
An Overview of Numalis Software Suite
for Reliable Numerical Computation

Arnault Ioualalen

Numalis, Montpellier, France
Email: ioualalen@numalis.com

Matthieu Martel

LAMPS Laboratory & Numalis
Université de Perpignan, France

Email: matthieu.martel@univ-perp.fr

Nicolas Normand

Numalis, Montpellier, France
Email: nnormand@numalis.com

Abstract—Numerical algorithms are used in many areas
but they rely on approximate computations due to the finite
precision computer arithmetic. As critical systems perform
more and more calculations, needs for verification and vali-
dation techniques and for assisted development increase, the
computer arithmetics being particularly not intuitive. It is then
necessary to provide tools to the programmers, to help them to
validate and increase the numerical quality of their codes and,
broadly, to develop more fastly more reliable numerical codes.
In this article, we give a description of the main problems
concerning numerical accuracy encountered in industry at the
software engineering level and we give an overview of the
solutions proposed by the software suite developed by the
Numalis Company. This suite contains tools for verification and
validation by static and dynamic analysis as well as assisted
development tools. The latter tools optimize programs in order
to make them compute more accurate results and they also
infer the least formats, in terms of bit size, in order to fulfill
accuracy requirements.

I. INTRODUCTION

Numerical algorithms are used in many areas ranging

from scientific computing to digital processing in embedded

systems. All these computations necessarily have a lim-

ited accuracy and the needs for verification and validation

techniques increase as quickly as critical tasks relying on

complex computations are delegated to computers, for ex-

ample in cars, aircrafts or space vehicles. In addition to

verification and validation concerns, assisted methods of

conception are strongly desired since it is extremely difficult

to understand the reasons why the implementation of a

formula is numerically inaccurate and how to improve it.

This is because the computer arithmetics, mainly the fixed-

point [15] and floating-point arithmetics [2], are particularly

not intuitive. It is then necessary to provide tools to the

programmers, to help them to validate and increase the

numerical quality of their codes and, broadly, to develop

more fastly more reliable numerical codes.

Numalis is a company specialized in numerical accuracy.

Numalis software suite aims at bringing solutions to the

problems mentionned earlier, for V&V and assisted devel-

opment of numerical algorithms. Numalis activity is mainly

focused on critical embedded systems in defense, aeronautic

and space, automotive but also in other economic activities

such as finance or geophysics.

In this article, we give a return of experience concerning

the needs, at software engineering level, of our consumers

for the development of numerical code and we introduce

Numalis software suite. This suite contains tools for static

analysis by abstract interpretation and dynamic analysis

based on statistical estimation of the test datasets. It also

contains tools for optimizing the accuracy of programs and

for mixed-precision format tuning. This suite bring partial

answers to the challenges raised by our industrial partners.

This article is organized as follows. Section II gives a brief

description of the fixed-point and floating-point arithmetics.

Section III introduces the main challenges in the domain at

software engineering level and Section IV gives an overview

of Numalis Software Suite. Section V concludes.

II. COMPUTER ARITHMETICS

Numerical computations rely on non-intuitive computer

arithmetics, mainly the floating-point and the fixed-point

arithmetic, briefly described hereafter.

An important step towards the design of reliable numerical

software was the definition, in the 1980’s, of the IEEE754

Standard for floating-point arithmetic [2]. A floating-point

number x in base β is defined by x = s · (d0.d1 . . . dp−1) ·
βe = s ·m · βe−p+1 where s ∈ {−1, 1} is the sign, m =
d0d1 . . . dp−1 is the significand, 0 ≤ di < β, 0 ≤ i ≤ p− 1,

p is the precision and e is the exponent. The IEEE754

Standard specifies a few values for β, p, emin and emax

and special values such as NaN (Not a Number) or ±∞ for

overflows. Finally, the IEEE754 Standard defines rounding

modes towards −∞, towards +∞, towards zero and to

the nearest for elementary operations between floating-point

numbers.

The floating-point arithmetic differs strongly from the real

number arithmetic. Values have a finite number of digits and

the algebraic laws such as associativity or distributivity do

not hold. Consequently, the evaluations by a computer of

mathematically equivalent formulas (for example x×(1+x)
and x+ x2) possibly lead to very different results.

2017 IEEE 28th International Symposium on Software Reliability Engineering Workshops

978-1-5386-2387-9/17 $31.00 © 2017 IEEE

DOI 10.1109/ISSREW.2017.40

1

There exists no standard for the fixed-point arithmetic

comparable to the IEEE754 Standard. A fixed-point format

[15] 〈w, i〉 depends on the total number of bits w used

to encode the value and on the location of the fixed-point

relative to the most significant bit. In general, the numbers

are encoded using two’s complement and the sequence

of bits bw−1 . . . b0 represents the value −bw−1 · 2i−1 +∑j=w
j=2 bw−j ·2i−j and the distance between two consecutive

numbers is 2i−w. The format of the result of an elementary

operation depends on the formats of its operands.

Implementing efficiently an expression in the fixed-point

arithmetic requires to find an evaluation scheme which

minimizes the total size w of the formats of the intermediary

results. For example, we may give two implementations of

the polynomial x2 − x + 9, with x in the format 〈5, 3〉.
The first scheme corresponds to the direct implementa-

tion and requires 68 bits to store the intermediary results

while the second scheme implements the equivalent formula

(x− 3)× (x− 3) and necessitates 40 bits only [18].

To help programmers to understand more the accuracy

of their numerical algorithms, Numalis provides an online

accuracy toolkit in the form of a small analyzer. This

analyzer allows the user to write programs and discover their

numerical accuracy1.

III. CHALLENGES IN RELIABLE COMPUTATION

The production of reliable numerical code introduces

strong needs of assisted development tools as well as of

verification and validation tools. These needs as even more

important when numerical computations are performed by

critical embedded systems as it is the case in many industries

such as aeronautic, space, automotive, medical instrumenta-

tion, robotics, etc. The returns of experience from Numalis

industrial partners make us identify the following needs.

Numerical Accuracy Determination: Determining the ac-

curacy of the results of a program is a central question for

verification and validation. Needs in this domain become

even more important when the manufactured systems must

be certified, for example in aeronautics. During the last

fifteen years, static analyses of the numerical accuracy

of floating-point computations have been introduced. This

work has also been motivated by a few disasters due

to numerical bugs [1]. While these methods compute an

over-approximation of the worst error arising during the

executions of a program, they operate on final codes, during

the verification phase and not at implementation time. Static

analyses [10], [14], [26] have been proposed and imple-

mented in academic tools such as Fluctuat [14], based on

abstract interpretation or FP-Taylor [26], which performs

a static analysis using Taylor series expansions. Dynamic

1Numalis online accuracy analysis toolkit:
http://www.numalis.com/demonstrateur.php

techniques have also been proposed but they only estimate

the accuracy without formal guaranties [3], [11]

Automatic Accuracy Optimization: Automatically trans-

forming a program at compile-time in function of given

ranges for the inputs and in order to make its numerical

computations more accurate is an important aspect of as-

sisted development in our domain. Indeed, understanding the

reasons why the implementation of a formula is numerically

inaccurate and how to improve it is usually difficult because

computer arithmetic is particularly not intuitive. So, it is

necessary to provide tools to the programmers, to help them

to increase the numerical quality of their codes. Academic

tools have been developed. Salsa [8] takes inter-procedural

imperative programs and optimize then using a source-to-

source transformation. Herbie [24] optimizes the arithmetic

expressions of Scala codes. While Salsa uses a static analysis

to select the best program, Herbie uses dynamic analysis (a

set or random runs). These tools are compared in [9].

Floating-Point Format Determination: This problem, also

related to assisted development, consists of determining the

minimal precision on the inputs and on the intermediate

results of a program performing fixed-point or floating-

point computations in order to ensure a desired accuracy

on the outputs. This allows compilers to select the most

appropriate formats and to save memory, reduce CPU usage

and use less bandwidth for communications. Research work

has been carried out to determine the best floating-point

formats. Darulova and Kuncak use a static analysis to

compute the propagation of errors [10]. In this approach, all

the values have the same format. Martel proposed another

static analysis which makes it possible to determine different

formats for different variables (mixed precision). Chiang

et al. [6] use Symbolic Taylor Expansions to allocate a

precision to the terms of an arithmetic expression (only).

Other approaches rely on dynamic analysis. Precimonious

tries to decrease the precision of variables and checks

whether accuracy requirements are still fulfilled [22], [25].

Lam et al instrument binary codes in order to modify their

precision without modifying the source codes [17].

Fixed-Point Format Determination Determining the best

fixed-point formats is mandatory in order to implement

a numerical algorithm in hardware (e.g. on a FPGA) or

software. This may be done in two steps. First, a range

analysis determines the integer wordlength of each variable

and then the number of bits to allocate to the fractional

part is decided [21]. Various strategies have been proposed

to solve this problem, based on simulation [23] or analytic

models [12], [20].

Other challenges have been identifed but less work have

been done currently to address them. The question of opti-

mizing simultaneously the accuracy and execution time is

recurrent. It has been shown on academic examples that

optimizing the accuracy of numerical iterative algorithms

2

Spoat
TrustANM

Spoat
Vulnerability

V & V
Detection

libUFPA

Wizoat
Tuning

Wizoat
Stability

Assisted Dev.
Transformation

Figure 1. Interactions between the tools of Numalis Software Suite.

accelerate their convergence speed [7]. Time is then saved

thanks to a better accuracy. Finally, much work concerning

formal proofs of algorithms in the floating-point arithmetic

have been done in academic contexts [4], [5].

IV. NUMALIS SOFTWARE SUITE

Numalis Software Suite is intended to answer to the main

challenges enumerated in Section III. For verification and

validation, our tools compute over-approximations of the

ranges of the variables as well as their accuracy, defined

as the distance in the worst case between the result returned

by the machine and the result that we would obtain if all

the computation were done in the exact arithmetic. Our

tools mostly rely on static analysis by abstract interpretation.

However, to avoid some false alarms inherent to the over-

approximations done in static analysis, dynamic analysis

methods are also used. They rely on a statiscical method

which allows us to estimate with high probability the number

of test-cases needed to estimate safely the ranges of the

variables and on a multi-arithmetic library which, thanks to

a homogeneous API, makes it possible to execute easily a

code in various, IEEE754 compliant or multiple precision

arithmetics. The static and dynamic analysis tools may

cooperate in our suite.

The tools for assisted development use the range over-

approximations computed by the V&V tools. They perform

program transformation in order to generate more accurate

codes and mixed-precision floating-point format determina-

tion. Currently, the support of the fixed-point arithmetic is

still under development. The program transformation uses

Abstract Program Expression Graphs [8], [16] to generate

in polynomial space and time an exponential number of

mathematically equivalent expressions among which the

most accurate expression for the floating-point arithmetic is

searched. The ranges provided by the V&V tools are used

to determine the worst errors on the original expressions

and on the candidate optimized expressions. The format

determination also uses the ranges computed by static anal-

ysis to determine the least formats, in mixed precision (i.e.

each variable may have its own format) required in order

to ensure a certain accuracy on the outputs, determined by

the user [19]. This tools also relies on a SMT solver. We

give hereafter a brief description of the tools integrated in

Numalis Software Suite.

• libUFPA is a library which contains many arithmetics

used by the other tools, for V&V and for program

transformation. This library has a uniform API to

use floating-point arithmetic (any IEEE754 format),

multiple precision arithmetic (with the MPFR library),

interval arithmetic and affine arithmetic [13]. libUFPA
supports all the usual elementary functions (e.g. for

trigonometry.)

• ANM is Numalis static analyzer based on abstract

interpretation. ANM uses some of the arithmetic of

libUFPA. As libUFPA, ANM is an internal tool which

provides basic information to the backend tools enu-

merated hereafter. ANM uses relational abstract domains

such as Affine Forms [13].

• Spoat-Vulnerability is Numalis tool

to detect accuracy errors in programs.

Spoat-Vulnerability uses the results of

the static analysis provided by ANM. However,

when this information is not precise enough,

Spoat-Vulnerability performs a local dynamic

analysis in order to obtain more realistic range

estimations (yet unsafe). Several runs are performed

and the results are merged into intervals.

• Spoat-Trust is a tool for statistical analysis to

estimate with high probability how many datasets must

be taken to find safe ranges on the outputs of a program

in function of the ranges of the inputs. Then it generates

the random tests based on the statistical information and

run them using Spoat-Vulnerability.

• Wizoat-Stability optimizes programs. First, it

optimizes arithmetic expressions. It takes as inputs an

expression and ranges for the free variables (given by

the Spoat tools) and generates a new expression, more

accurate as long as the values of the free variables

belong to the given ranges. Then the computations done

at several lines of code of the original program are

merged or combined differently than in the original

code in order to augment the optimization opportu-

nities (otherwise, for example, one cannot optimize

a three address code.) Wizoat-Stability calls

Spoat-Vulnerability to evaluate the accuracy of

the new arithmetic expressions.

• Wizoat-Tuning determines the least floating-point

formats needed in order to ensure a user-defined accu-

racy on the outputs of a code [19]. This tool also relies

on Spoat-Vulnerability and calls a SMT solver

(Z3) for the format inference.

The tools described above support several programming

languages (C, C++, Ada, etc.). We illustrate in Figure 1 how

3

these tools interact altogether. Basically, the Spoat tools are

for error detection (V&V) while the Wizoat tools perform

program transformation (used in assisted development).

V. CONCLUSION

In this article we have given an overview of the prob-

lems encountered at software engineering level concerning

the development of numerical codes, specially for critical

systems, as well as a description of academic solutions and

of Numalis solutions. Numalis software suite has been used

in several industries, mainly in defense and space industries.

Our Software Suite is still under development. Improv-

ing the precision of the static and dynamic analysis is

an endless problem. We also plan to add the support of

other programming languages (Lustre, Fortran, etc.) Program

optimizations may still be improved in many ways. The

support of fixed-point arithmetic and of parallel programs

are important objectives. In particular, concerning parallel

programs, transformations ensuring the reproductibility of

the results would be of great interest. For all these develop-

ment, Numalis team pay much attention to the latest research

results in the domain and to research collaborations.

REFERENCES

[1] “Patriot missile defense: Software problem led to system
failure at dhahran, saudi arabia,” General Accounting office,
Tech. Rep. GAO/IMTEC-92-26, 1992.

[2] IEEE Standard for Binary Floating-point Arithmetic,
ANSI/IEEE, 2008.

[3] E. T. Barr, T. Vo, V. Le, and Z. Su, “Automatic detection
of floating-point exceptions,” in Principles of Programming
Languages, POPL ’13. ACM, 2013.

[4] S. Boldo, J. Jourdan, X. Leroy, and G. Melquiond, “Verified
compilation of floating-point computations,” J. Autom. Rea-
soning, vol. 54, no. 2, 2015.

[5] M. Brain, C. Tinelli, P. Rümmer, and T. Wahl, “An au-
tomatable formal semantics for IEEE-754 floating-point arith-
metic,” in Symposium on Computer Arithmetic. IEEE, 2015.

[6] W. Chiang, M. Baranowski, I. Briggs, A. Solovyev,
G. Gopalakrishnan, and Z. Rakamaric, “Rigorous floating-
point mixed-precision tuning,” in POPL. ACM, 2017.

[7] N. Damouche, M. Martel, and A. Chapoutot, “Impact of ac-
curacy optimization on the convergence of numerical iterative
methods,” in LOPSTR, ser. LNCS, vol. 9527. Springer, 2015.

[8] ——, “Intra-procedural optimization of the numerical ac-
curacy of programs,” in FMICS, ser. LNCS, vol. 9128.
Springer, 2015.

[9] N. Damouche, M. Martel, P. Panchekha, C. Qiu, A. Sanchez-
Stern, and Z. Tatlock, “Toward a standard benchmark format
and suite for floating-point analysis,” in NSV, ser. LNCS, vol.
10152, 2016.

[10] E. Darulova and V. Kuncak, “Sound compilation of reals,” in
POPL. ACM, 2014.

[11] C. Denis, P. de Oliveira Castro, and E. Petit, “Verificarlo:
Checking floating point accuracy through monte carlo arith-
metic,” in ARITH. IEEE Computer Society, 2016.

[12] C. F. Fang, R. A. Rutenbar, and T. Chen, “Fast, accurate
static analysis for fixed-point finite-precision effects in DSP
designs,” in ICCAD’03. IEEE / ACM, 2003.

[13] K. Ghorbal, E. Goubault, and S. Putot, “The zonotope abstract
domain taylor1+,” in CAV, ser. LNCS, vol. 5643, 2009.

[14] E. Goubault and S. Putot, “Static analysis of finite precision
computations,” in VMCAI, ser. LNCS, vol. 6538, 2011.

[15] M. Graphics, Algorithmic C Datatypes,
software version 2.6 ed., 2011,
http://www.mentor.com/esl/catapult/algorithmic.

[16] A. Ioualalen and M. Martel, “A new abstract domain for the
representation of mathematically equivalent expressions,” in
SAS, ser. LNCS, vol. 7460. Springer, 2012.

[17] M. O. Lam, J. K. Hollingsworth, B. R. de Supinski, and M. P.
LeGendre, “Automatically adapting programs for mixed-
precision floating-point computation,” in Supercomputing,
ICS’13. ACM, 2013.

[18] M. Martel, “Accurate evaluation of arithmetic expressions,”
Electr. Notes Theor. Comput. Sci., vol. 287, 2012.

[19] ——, “Floating-point format inference in mixed-precision,”
in NASA Formal Methods, vol. 10227, 2017.

[20] M. Martel, A. Najahi, and G. Revy, “Code size and accuracy-
aware synthesis of fixed-point programs for matrix multipli-
cation,” in PECCS. SciTePress, 2014.

[21] D. Ménard, D. Chillet, and O. Sentieys, “Floating-to-fixed-
point conversion for digital signal processors,” EURASIP J.
Adv. Sig. Proc., vol. 2006, 2006.

[22] C. Nguyen, C. Rubio-Gonzalez, B. Mehne, K. Sen, J. Dem-
mel, W. Kahan, C. Iancu, W. Lavrijsen, D. H. Bailey, and
D. Hough, “Floating-point precision tuning using blame anal-
ysis,” in ICSE. ACM, 2016.

[23] Z. Nikolic, H. T. Nguyen, and G. Frantz, “Design and
implementation of numerical linear algebra algorithms on
fixed point dsps,” EURASIP J. Adv. Sig. Proc., 2007.

[24] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tat-
lock, “Automatically improving accuracy for floating point
expressions,” in PLDI. ACM, 2015.

[25] C. Rubio-Gonzalez, C. Nguyen, H. D. Nguyen, J. Demmel,
W. Kahan, K. Sen, D. H. Bailey, C. Iancu, and D. Hough,
“Precimonious: tuning assistant for floating-point precision,”
in High Performance Computing, Networking, Storage and
Analysis. ACM, 2013.

[26] A. Solovyev, C. Jacobsen, Z. Rakamaric, and G. Gopalakrish-
nan, “Rigorous estimation of floating-point round-off errors
with symbolic taylor expansions,” in FM, ser. LNCS, vol.
9109. Springer, 2015.

4

