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1. INTRODUCTION 

Simulations are an important tool for investigation of 

transients and dynamic behaviour of systems. For hydraulic 

systems, the characteristics of hydraulic machinery is 

important for the simulation results and their reliability. If 

experimental results are available, they can be used by creating 

so-called Suter curves (Wylie and Streeter, 1983). If no results 

are available, a model must be used. For hydraulic turbines, 

the two most important properties to model correctly are the 

torque acting on the machine from the moving fluid and the 

head the machine requires to be subjected to for a certain flow 

to be maintained at a certain rotational speed and guide vane 

opening. Traditionally, both the torque and the head has been 

modelled using the Euler equation (Nielsen, 2015, Nielsen and 

Storli, 2014, Nielsen, 1996, Giosio et al., 2017), but there are 

issues which should be addressed related to the use of this 

equation as a basis for simulation models for hydraulic 

turbines. The purpose of this paper is to provide insight and 

un-ambiguous derivation of equations describing models for 

torque and head for a hydraulic turbine, in this case a Francis 

turbine, and to point out and discuss problems concerning the 

validity of the models.   

2. TORQUE 

The torque is an important property to model, because it will 

be linked to accelerations or decelerations of the unit. If there 

is not a balance between the torque acting on the runner from 

the hydraulic domain and the torques acting on the runner dry 

mechanical parts, the unit will experience a change in 

rotational speed. This can be seen in the Newton 2nd law for 

rotational motion. It says that there must be a balance between 

the sum of all torque vectors, and the moment of inertia times 

the acceleration vector. For a hydraulic turbine, the moment of 

inertia is constant for the mechanical parts, but there is also 

water flowing inside the runner which also has moment of 

inertia, and it is not easy to intuitively conclude whether this is 

is constant or not. To complicate matters further, the flowing 

water is responsible for the torque acting on the runner, and 

this is highly dependent on the flow conditions, as can be seen 

in the Euler equation (5). However, there is one equation 

combining all these effects, and this equation is known as the 

angular momentum equation. 

2.1. The Angular Momentum Equation 

The Angular Momentum (AM) equation is a powerful tool for 

analysis of rotational motion. It is obtained by using Reynolds 

Transport Theorem with ‘torque’ as the extensive property 

under subject. In words, it describes that there must be a 

balance between the change of angular momentum for a flow 

crossing a Control Surface (CS), the change in angular 

momentum for the contents in the Control Volume (CV), and 

sum of external torques exT  acting on the CV. Mathematically, 

it can be written as (Cengel and Cimbala, 2014), 

    
time rate of change of AM Net flux of AM out of CV

in CV

ex
r

CV CS

d
T r V d r V V n dA

dt
         (1) 

ρ is water density, r is the position vector, V  and rV are the 

absolute and relative velocity vectors, respectively. Including 

the effect of the time change in AM related to the water inside 

the CV is something the authors are currently investigating, 

but it is outside the scope of this paper. In this paper, we will 

only consider the flux part of (1). So we evaluate only the last 

integral of (1). The integral is a vector integral, and the vector 

integrated is the cross product of the radii vector and the 

velocity vector; the angular momentum. For a hydraulic 

machine it is easiest to evaluate this in a cylindrical coordinate 

system described by unit vectors 
r

e , e  and 
z

e , where the z-
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axis is pointing downwards in the direction of the axis of the 

unit (This will make is easier to deal with the sign in the vector 

integrals). This is seen in Fig. 2. The CV compose of all 

rotating parts of the axle. This is seen in Fig. 1. Executing the 

cross product using the nomenclature seen in the velocity 

diagrams in Fig. 2, it becomes: 

z z
r V rV e rV e

 
     (2) 

Vz and Vθ are the absolute velocity components in axial and 

angular direction, respectively. The only term contributing to 

rotational motion is the z-component, so this is the only one 

we will continue to investigate. 

 

   
, r

CS

ex z
ex zT rV V n dAT e


      (3) 

Equation (3) is the steady state version of (1), which for the 

case of; the control volume being a Francis runner; uniform 

angular momentum distributions on inlet and outlet of the 

control volume; reduces to 

 
, 1 1 2 2ex z ex z

T T e Q rV rV
 

       (4) 

Q is the flow, index 1 and 2 denotes the inlet and outlet 

properties. In the case of only one external torque T opposing 

the rotational movement it reduces to the well-known Euler 

turbine equation (A torque T opposing the movement has a 

negative sign on the left hand side of (1)/(4)) (Cengel and 

Cimbala, 2014): 

 
1 1 2 2

T Q rV rV
 

    (5) 

For a 1D-system simulation the flow parameter is the 

discharge Q. This is linked to the peripheral velocity 

component at inlet and outlet by 

1

1 1
tan

Q
V

A



    , 

2 2

2 2
tan

Q
V r

A





   (6), (7) 

A1 and A2 are the inlet and outlet runner areas, respectively. ω 

is the angular velocity, α1 is the inlet velocity angle, β2 is the 

blade outlet angle. The velocity components can be seen in the 

inlet and outlet velocity triangles, in Figure 2. Substituted back 

into (4) we get the momentum flux contribution to the torque:  

  ,

2

1 1 2 2 2ex z
T Q Q G r G r r      (8) 

Where 
1 2

1 1 2 2

1 1
,

tan tan
G G

A A 
   

A term appears in (8), Q(G1r1+G2r2), which represents the 

angular momentum at zero angular velocity, ω=0. This is the 

torque needed to balance the starting torque which is acting on 

the stationary runner at a given flow Q, equivalent to the term 

ρQts in the paper by Nielsen (Nielsen, 2015). Equation (8) is 

equivalent to (4), only written in an alternative form to include 

the simulation parameters Q, α1 and ω. 

We have now completed the work with the left-hand side of 

(1), and are ready to analyse the right-hand side. It states we 

should sum all external torques acting on the control volume. 

By external, we mean torques related to mechanic, magnetic, 

pressure- forces and so on, torques that don’t originate from 

the flow of water. Generally, it is important to have control of 

the sign of these torques when summing them, because there 

might be cases where the torques don’t act in the same 

direction on the rotational CV. For a turbine, all external 

torques are acting to slow down the rotational speed of the CV. 

They can be described by 

 ,
...

magnetic bearings disk frictionex z
T T TT       (9) 

 By adding appropriate terms in (9) one includes all effects 

that is desired to simulate. In this paper, the magnetic torque 

acting on the rotor from the generator is the only one we like 

to include, and in this case it is the same as the torque 

commonly denoted Taxle/Tshaft. This means that in our case (1) 

is written like: 

   2

1 1 2 2 2shaft
T Q Q G r G r r      (10) 

To conclude this section, the use of the angular momentum 

equation reveals that we obtain the same expression for the 

steady state torque as have been reported earlier, but also that 

there are some transient effects included in (1) that are omitted 

by using the classical Euler equation. This is being 

investigated by the authors in on-going work. For all models 

presented in this paper, (10) is used to describe the torque. 

3. HEAD 

Establishing a model for the difference in head, Ht, between 

the inlet and the outlet of the runner will make it possible to 

generate the characteristics. Physically based models can be 

found using different approaches. One approach is to use the 

Euler turbine equation multiplied with the angular velocity to 

obtain the power, which can be extracted from an ideal 

machine. This power is then said to be the same as the power 

extracted from the pipe flow, by energy conservation 

principles, mathematically seen as (11): 

 
1 1 2 2t shaft

gQH T Q U V U V
 

      (11) 

U is the peripheral velocity of the runner. Using the law of 

cosines, we can rewrite this as 

  
Fig. 1: Rotor as CV Fig. 2: Velocity diagram and 

coordinate system 
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axis is pointing downwards in the direction of the axis of the 

unit (This will make is easier to deal with the sign in the vector 

integrals). This is seen in Fig. 2. The CV compose of all 

rotating parts of the axle. This is seen in Fig. 1. Executing the 

cross product using the nomenclature seen in the velocity 

diagrams in Fig. 2, it becomes: 

z z
r V rV e rV e

 
     (2) 

Vz and Vθ are the absolute velocity components in axial and 

angular direction, respectively. The only term contributing to 

rotational motion is the z-component, so this is the only one 

we will continue to investigate. 

 

   
, r

CS

ex z
ex zT rV V n dAT e


      (3) 

Equation (3) is the steady state version of (1), which for the 

case of; the control volume being a Francis runner; uniform 

angular momentum distributions on inlet and outlet of the 

control volume; reduces to 

 
, 1 1 2 2ex z ex z

T T e Q rV rV
 

       (4) 

Q is the flow, index 1 and 2 denotes the inlet and outlet 

properties. In the case of only one external torque T opposing 

the rotational movement it reduces to the well-known Euler 

turbine equation (A torque T opposing the movement has a 

negative sign on the left hand side of (1)/(4)) (Cengel and 

Cimbala, 2014): 

 
1 1 2 2

T Q rV rV
 

    (5) 

For a 1D-system simulation the flow parameter is the 

discharge Q. This is linked to the peripheral velocity 

component at inlet and outlet by 

1

1 1
tan

Q
V

A



    , 

2 2

2 2
tan

Q
V r

A





   (6), (7) 

A1 and A2 are the inlet and outlet runner areas, respectively. ω 

is the angular velocity, α1 is the inlet velocity angle, β2 is the 

blade outlet angle. The velocity components can be seen in the 

inlet and outlet velocity triangles, in Figure 2. Substituted back 

into (4) we get the momentum flux contribution to the torque:  

  ,

2

1 1 2 2 2ex z
T Q Q G r G r r      (8) 

Where 
1 2

1 1 2 2

1 1
,

tan tan
G G

A A 
   

A term appears in (8), Q(G1r1+G2r2), which represents the 

angular momentum at zero angular velocity, ω=0. This is the 

torque needed to balance the starting torque which is acting on 

the stationary runner at a given flow Q, equivalent to the term 

ρQts in the paper by Nielsen (Nielsen, 2015). Equation (8) is 

equivalent to (4), only written in an alternative form to include 

the simulation parameters Q, α1 and ω. 

We have now completed the work with the left-hand side of 

(1), and are ready to analyse the right-hand side. It states we 

should sum all external torques acting on the control volume. 

By external, we mean torques related to mechanic, magnetic, 

pressure- forces and so on, torques that don’t originate from 

the flow of water. Generally, it is important to have control of 

the sign of these torques when summing them, because there 

might be cases where the torques don’t act in the same 

direction on the rotational CV. For a turbine, all external 

torques are acting to slow down the rotational speed of the CV. 

They can be described by 

 ,
...

magnetic bearings disk frictionex z
T T TT       (9) 

 By adding appropriate terms in (9) one includes all effects 

that is desired to simulate. In this paper, the magnetic torque 

acting on the rotor from the generator is the only one we like 

to include, and in this case it is the same as the torque 

commonly denoted Taxle/Tshaft. This means that in our case (1) 

is written like: 

   2

1 1 2 2 2shaft
T Q Q G r G r r      (10) 

To conclude this section, the use of the angular momentum 

equation reveals that we obtain the same expression for the 

steady state torque as have been reported earlier, but also that 

there are some transient effects included in (1) that are omitted 

by using the classical Euler equation. This is being 

investigated by the authors in on-going work. For all models 

presented in this paper, (10) is used to describe the torque. 

3. HEAD 

Establishing a model for the difference in head, Ht, between 

the inlet and the outlet of the runner will make it possible to 

generate the characteristics. Physically based models can be 

found using different approaches. One approach is to use the 

Euler turbine equation multiplied with the angular velocity to 

obtain the power, which can be extracted from an ideal 

machine. This power is then said to be the same as the power 

extracted from the pipe flow, by energy conservation 

principles, mathematically seen as (11): 

 
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gQH T Q U V U V
 

      (11) 

U is the peripheral velocity of the runner. Using the law of 

cosines, we can rewrite this as 
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coordinate system 
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2 2 2
t

V V W W
gH

r r


 
  


 (12) 

W is the relative velocity between the water and the runner. 

The same expression found if combining the Bernoulli 

equation for a linear system with the Bernoulli equation for a 

rotating frame of reference. The expression is the same as the 

one used to describe how velocities generate the lifting height 

of a pump, if index 1 is the pump outlet and index 2 is the pump 

inlet (Cengel and Cimbala, 2014). Using geometrical relations 

found in the velocity triangles, we could develop this further 

so that the only variables are the simulation variables Q, α1 and 

ω. The recent model by (Giosio et al., 2017) use the model 

represented by (12), added different losses based on empirical 

formulae. They used the model in simulations, but no turbine 

characteristics are provided, so it is difficult to compare 

qualitatively with experimental characteristics. 

A different approach has previously been used by Nielsen 

(Nielsen, 1990),(Nielsen, 2015), where it is stated that at 

nominal speed, the head must be described by a valve 

equation. So, the head should relate to flow Q and opening 

degree κ of a valve as 
2

t R

R

Q
gH gH

Q


 
 
 

  (13) 

Index ‘R’ denotes Rated values. Equation (12) with rated and 

steady angular velocity should also be valid, so we can set the 

expressions of head equal to each other and get 

2 2 22 2 2 2

21 2 1 2 1 2

2 2 2
R

R

R

r rV V W WQ
gH

Q


 
  

 
 
 

 (14)

Rearranged to express the absolute and relative velocity terms, 

we can substitute this back into (12), and we remove these 

velocities from the equation and remain with 

   1

2 2 2

2 2 2

2
t R R

R

r rQ
gH gH

Q
 




  

 
 
 

 (15) 

Nielsen then adds different terms to the equation to correct for 

the discrepancies between results obtained using the model 

and experimental results, but this is not done in the work 

presented here. 

In this paper, (12) and (15) are used in simulations. As can be 

seen in the results, there are issues regarding both these 

models, which make their use unphysical. It was decided to 

modify (12) to include a shock loss (incipient loss), to see the 

effect this had on simulations. A term was added that included 

the stagnation pressure from the component of the relative 

velocity normal to the blade inlet. This can be seen in (16): 

2 2

21

2 2 2 2

1 2 1 2 2

22 2
t

r rV V W W
gH 

 
      

 
  2

1 1 1
sin

2

R
W  

 (16) 

Where β1 denotes the inlet relative flow angle. The model used 

by (Giosio et al., 2017) also incorporates this kind of loss, 

called an incipient loss. However, their representation is 

dependent on the peripheral component of the relative 

velocity, and not the component normal to the blade inlet 

angle. 

To conclude this section, three models of head are used in 

simulations presented in this paper; (12) called ‘The Euler 

equation’; (15) called ‘The valve equation substitution’; and 

(16) called ‘The new model’. 

4. THE EFFICIENCY 

The efficiency is normally defined as the energy or power 

output from a process divided by the energy or power input to 

the process. For a hydraulic turbine, the efficiency is typically 

found by evaluating the ratio of mechanical power extracted 

on the generator to hydraulic power extracted from the flow at 

steady state operation. Mathematically it is described as 

shaft

t

T

gQH





   (17) 

We see that the efficiency will account for any discrepancy 

between left and right-hand side of (11), and since the energy 

source is the energy in the water, the highest possible 

efficiency that any machine can have is one; this is an ideal 

machine without losses. 

Calculating the efficiency in a laboratory experimental setup 

is simple using (17), because the needed properties are quite 

simple to measure. The head Ht is measured as the difference 

in head between a measurement section in the uniform pipe 

upstream the turbine unit and a measurement section slightly 

down into the draft tube. In this paper, the efficiency is 

calculated by the same equation, (17), but no losses in wicket 

gates, draft tube, losses due to disc friction, volumetric losses 

et.c. are included. 

5. SIMULATIONS AND EXPERIMENTAL RESULTS 

Simulations have been performed to establish the turbine 

characteristics and the efficiency curves. In the numerical 

setup, the turbine is simulated as the Francis test rig in the 

Waterpower laboratory at NTNU in Trondheim, Norway. The 

runner simulated is the Francis99 runner (Trivedi et al., 2016), 

only considering main dimensions and no details regarding 

blade thickness, blade loading and so on. The properties 

needed from the runner model as input to the simulations are 

presented in table 2. Three turbine models are simulated and 

the results presented in this paper. They all utilize the torque 

as described by (10), they differ by using descriptions of head. 

The simulation has been performed using MATLAB R2012B, 

and an in-house code. This code is using Newton’s method 
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Table 1: Parameters for simulations  

Property(not all properties used in equations) Value Unit 

Inlet diameter  0.6216 m 

Inlet height 0.0585 m 

Inlet blade angle 71.5 deg 

Outlet diameter 0.3531 m 

Outlet blade angle 17 deg 

Rated rotational speed 539.5 rpm 

Rated head 30 m 

Rated flow 0.336 m3/s 

to solve the equations. The Newton’s method code has been 

downloaded from MathWorks (MathWorks). The code uses 

the symbolic toolbox in MATLAB to solve the equations 

symbolically. The equations that are solved are the Newton’s 

2nd law for linear and angular steady state systems: 

t
gH gH  ,  

runner shaft
T T  (18),(19) 

gH is determined from setting H equal to 30 meters as the 

experimental results are obtained at, and the different models 

for head are used to describe gHt. Trunner is the symbolic 

variable that is solved for, and Tshaft is described by (10). 

To establish the characteristics, the guide vane angle is fixed in the 

simulations, and the rotational speed is increased from zero for 

each time the code goes through a “for”-loop. In each loop, the 

solver finds the flow and torque that balance all equations. Having 

computed for all rotational speeds in the “for”-loop, the guide vane 

angle is increased and the procedure of increasing the rotational 

speed from zero is repeated. This is very similar to how the 

characteristics are obtained in an experimental test campaign, and 

how the experimental results presented in this paper are obtained. 

They were obtained from measurements on the Francis99 test rig 

April 16th 2007 as a part of reference measurements during a model 

acceptance test at the Waterpower laboratory at NTNU. The main 

dimension are identical to the ones presented in  

Table 1, since the Francis99 runner has been used as the 

template for the numerical simulations. 

6. RESULTS AND DISCUSSION 

The results from simulations of the different model are 

presented and discussed individually as the results are 

presented. Following this is a section containing a general 

discussion.  

6.1. The Euler equation 

The turbine characteristics and the efficiency obtained from 

simulations by using (12) can be seen in Fig. 3. The reduced 

flow q=Q/Qnom has a very high value at low rotational speeds. 

What this means is that in order generate the head when the 

contribution from rotational speed and geometry is low, the 

velocities need to be high, resulting in a high flow. In fact, the 

necessary flow is much higher than the maximum flow 

possible when applying Torricelli’s theorem for maximum 

velocity 
max

2V gH (Cengel and Cimbala, 2014), and for 

the simulations presented here, the maximum value is 

represented by 2.38 m3/s, if outlet area is multiplied with 

Fig. 3 Simulations using the Euler equation 

the maximum velocity. Clearly, this must be wrong. At 

rotational speed equal to zero, the runner should just work as 

a valve, which will find equilibrium with its surrounding at a 

flow that generate the head Ht. This head has to be created by 

flow passing through the geometry of the runner. There is a 

huge mismatch between the direction of the relative velocity 

(which for rotational speed equal to zero is coinciding with the 

absolute velocity of the flow), and the direction the flow must 

comply to because of the inlet blade angle. This directional 

mismatch is not represented at all in the original equation, and 

the authors considers using the equation imply a runner with a 

fully variable inlet blade geometry that always is in the 

direction of the relative velocity. Even if such machine would 

exist, the flow could never be greater than what is dictated by 

the Torricelli theorem. This contradiction is possibly 

overcome by using the full description of the head, which 

includes the pressure, rather than the aggregate property 

“head” itself. Not accepting solutions that result in an inlet 

pressure lower than atmospheric pressure would limit the 

solutions to have a lower flow than dictated by the Torricelli 

theorem. 

The efficiencies accompanying the characteristics are lying on 

top of each other, and all are identical to one for all rotational 

speeds. This back up the simulations, since head is found from 

(11). This imply an efficiency equal to one, which is 

reproduced in the simulation results. 

The experimental results are lying above the lines for the Euler 

equation results. The Euler equation results represents an 

efficiency equal to one, and the experimental results should 

therefor represent efficiencies above one. The efficiencies 

obtained in the experimental test are not presented here, but it 

should come as no surprise that the measured efficiencies are 

below one. The net head in the experimental campaign was 30 

meters, the same as in the simulations. Discrepancies between 
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to solve the equations. The Newton’s method code has been 

downloaded from MathWorks (MathWorks). The code uses 

the symbolic toolbox in MATLAB to solve the equations 

symbolically. The equations that are solved are the Newton’s 

2nd law for linear and angular steady state systems: 
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April 16th 2007 as a part of reference measurements during a model 
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template for the numerical simulations. 
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The results from simulations of the different model are 

presented and discussed individually as the results are 

presented. Following this is a section containing a general 

discussion.  

6.1. The Euler equation 

The turbine characteristics and the efficiency obtained from 

simulations by using (12) can be seen in Fig. 3. The reduced 

flow q=Q/Qnom has a very high value at low rotational speeds. 

What this means is that in order generate the head when the 

contribution from rotational speed and geometry is low, the 

velocities need to be high, resulting in a high flow. In fact, the 

necessary flow is much higher than the maximum flow 

possible when applying Torricelli’s theorem for maximum 

velocity 
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the simulations presented here, the maximum value is 

represented by 2.38 m3/s, if outlet area is multiplied with 
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the maximum velocity. Clearly, this must be wrong. At 

rotational speed equal to zero, the runner should just work as 

a valve, which will find equilibrium with its surrounding at a 

flow that generate the head Ht. This head has to be created by 

flow passing through the geometry of the runner. There is a 

huge mismatch between the direction of the relative velocity 

(which for rotational speed equal to zero is coinciding with the 

absolute velocity of the flow), and the direction the flow must 

comply to because of the inlet blade angle. This directional 

mismatch is not represented at all in the original equation, and 

the authors considers using the equation imply a runner with a 

fully variable inlet blade geometry that always is in the 

direction of the relative velocity. Even if such machine would 

exist, the flow could never be greater than what is dictated by 

the Torricelli theorem. This contradiction is possibly 

overcome by using the full description of the head, which 

includes the pressure, rather than the aggregate property 

“head” itself. Not accepting solutions that result in an inlet 

pressure lower than atmospheric pressure would limit the 

solutions to have a lower flow than dictated by the Torricelli 

theorem. 

The efficiencies accompanying the characteristics are lying on 

top of each other, and all are identical to one for all rotational 

speeds. This back up the simulations, since head is found from 

(11). This imply an efficiency equal to one, which is 

reproduced in the simulation results. 

The experimental results are lying above the lines for the Euler 

equation results. The Euler equation results represents an 

efficiency equal to one, and the experimental results should 

therefor represent efficiencies above one. The efficiencies 

obtained in the experimental test are not presented here, but it 

should come as no surprise that the measured efficiencies are 

below one. The net head in the experimental campaign was 30 

meters, the same as in the simulations. Discrepancies between 
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simulation parameters and experimental settings should not 

translate to the discrepancies seen in Fig. 3. The experimental 

results include many sources of loss, which the numerical 

simulations do not include. The discrepancies should 

intuitively be in the other direction, with the experimental 

results being below the Euler model simulation results for all 

curves. The most likely reason for the discrepancy is that 

performing a loss free simulation at 30 m head would mean 

that the experimental head must be higher than 30 m to take 

into account the head loss due to losses in spiral casing, stay 

vanes, guide vanes, draft tube, et.c. Simulations have been 

performed with Ht=30/ηexp and the simulated characteristics 

are then above the experimental results for the case of 

simulations using the Euler equation. 

6.2. The Valve equation substitution model 

The characteristics using the valve equation substitution and 

the accompanying efficiencies are seen in Fig. 4. 

Fig. 4: Simulations using the valve eq. substitution 

The characteristics look much better compared to empirical 

knowledge. The efficiencies are also looking more like actual 

efficiency curves, starting at zero at zero rotational speed, 

increasing for to decrease after a max efficiency. No efficiency 

has been introduced in (17) when using the head described by 

the valve eq. substitution (15), so the losses that make the 

efficiency drop from one comes from the substitution of the 

velocity terms with the valve equation. Furthermore, we see 

that the max efficiency increase with increasing guide vane 

angle, but the efficiency do not reach a global maximum 

efficiency of one. It keeps increasing, and increases beyond the 

maximum possible value one. Clearly, this is wrong. Again, 

the reason must be found in the substitution used to obtain the 

model using valve equation substitution. To be honest any 

term not containing the angular velocity in (14) would be 

replaced by the valve equation by such a substitution, and it is 

not certain that the valve equation is able to capture the 

head/flow/opening degree relation correctly for a turbine. As 

an example, it is completely decoupled from the runner 

geometry. To exemplify this, the flow/head relation for a 

Reversible Pump Turbine in turbine mode is quite different 

from a Francis turbine, which has different geometries even if 

main dimensions are the same. 

 One interesting observation that is made is if the two 

characteristics from the Euler equation model and the valve 

substitution model are plotted against each other. This can be 

seen in Fig. 5. 

Fig. 5: Comparison of the Euler eq. and valve eq. 

substitution results 

The point where the efficiency goes above one coincides with 

the point where the characteristic from the valve equation 

substitution model crosses the characteristics from the Euler 

model. Further investigations show that this coincides with 

where the torque characteristics cross each other; the torque 

from the Valve equation substitution model becomes greater 

than the torque from the Euler model. This means that the 

valve substitution model implies velocities that are 

unrealistically high, near the peak efficiency. Looking at (15), 

we see that at for ω=1; κ>1; Ht=HR, the flow must be higher 

than rated. This means that there are higher velocities than 

rated, and a mismatch with relative velocity direction and 

blade inlet direction will occur. This should contribute with a 

pressure increase, which would result in the flow being 

reduced. Such effect is not included in the valve equation, and 

might be a possible reason why the efficiency overshoots one.    

In Fig. 4 we see that the experimental results are partly above 

the characteristics for the valve equation substitution model as 

well. However, the experimental results are more aligned with 

the simulations than for the Euler model. The same argument 

can be made regarding the correctness of comparing loss free 

simulations at H=30 m to experimental results at H=30, but 

correcting for any such argument would lift the valve eq. 

substitution model even higher, and still with an efficiency 

more than one. 
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6.3. The New model 

The results obtained from the simulations using the new model 

can be seen in  

Fig. 6.  

Fig. 6: Simulations using the new model 

The new model is simply adding a head term to the Euler 

model, and the term is the stagnation pressure of the relative 

velocity component normal to the inlet of the blade. No other 

physical effect is included, but the effect on the simulations are 

significant. The efficiencies are no longer one for all rotational 

speeds, and the efficiency curves exhibit the empirical correct 

behaviour of having the peak efficiency point moving to a 

different rotational speed when opening degree change. The 

flow is still higher at low rotational speeds than the valve 

equation substitution model results, and lacking experimental 

results for this region, this model serve as the reference for 

what a real characteristic should look like in this region. 

6.4. General discussion 

The Euler equation is containing no information about the 

geometry of the runner or any kind of representation of the 

losses in an actual turbine runner. The efficiency should thus 

be one, and simulations show that this is the case. However, 

the results show an unphysical high flow at low rotational 

speeds of the runner, and the authors consider this the effect of 

using the aggregate property ‘head’ rather than the individual 

terms the head consist of. Doing so, a limitation on the pressure 

can be imposed, and the flow is restricted to the maximum 

possible value it can have, found using the Torricelli theorem. 

However, this maximum flow is also far too high, compared to 

experimental results. Therefore, the Euler equation must suffer 

from another shortcoming, compared to the actual physics 

involved. The authors consider that the most important 

shortcoming is the fact that there are no effects due to 

mismatch between the relative flow angle and the runner inlet 

angle included in the Euler equation. A term has been added to 

the Euler equation representing the pressure due to stagnation 

of the relative flow velocity component normal to the inlet of 

the blade. The simulation results show a significant 

improvement, with respect to obtaining efficiency curves that 

look like actual measured efficiency curves. 

7. CONCLUSION 

Three models are investigated in this paper. None of them can 

be used as a full model as they are presented in this paper, but 

investigating them without many different loss models 

obscuring the results might provide insight into the actual 

physics involved. The authors conciders the effect due to the 

mismatch beween geometry and flow at runner inlet, often 

called incipient losses, to be the significant inlet effect, shown 

to significantly move the efficiency from 1 for all rotational 

speeds and opening degrees, to something that looks like an 

actual efficiency curve. Even if improved compared to the 

Euler model, the flow/rotational speed characteristics of the 

new model indicates that the new model is unable to fully 

capture the significant physics involved.  

More work is needed to include other sources of loss in the 

energy transformation process occuring inside a hydraulic 

turbine, as well as including terms that is present at transient 

conditions. The authors are currently working on this. 
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