to help processes reengineering within organizations. (A. Gunasekaran & B. Kobu et al, 2002).

Knowledge base has many advantages:

- Acquisition and maintenance. Through using rules experts can often define and maintain the rules themselves rather than via a programmer.
• Explanation. Representing knowledge explicitly allowed systems to reason about how they came to a conclusion and use this information to explain results to users.
• Reasoning. Extracting knowledge of the organization work so it consider inference engines.

Knowledge base is considered inference engine representing logical assertions and conditions about the world, usually represented via IF-THEN rules. The proposed methodology in this paper uses this type of model and the main focus of this research.

Table 1 shows the weakness and strength points of the previous BPR methodology.

<table>
<thead>
<tr>
<th>Disadvantages</th>
<th>Advantages</th>
<th>Proposed methodology</th>
<th>Date</th>
<th>Author name</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Neglecting the role and responsibility of the employee who is basically executing activities that combine such processes.</td>
<td>• “Provide a consistent set of techniques and guidelines which enable the business process redesigned to reorganize business activities and processes in an organization”.</td>
<td>"establish a disciplined model for BPR and using a sound approach are Prerequisites to BPR success”</td>
<td>1999</td>
<td>Valiris & Glykas</td>
</tr>
<tr>
<td>• The method does not consider the cause–effect relationships with time delay among causal concepts.</td>
<td>• Help organization's members to identify potential organizational conflicts, • Capture core business activities, • And suggest ways to support the necessary organizational change.</td>
<td>"Propose a cognitive map based method for BPR, through developing a prototype modeling tool called two-phase cognitive modeling facility TCMF. Working procedures of the TCM method and TCMF features".</td>
<td>1999</td>
<td>Kee-Young Kwahk & Young-Gul Kim</td>
</tr>
<tr>
<td>• Stop at the implementation phase and as a result, it seems to be completely fixed. The exclusion of evaluation</td>
<td>• Present a critique of the previous BPR methodologies and identify the weaknesses which served as a basis for the development of a new eight-stage BPR methodology.</td>
<td>Present a critique of the BPR methodologies. To reach successful and sophisticated methodology focusing on the need for an integrated approach more suitable for changes in the organization and its workforce.</td>
<td>2000</td>
<td>Vakola & Rezgui</td>
</tr>
<tr>
<td>• Ignores organization structure and human aspect.</td>
<td>• "Compare three different methodologies that was introduced in the nineties, then he combined all strength points of all methodologies in one new framework called (The true road to successful BPR)".</td>
<td>"Propose methodology called NIMSAD (Normative Information Model-based Systems Analysis and Design) to evaluate methodologies related to systems development".</td>
<td>2005</td>
<td>Joshua Liem</td>
</tr>
<tr>
<td>• Need evaluation method that is b</td>
<td>• "Provide practical methodology and guidelines that can be directly applicable to performing business process reengineering by introducing a real case”.</td>
<td>"provide a methodology for knowledge flow-based business process redesign and gave ten guidelines for knowledge flow optimization".</td>
<td>2007</td>
<td>Yoo,K&Suh,E & Kim.K</td>
</tr>
</tbody>
</table>
| • Fixed Nature and was not dynamic reality that there are some organizations give priority to the application of | • "Provide a framework for future research to explore organizational development in making BPR happen | "Making case studies on three private higher education institutions and found Seven factors critical to BPR" | 2007 | Ahmad. H & Francis .A &

Table 1 BPR analysis and limitations of last models & methodologies
<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Methodology/Approach(s)</th>
<th>Critical Success Factors</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Chen Lei & Liu Bin</td>
<td>Came up with new framework called dynamic BPR instead of the consumed statics BPR concept.</td>
<td>Organizational commitment, BPR team composition, business needs analysis, effective change management, suitable IT infrastructure, and ongoing continuous improvement.</td>
<td>Ignored human aspect.</td>
</tr>
<tr>
<td>2008</td>
<td>Hussein</td>
<td>Collect a large group of successful business reengineering factors from the various research, these are "organization-wide commitment, BPR team composition, business needs analysis, effective change management, suitable IT infrastructure, and ongoing continuous improvement."</td>
<td>Examine the critical success factors of business process. Reengineering (BPR).</td>
<td>Only describe processes operationally. Fixed nature and was not dynamic reality that there are some organizations give priority to the application of information technology and the other to the cost. Twice the attention analyzed for business organization's environment.</td>
</tr>
<tr>
<td>2009</td>
<td>L. Maruster and Nick Beest</td>
<td>Propose a methodology that relies on process mining and simulation. They tested the methodology on three unique case studies (Gas company, government institute and web based DSS). "Examine whether implementation of Business Process Reengineering (BPR) projects improve the firm performance or not through analyzing a huge data set on a large organization in the United States."</td>
<td>It allows organizations to predict the redesigned process performance before implementing it using the simulation.</td>
<td>Ignores human aspect.</td>
</tr>
<tr>
<td>2010</td>
<td>Ozcelik</td>
<td>"Help the organization to use all the employees in the redesign processes based on the innovation concepts and cultivates the organization's culture for agility and effectiveness."</td>
<td>Review the previous BPR methodologies and innovation concepts and models and introduced BPR framework based on the innovation models using dubin's methodology.</td>
<td>Only some preliminary conditions are mentioned. No evaluation. Having no attention to consistency.</td>
</tr>
<tr>
<td>2011</td>
<td>Abdi .N & Zarei. B &Vaisy. J & Parvin. B</td>
<td>Propose an ontology-driven methodology for business process re-engineering that includes the development and analysis of knowledge maps and ontology".</td>
<td>Analyze the organizational processes well. the environment surrounding these processes. And use all the knowledge of the organization through using knowledge map.</td>
<td>Little evaluation of existing practices and the implementation.</td>
</tr>
<tr>
<td>2012</td>
<td>Rao, et al`.</td>
<td>Cover the process improvement effort from the identification of a need for change to the final implementation and maintenance of the improved workflow.</td>
<td>Provide BPR methodology using a conceptual model that suitable for small and medium enterprises (SME) and apply it in a case study collaborated with a Malaysia company.</td>
<td>High risk when use this methodology with a large enterprise. Ignoring knowledge base aspects. The used system are only input, retrieve, operation and result.</td>
</tr>
</tbody>
</table>
| No substantial scientific basis
| This model not empirically tested
| No guiding and managing implementation. | "Evaluate the BPR failure factors and came up with new framework, develop an inclusive methodology that utilize information technology tools and maintain failure analysis along the implementation". | "present a comprehensive it tools based methodology(CITM) for BPR by using both approaches -clean slate and -dirty slate approach (the analysis of existing processes on details)". | 2013 | Eftekhari & Akhavan |
| Minimize risk of implementing business process reengineering (bpr) initiatives by identifying certain factors crucial towards creating readiness for BPR. | Provide conceptual model exploring factors that created readiness for changes in organizations for process re-engineering such as sufficient background information "leadership style," "information technology,"(ii) "top management commitment" and "collaborative working environment". | 2014 | Hussein |
| Improve the chances for organizations to successfully carry out BPR initiatives and projects according to their goals and objectives in a dynamic fashion. | Propose Process reengineering Integrated Spiral Model (PRISM) which is a systematic agile model that would carry out BPR. | 2014 | Hussein. B & Hammoud M & Bazzi. H & Amin Haj-Ali |
| "Help to enhance business process redesign in health care sector, collects non value-added transactions, and redesign them to improve the healthcare management". | "Propose a methodology rely on the use of ontology and knowledge maps to identify needless transactions that must be reengineered to enhance the healthcare management." | 2014 | MUSA. M & THMAN. M & AL-RAHIMI.W |
| Discuss the design of recent BPR methodologies and presents the success and failure factors that affect BPR projects. | "Evaluation of Existing BPR Methodologies and Limitations considering BPR success and failure factors". | 2014 | Hossain A. Alghamdi & A. Alfarhan. M & AL-Ghamdi.A |
| Redesign the processes with most connections with the chosen processes to reengineer, causes improving the performance of BPR system. | "Provide a methodology using enterprise ontology improving the analysis of current system by model current system and its goals applied this methodology on a company using ARIS tools to compare and simulate processes". | 2015 | Bahramnejad P & Sharafi. S & Nabiollahi. A |
| "Review a series of literatures published between 2004 and 2013
| Analyze BPR in healthcare which having only 8 article representing 8.8% of the total article published within the period of 2004 to 2014". | "Provide A Literature Review on the Methodologies and Approaches of Business Process Reengineering in Healthcare". | 2016 | Musa. M & Othman. M |
| "Collect The factors impended to successfully implement BPR in the region categorized as top management support factors, change management factors, organizational factors, BPR | "Implementing Business Process Reengineering (BPR) in Government Organization". | 2017 | Mekonnen.N |
It can be found that not one methodology addresses all the Problems and obstacles related to re-engineering. As a result, it is the best to collect all the features and strengths of each re-engineering methodologies, and build strong experience from all methodologies that are presented. This did not happen yet, perhaps any methodology may be not applicable in every situation.

To overcome the obstacles of the previous methodologies, using methodology that considers the success and failure factors of BPR, make preparing stage before applying BPR, using technique that will make management analysis for the organization and its surrounding environment like ontology, using inference mechanism technique that know the causes of the failure like knowledge map, and using technique that give priority for every organizational process to know which of them are important to be reengineered and save time that consumed in reengineering all processes. All of these steps will be explained through the proposed methodology in the next section.

5. Research design and Methodology

Through this section the proposed method will be explained for processes reengineering which are provided to overcome the failure rates 70% that have been reported about BPR, this method consists of eight steps and its aim to present a successful approach for BPR depend on ontology map. Figure 4 shows the steps of implementing BPR ontology map methodology, starting with the first steps, preparation and readiness for the organization. If the organization is not ready for change, it needs training on administrative change to be ready or has the ability to change. If the organization is ready, it can move to the second step, building the ontology based on the data and information that are collected from the first step. From the ontology the organization may contain many processes that need to be re-engineered so need technique like AHP for identifying and prioritizing the processes that need re-engineering, this is the third steps. Then fourth steps begins, which is the construction of knowledge structure and source maps based on the ontology, then begins with the analysis of these maps and identify the mistakes, then modify the processes that have the errors and evaluate the results. Finally, the ontology must be updated to reflect changes.

Step 5.1: preparing for BPR

Readiness is very important before starting with BPR implementation and its aim is to find out whether the organization needs a redesign or not, as one of the BPR failure factor is the resistance of the workers to change, so they must first qualify for change. Through this step, the strategy of the organization, all the employees, all sections, collective works, and all documents of the work are identified. Preparing step is done according to Prosci’s Organizational Change Management Process model (Adkar et al, 2016), this model shows and explains the preparing for any organizational change management through many steps i.e.,

5.1.1 Define Your Change Management Strategy

Change management means the use of any technique that helps individuals, teams, and organizations using system to change the use of resources, business process, and budget allocations
- Identify the Change Characteristics Scope
- Identify the departments, workgroups, divisions impacted
- Determine the number of individuals impacted by the Change
- Define the areas of the organization which is changing i.e. process system or technology, job roles, staffing levels other.

5.1.2 Preparing Your Change Management

Team Acquires team resources by interviewing candidates and looking for those with (excellent communication skills, commitment to change, business influence, team players, change management experience, and knowledge of the business)

5.1.3 Develop Your Sponsorship Model

Identify sponsors needed for the project. Sponsors are managers/leaders who are in a position to authorize the Change.

All these steps collected from structured interview to collect all data and information from the organization. The interview was analyzed through many steps according to (Kent L. et al, 2015) i.e.

- Open Coding

Read the interview carefully and collect the answers for some question like
What themes, ideas, and concepts appear, and the relation between them? Collect data and information then categorize them.

Focused Coding
Read the interview again and collect the information that are related to each other.

Data Compilation
Correct the data and cut the information from place and put it in the correct categorize.

Theory building

Figure 4 proposed PROM (Process Reengineering Ontology Map) Methodology

Figure 5 building the organizational ontology
- Decision maker consumes resources that stored in different locations.

These resources include data, information, tools and knowledge. Ontology help in determining the necessary actions and tasks for each business processes and is also used in identifying who is performs a specific task and the sources provided for consumption during the execution of subtasks. The interest of using ontology in this methodology, because it provides a good understanding for the information inside and outside the organization so the structure of the organization is cleared. As result, the reengineering for the processes done with all information about all processes. Ontology is considered as a reference of information that is used to create knowledge.

Step 5.3: identifying and prioritizing processes

The processes that need to be re-engineered may be more than 10 processes. So, it is required a priority technique like AHP to be used to identify the priority of the processes. From the ontology, it can be easily know the business procedures that demand to be re-engineered, and then find the priority for each process. Table 2 shows the priority for each process depending on the weight of organization's goals and organization's sub goals. Prioritization and resource allocation is very important as the organization may have not the resources to handle all processes at once. If the goals of the organization are cleared and the business processes are known then it is easy to know the priority of the processes. The information is available from the ontology, so the business process priority are identified depend on the organization's goals priorities. Prioritization is "a subjective decision" and therefore "Analytic Hierarchical Processing (AHP)" is used (T. Saaty et al, 1980).

AHP technique has three phases to solve problems: decomposition, relative judgments, and priorities composition. In the first phase, the hierarchical is constructed to put the problem that need the decision at the top level to represent all objectives and the lower levels represent criteria, sub criteria, and alternatives. Then start pairwise comparisons at second phase includes the decision elements. Estimating the weights of the decision elements, then the third phase aggregate these weights to provide a set of ratings for the decision alternatives (Ghareeb.E, AbdEllatif.M, and El Bakry.H et al, 2016).

Table 2 AHP for inventory processes

<table>
<thead>
<tr>
<th>Priority</th>
<th>Process</th>
<th>Weight</th>
<th>Sub goals</th>
<th>Weight</th>
<th>Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3*0.2=0.06</td>
<td>P1</td>
<td>0.3</td>
<td>Sg1</td>
<td>0.2</td>
<td>G1</td>
</tr>
<tr>
<td>0.2*0.2=0.04</td>
<td>P2</td>
<td>0.2</td>
<td>Sg2</td>
<td>0.2</td>
<td>G2</td>
</tr>
<tr>
<td>0.2*0.4=0.08</td>
<td>P3</td>
<td>0.4</td>
<td>Sg3</td>
<td>0.2</td>
<td>G3</td>
</tr>
<tr>
<td>0.2*0.1=0.02</td>
<td>P4</td>
<td>0.1</td>
<td>Sg4</td>
<td>0.2</td>
<td>G4</td>
</tr>
<tr>
<td>0.5*0.3=0.15</td>
<td>P5</td>
<td>0.3</td>
<td>Sg5</td>
<td>0.5</td>
<td>G5</td>
</tr>
<tr>
<td>0.5*0.4=0.2</td>
<td>P6</td>
<td>0.4</td>
<td>Sg6</td>
<td>0.5</td>
<td>G6</td>
</tr>
<tr>
<td>0.5*0.2=0.1</td>
<td>P7</td>
<td>0.2</td>
<td>Sg7</td>
<td>0.5</td>
<td>G7</td>
</tr>
<tr>
<td>0.5*0.1=0.05</td>
<td>P8</td>
<td>0.1</td>
<td>Sg8</td>
<td>0.5</td>
<td>G8</td>
</tr>
<tr>
<td>0.3*0.2=0.06</td>
<td>P9</td>
<td>0.2</td>
<td>Sg9</td>
<td>0.3</td>
<td>G9</td>
</tr>
<tr>
<td>0.3*0.3=0.09</td>
<td>P10</td>
<td>0.3</td>
<td>Sg10</td>
<td>0.3</td>
<td>G10</td>
</tr>
<tr>
<td>0.3*0.3=0.09</td>
<td>P11</td>
<td>0.3</td>
<td>Sg11</td>
<td>0.3</td>
<td>G11</td>
</tr>
<tr>
<td>0.2*0.3=0.06</td>
<td>P12</td>
<td>0.2</td>
<td>Sg12</td>
<td>0.2</td>
<td>G12</td>
</tr>
</tbody>
</table>

There are many techniques for priority such as decision-making paradox, pairwise comparisons and multi-criteria decision making analysis, but AHP has many advantages that make it suitable with the proposed methodology:

- It is Well-proven.
- It is a broad set of applications.
- It is intuitive and easy to use.
- It is designed for multi-criteria.
- It builds alignment around criteria priorities.
- It validates consistency.
From Table 2
It showed that business process with high priority P6, P5, and P7.

- Each process has a specific weight that depends on the importance of this process and is distinguished from the rest of the processes and is useful in the resource allocation
- Selection of processes needed re-engineering depends on the weights and priorities of these processes and not on the order of operation in the organization.

<table>
<thead>
<tr>
<th>Processes</th>
<th>Sub goals</th>
<th>Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detecting items damaged / missing</td>
<td>Ease of Seeking required items</td>
<td>Ensure no loss or damage or theft of inventory items through a precise system for the</td>
</tr>
<tr>
<td>Registration in the general budget</td>
<td>Providing an appropriate degree of secrecy</td>
<td></td>
</tr>
</tbody>
</table>
Step 5.5: Analyze the maps

It's easier for knowledge maps to be analyzed to find the reasons of the insufficiency using business processes modeling language (Sandy K. et al, 2012). Knowledge has a great importance in knowing the errors that affect the performance of

![Knowledge structure map](image)

Figure 7 knowledge structure map
the organizational operations and also helps to know the causes of these errors or the reason of the inefficiency processes. Figure 7 shows knowledge structure map that used to determine the mistakes and the causes of it through know-what (the roles and resources), know-where (the location of the various resources) and know-how (subtasks and tasks). But knowledge source map determine the mistakes related to know-who (the actors and the roles they play) and know-what (the knowledge that the decision makers possess and the knowledge that they require).

Step 5.6: Modify the business processes and evaluate the results

Once identify the causes of inefficiency start modify in the business processes and its environment then evaluate the results. The business process reengineering team is responsible for assembling all problematic or inefficient processes and starting to find solutions to solve these problems. Once the appropriate solutions have been found, they begin to modify the process and evaluate the proposed solution and its benefit to the organization then the ontological model must be updated so that they are always reflective to the changes in the organization as it exists.

Step 5.7: Update the ontology

In this methodology the ontology can be updated automatically using OUL (Ontology Update Language) Algorithm, once the processes are changed then the ontology will be updated automatically instead of consuming more time and effort to find a process and update it in the ontology. (Jordy,S.,Frederik,H. & Flavius,F. et al., 2013).

Applying this methodology to the inventory management at Helwan University this case study will determine the progress and improvement caused by the proposed BPR ontology map methodology.

Helwan University is an educational institution that contains different faculties and many departments. In this research, the focus is on the inventory department where there are many problems affecting the university budget and reduce the performance or efficiency of the university. The inventory management includes a large number of employees specialized in the receipt of items from outside companies, store them in the inventory, the exchange of certain items for the need, an annual reviewing of the contents of the store, the installation of some elements, and many operations.

Step 5.1: Preparing for BPR using Prosci's Organizational Change Management Process model (Adkar et al, 2016).

This model shows and explains the preparation for any organizational change management through some steps that are discussed before. These steps are done through a structured interview with the general manager of the inventory and interview with many employees and experts and collect all document, data, and information about the inventory. The data and information are collected. Table 3 contains some of this information like inventory's goals, sub goals and inventory's processes.

Step 5.2: Building ontology

Construct high-quality ontology for the organization this ontology represents the knowledge of the organization that gives the meaning to comprehend the relationships between organization goals, businesses processes, organization sub-goals, decision makers, organization tasks, organization subtasks, and organization resources (groups, actors). Figure 8 shows the implementation of ontology in protégé owl.

Table 3 collects some of this information like inventory's goals, sub goals and inventory's processes. Other information is collected and discussed below like Inventory management tasks, Inventory management subtasks and so on.

Inventory management tasks include:

- Disburse items based on the exchange signed by authorized one to do so, then the exchange must determine the levels of the exchange rate
- Examination done by the storekeeper in the case of regular varieties and done by technician in the case of technical items and maintenance tools by check management in the case of qualities specific companies
- Exchange upon request by hand exchange the league exchange for custody exchange for the replacement for exchange metaphor
- In the absence of demanded items can identify alternatives to the requesting parties if that it is not possible to identify needs and sent to the purchasing department to provide it
- Recording incoming items
- Refuse the items this is by the examiner after making a report
- Report on the damaged and in case of its existence and supplier are notified as soon as possible
- Review the quantities received in order to ascertain matching quantity of what was issued by the by the purchase order specifications consistent in weight and double the number, shape and measurement with the request time that the order is received on time
- Sustainable items endless use and consumables items it ends completely use such as raw materials, fuel, stationery and unusable items it considered damaged and can be repaired
- Work permit receiving and recording data on the variety, quantity, supplier name, the carriers name, the damaged quantity and packaging form

Decision maker consists of group and role
Group include check committee, inventory management and inventory management commodity
Role include committee members, employee, head of department, head of committee and worker
Resource consists of actor, knowledge and data/information

Knowledge include
- How much to order
- When to reorder
- How much at each location
- How to balance service and cost
- Amount of every items in the store
- Items exist or not
- Items needed for inventory

Step 5.3: identifying and prioritizing processes

The processes that need to be reengineered may be more than 10 processes. So, it requires priority technique like AHP to be presented to identify the priority of the processes. From the ontology it can be easily know the business procedures that demand to be reengineered then find the priority for each processes. Table3 explains all the processes of the inventory that need to be reengineered. Table 4 collects all process and the weight of them according to the assumptions of the inventory managers. Each process has a specific weight that depends on the importance of this process and is distinguished from the rest of the processes and is useful in the resource allocation in table 4 goal G2 has the highest weight. Multiply the weight of the goal G with the weight of sub goals Sg to get the weight of the process then find the processes that have the highest priority like p6, p5, p7. These processes are the most important ones to the organization to start reengineered them first.
Table 4 AHP for inventory processes

<table>
<thead>
<tr>
<th>Priority</th>
<th>Process</th>
<th>Weight</th>
<th>Sub goals</th>
<th>Weight</th>
<th>goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3*0.2=0.06</td>
<td>P1</td>
<td>0.3</td>
<td>Sg1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2*0.2=0.04</td>
<td>P2</td>
<td>0.2</td>
<td>Sg2</td>
<td></td>
<td>G1</td>
</tr>
<tr>
<td>0.2*0.4=0.08</td>
<td>P3</td>
<td>0.4</td>
<td>Sg3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2*0.1=0.02</td>
<td>P4</td>
<td>0.1</td>
<td>Sg4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5*0.3=0.15</td>
<td>P5</td>
<td>0.3</td>
<td>Sg5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5*0.4=0.2</td>
<td>P6</td>
<td>0.4</td>
<td>Sg6</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>0.5*0.2=0.1</td>
<td>P7</td>
<td>0.2</td>
<td>Sg7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5*0.1=0.05</td>
<td>P8</td>
<td>0.1</td>
<td>Sg8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3*0.2=0.06</td>
<td>P9</td>
<td>0.2</td>
<td>Sg9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3*0.3=0.09</td>
<td>P10</td>
<td>0.3</td>
<td>Sg10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3*0.3=0.09</td>
<td>P11</td>
<td>0.3</td>
<td>Sg11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2*0.3=0.06</td>
<td>P12</td>
<td>0.2</td>
<td>Sg12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 5.4: Create the knowledge map

Create source and structure map from the ontology this step involves creating and developing these maps. The source map showing the knowledge held by the actors and their roles and The structure map shows the basic tasks and sub-tasks and their sequence, the resources produced in performing a subtask, the decision makers (roles/groups) containing, and their interactions with each other. These maps determine and represent knowledge of the environment that should be considered in the re-engineering process.

Knowledge is extracted using DL-QUERY in the protégé OWL program. Figure 9 shows example of extracting knowledge source map from the ontology in protégé owl program (what is the business processes that actor AHMED responsible for it, the result of the query detecting items damage, detecting the increase and deficit and checking items). The knowledge structure map was developed by querying the ontology to identify the tasks and subtasks associated with the business process and also it was developed to identify, for each task, the corresponding groups, roles, actors, knowledge required for a role and the knowledge of the actor. It also identified all interactions that were occurring between these tasks, the resources being consumed and are produced and their location. The knowledge source map shows the knowledge being used to perform tasks and the knowledge required to do the task.

Step 5.5: Analyze the maps

It's easier for knowledge maps to be analyzed to find the reasons of the insufficiency using business process modeling language BPML (Sandy K. et al, 2012) to determine the causes of the incompetence in the process.
The processes of the inventory department with high priority that need to be reengineered

- Request and permission disbursement
- Delisting the notebook
- Permission add Daily stores

The Data of items are recorded in more than one place, resulting in loss of time and effort the delisting employee records the items and sends them to another employee to register and then place them in the store. This process takes more than 3 days and primary key are not the same so, many errors are occurred.

- The processes are analyzed see figure 11 which explain the process of request items from main inventory this process take 3 days manually employee receive the list of the required items then search manually in his paper is this item exist or not if exist send it to the requester and Finish the procedures if items do not exist send order to purchase department.

- The Process of receiving items and store them in the main inventory of the university take more than 7 days. Figure 12 explains the process as, administrator receive items from purchasing department with invoice then record them in manual paper and make 5 copy then check the items by a specialist if it good then starts to store them if it not good still idle process until the company change items and store in the paper of reflex items department.

- The process of daily stores Every day: the employee records incoming and outgoing items from the inventory

All these processes will be explained using Smart draw program tools and Business Process Modeling Notation which are determined in figure 10.

Step 5.6: Modify the business processes and evaluate results
Once identify the causes of inefficiency start modify in the business environment and processes so process after reengineering are shown in figure 13 and 14. Table 5 shows the processes that need reengineering with its priority and determines the goals that will be achieved after reengineering these processes.

The process of request items from inventory figure 13 that takes more than 3 days after reengineering the employee receive the list of required items then search on the computer system if it found items send it to the requester if not exist send order to purchase department. The items have only one identification number and stored in one location so, no redundancy is founded.

The process of receiving items from the purchasing department that take more than 7 days after reengineering see figure 14 the employee receive the items with invoice data and wait for technical to check the quality of the items if it good record it on the computer program and send the data of the items to another employee to revise them instead of enter them again and take more times if not good write report and don’t enter the items to the inventory.

The process of daily stores after reengineering is not adding value so it will be cancelled.

After reengineering and modifying the processes start to evaluate the new proposed processes figure 13, figure 14 and the process of daily stores with inventory management, it found the processes is completed with minutes rather than days, process that not add value cancelled and save time and effort for the inventory management, every employee know what he should do and everything are clear, the data are stored in one location and can be easily accessed by officials and The employee who is causing the disruption will be identified.

<table>
<thead>
<tr>
<th>Process priority</th>
<th>Process</th>
<th>Priority</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>Delisting the notebook</td>
<td>0.3</td>
<td>Reduce the cost of storage and the amount of capital invested in inventory assets to a lesser extent possible, taking into account the lack of low stocks for the right limit of the needs established</td>
</tr>
<tr>
<td>0.2</td>
<td>Request and permission disbursement</td>
<td>0.4</td>
<td>Determine elevations inventory</td>
</tr>
<tr>
<td>0.1</td>
<td>Permission add Daily stores</td>
<td>0.2</td>
<td>Ease and speed of data entry</td>
</tr>
<tr>
<td>0.3</td>
<td>Perform calculations accurately</td>
<td>0.5</td>
<td>Reduce the cost of storage and the amount of capital invested in inventory assets to a lesser extent possible, taking into account the lack of low stocks for the right limit of the needs established</td>
</tr>
</tbody>
</table>

Table 5: Inventory process priority
Figure 11: The process of demand items from the main inventory

Figure 12: The process of receiving items from the purchasing department

Figure 13: The process of request after reengineering

Figure 14: The process of receiving items after reengineering
Step 5.7: Update the ontology

The ontology can be updated automatically after re-engineering and modifying the process of the inventory department using OUL (Ontology Update Language) algorithm. Once the process is changed, the ontology will be updated automatically. (Jordy, S., Frederik, H., & Flavius, F. et al., 2013). The following algorithm is used to update the current ontology in case of many processes are changed instead of consuming more time and effort to find a process and update it in the ontology.

Algorithm 1 Deferred ontology updating (update Ontology)

Description: Update ontology with deferred execution of updates

Input: ontology O consisting of axioms, change event op(Ax) where op ∈ {add, del} and Ax is a set of axioms

Data: matched Handlers change handlers that match their change request and meet their precondition according to the provided change event,

Update List list of update actions to be applied to the ontology

Output: updated ontology O

1: // Find matched change handlers
2: matched Handlers ← match Handlers(O, op(Ax))
3: // Collect updates from change handlers
4: update List ← collect Updates(O, op(Ax), matched Handlers)
5: // Apply updates to ontology in deferred way
6: for all update ∈ update List do
7: apply update to O
8: end for
9: return O

Findings

At the final step of BPR is the starting of the progress for the organization or for the inventory of the university. Processes are redesigned and enhanced through successful BPR ontology map model this can be shown in the processes that take minutes rather than it took days before re-engineering and the causes was not be known moreover, non-value add process is cancelled after re-engineering so employee save their time and effort, the university will be able to predict what it need from the outside company and the quantity it needs also the items stored in the inventory will be cleared an well-known so no delay at any inventory process. Any errors occurred can be handled because it is cleared the causes of it by knowledge map and ontology.

6. Contribution

The proposed methodology plays a vital role in implementing successful BPR ontology map methodology through using knowledge source and structure maps that based on organizational ontology, AHP, and all of these are presented to analyze all organizational processes and choice accurately which processes that important than others to be reengineered first.

- BPR success factors and the causes of the failure is considered so BPR is staring of continuous improvement for achieving organizational objectives.
- All processes will completely analyze through ontology.
- Priority of each process is cleared through AHP
- Process to be reengineered are presented easily using business process modeling language
- Any errors occurred during reengineering can be handled where the causes is known through knowledge maps
- An organization that contains many processes needed to be reengineered and didn’t have a resource to handle all of them at once it find the solution through AHP technique that shows the priority of each process
- Inference method is present through using knowledge maps which help finding and identifying the causes of the inconsistencies and inefficiencies.
- Automatic update for the organizational ontology is proposed through this paper using (Jordy, S., Frederik, H., & Flavius, F. et al., 2013) algorithm.

- Some papers used BPR ontology based knowledge map(Rao, L. et al, 2012), (Musa, M. a. et al, 2013) and (MUSA, M. A. et al, 2014) but these papers did not consider the factors of success and failure of BPR, ignore the surrounding environment for the processes and ignore the readiness step that is very important. Lack of readiness is the main factor behind high rate of BPR failures (Hussain, M., et al, 2014). The proposed BPR
ontology map methodology begin with preparing steps according to Prosci's Organizational Change Management Process model (Adkar et al.2016) that determine is the organization ready for change or need specific courses?, identify the departments , workgroups, team works, all employees and sponsorship . All of the previous papers ignore this step . (Musa, M. a. et al, 2013) and (MUSA, M. A. et al, 2014) did not use analytical hierarchy processing although they have many processes need reengineering and they start with only the first processes of the patients registration in their case study of the emergency unit . the proposed methodology in this paper shows the importance of using analytical hierarchy processing with case study (inventory management at helwan university) that contains many processes need to be reengineered and didn’t have a resource to handle all of them at once so , it find the solution through AHP technique that shows the priority of each process and select the most important one.

7. Conclusions and future work

Finally, several models appeared to improve the work of organizations business processes through the use and develop business process re-engineering but they appear with unexpected results although most organizations using the business re-engineering to resolve all their problems and develop their work properly and gains and achieve high quality. Now they do more effort to know the causes of a failure. It is found that most of the used models suffer from many problems after the implementations of business re-engineering where it is traditionally applied without looking at the changes surrounding organization processes environment. The main goal of any model is to solve a specific problem and reach a successful way of the organization without any obstacles and problems. This paper proposes a methodology considering all success factors through using ontology and knowledge map which will overcome all the obstacles of BPR and re-engineering the processes without ignoring the environment and with this methodology it is easier to completely analyze all organizational processes and distinguish processes that important than others to be reengineered first through AHP and know the cause of the failure through knowledge maps then processes will be reengineered and the ontology updated automatically to reflect changes .There are few models which related to business process re-engineering measurements so it is necessary to find more models to measure the success rate and the failure rate of business process reengineering for each proposed methodology. BPR needs statistical analysis technique to analyze the failure ratio and reasons of any model.

Acknowledgements

Many thanks to my reviewers for their constructive comments and suggestions, which help me to finish the work. Furthermore, many thanks for the general manager and the employees of the inventory management that helps me to get all information.

8. References

[59] Valiris, G. &Glykas, M. (1999), Critical review of existing BPR methodologies: the need for a holistic approach,

