
Ocean Engineering 158 (2018) 221–231
Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng
Prediction of tidal currents using Bayesian machine learning

Dripta Sarkar *, Michael A. Osborne, Thomas A.A. Adcock

Department of Engineering Science, University of Oxford, Oxford, OX13PJ, United Kingdom
A R T I C L E I N F O

Keywords:
Prediction
Tidal currents
Machine learning
Gaussian process
* Corresponding author.
E-mail address: dripta.academic@gmail.com (D.

https://doi.org/10.1016/j.oceaneng.2018.03.007
Received 27 November 2016; Received in revised f

0029-8018/© 2018 Elsevier Ltd. All rights reserved
A B S T R A C T

We propose the use of machine learning techniques in the Bayesian framework for the prediction of tidal currents.
Computer algorithms based on the classical harmonic analysis approach have been used for several decades in
tidal predictions, however the method has several limitations in terms of handling of noise, expressing uncer-
tainty, capturing non-sinusoidal, non-harmonic variations. There is a need for principled approaches which can
handle uncertainty and accommodate noise in the data. In this work, we use Gaussian processes, a Bayesian non-
parametric machine learning technique, to predict tidal currents. The probabilistic and non-parametric nature of
the approach enables it to represent uncertainties in modelling and deal with complexities of the problem. The
method makes use of kernel functions to capture structures in the data. The overall objective is to take advantage
of the recent progress in machine learning to construct a robust algorithm. Using several sets of field data, we
show that the machine learning approach can achieve better results than the traditional approaches.
1. Introduction

Tidal waves are produced by changes in the gravitational forces of the
sun and the moon. Prediction of tidal currents are necessitated by prac-
tical requirements like navigation, protection from flooding, coastal
management to recent developments of energy extraction. Theoretical
understanding of the tidal phenomenon began with Newton pioneering
the gravitational theory and then later, Laplace deriving the expression
for the tidal potential. There have been many advances in methodologies
for tidal analysis since then. The most widely used method is that of the
harmonic analysis (HA), where the observed tidal variations are
considered as a resultant of various periodic components of known fre-
quencies, with the amplitudes and phases determined using the least-
squares fitting procedure. Computer codes based on HA have been
used for decades for the prediction of tidal heights (1-D) and currents (2-
D). Over the years various advances have beenmade to HA approach [see
e.g. Pawlowicz et al., 2002; Foreman et al., 2009; Leffler and Jay, 2009].
Other techniques include tidal spectroscopy (Munk and Cartwright,
1966), and response method for unified tide and surge prediction
(Cartwright, 1968), however they have not been widely adopted. HA has
been extensively used in the analysis of stationary tidal (height) records,
providing insights into the tidal dynamics. However, there are several
shortcomings of this methodology. One of the challenging tasks in HA is
the selection of tidal constituents, which if inaccurate can lead to over-
fitting of data or numerical issues (Jay and Flinchem, 1999). Appropriate
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modelling of noise is another issue. In tidal analysis, signals which do not
contribute to the tidal variations are classified as ‘noise. In reality, there
can be cases where the non-tidal signal is much stronger than the tidal
e.g. the occurrence of a stormy event, and many of such effects are
non-harmonic. It is difficult to incorporate such effects in the tidal HA
formulation. In general, the technique is not suitable for application to
non-stationary data (Jay and Flinchem, 1999). HA is also incapable of
modelling the spatial variability of tides – this is not a big issue in
modelling tidal heights which changes slowly in space, however tidal
currents can vary sharply within short distances due to changes in ba-
thymetry and topography. As tides move into shallow waters, they are
distorted resulting in overtides (higher harmonics of principal constitu-
ents) and compound tides (interaction between different constituents).
Such interactions can lead to asymmetry in the flood and ebb magnitudes
of the current, depending on the phase relationship (Friedrichs and
Aubrey, 1988). In HA, nonlinear characteristics are incorporated with the
inclusion of shallow water constituents, some of which may need to be
inferred, and such operations are often difficult. Even more complexities
can result near headlands (Geyer, 1993), where complex flow structures
can result in additional frequencies, which are not necessarily sinusoidal.
In relation to the uncertainty estimation, HA generates confidence in-
tervals for the current ellipse parameters (which are often large (Leffler
and Jay, 2009)). However, in a lot of practical applications it is more
useful to generate confidence interval estimates directly in the time
domain.
March 2018
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Fig. 1. For a particular tidal constituent k, the rotating vectors with amplitude
aþk and a�k are considered to be generated by two different fictitious stars

Pþ
k

and
P�

k , rotating in the counterclockwise and clockwise direction respectively,
at a speed same as that of the constituents. The constant phase angle by which
the rotating vectors lead or lag behind their respective stars is known as the
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In this work, we present a novel approach to predict tidal currents
using probabilistic machine learning techniques in the Bayesian frame-
work, which provide principled approaches for dealing with uncertainty,
and can tackle the challenges of real world data (Roberts et al., 1984).
Uncertainty could be introduced in many forms - ranging from mea-
surement noise to uncertainty in the parameters of the model, and the
mathematics of probability enables expressing the uncertainties (Ghah-
ramani, 2015). Bayesian modelling approaches have been widely used in
different disciplines e.g. geostatistics (Matheron, 1973), meteorology
(Thompson, 1956), economics (Kim and Nelson, 1999), spatial statistics
(Ripley, 2005, Rasmussen and Williams), machine learning (Rasmussen
and Williams).

Gaussian process (GP), a Bayesian non-parametric approach, have
been shown to be well-suited in solving a variety of time-series modelling
problems (Roberts et al., 1984) and in this work we pursue this meth-
odology to model tidal current data. We introduce the application of
Bayesian machine learning to the tidal current prediction problem which
can address some of the shortcomings associated with traditional tech-
niques -

� modelling nonlinear interactions not captured in the HA especially at
locations of fast tidal currents

� accommodating uncertainties of all forms e.g. noise is included
directly in the mathematical formulation

� modelling non-harmonic variations in the short-term resulting from
meteorological effects, barotropic to baroclinic conversion.

� generating confidence intervals directly in the time-domain.

The method can be used for the prediction from any generic tidal
current time-series data. We show that the machine learning approach
can produce better predictions than the HA even in cases where the latter
is considered to be good (achieve good accuracy). An initial report on the
novel machine learning approach to tidal currents was made in (Sarkar
et al., 2016) where analysis was performed on tidal current data from a
numerical model. In this work we provide a detailed description of the
methodology with extensive discussions and analysis with real world
datasets as well as present new approaches to model short and strongly
contaminated datasets.

A brief overview of tides and HA is provided in the next section,
followed by an introduction to GP regression. We then analyze long tidal
current time series data using maximum a-posteriori and short tidal time-
series data using Monte Carlo Markov chain techniques, and compare the
results with classical HA approach. The work potentially opens up
application of machine learning to other problems in tidal analysis which
are otherwise not possible using traditional techniques.

2. Tides and harmonic analysis

Based on potential field theory, forces due to the sun and the moon
produce hundreds of tidal constituents with distinct frequencies.
Nonlinear interaction of the astronomical tidal components produces
secondary tides known as overtides (higher harmonics) or compound
tides (interaction between various tidal constituents). Let us consider a
time series: yðtÞ, t ¼ t1; t2; …:; tM , where the observation times are
regularly spaced at an interval Δt. The model equation with N constitu-
ents can be expressed as

yðtÞ ¼
X
k¼1

N �
aþk e

iωk ðt�t0ÞþiVk þ a�k e
�iωk ðt�t0Þ�iVk

�þ c0 þ c1ðt � t0Þ (1)

where c0 is some offset and c1 indicate the trend, while the term inside
the summation indicate the variation of the constituents with aþk and a�k
and being the unknown complex amplitudes, ωk the angular frequency
and Vk is some astronomical argument. Note, yðtÞ is real if modelling tidal
heights, while for tidal currents it is a complex variable: yðtÞ ¼ uðtÞþ
222
ivðtÞ, and as such equation (1) can be expressed in matrix form as:
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where ϕðkÞ
m ¼ ωkðtm � t0Þþ VkðtmÞ. The solutions are determined by

minimizing some function of the residual ðTa� yÞ, where y ¼ ½yðt1Þ;
yðt2Þ;…:;yðtmÞ�', a ¼ ½aþ1 ; aþ2 ;…; aþN ; a

�
1 ; a

�
2 ;…:; a�N ; c0; c1�' and T is a M �

2N þ 2 of linear and sinusoidal basis functions evaluated at the obser-
vation times. In case of the ordinary least squares (OLS) approach the

objective function to be minimized can be expressed as
������Ta� y

���j2, and
the solutions are determined as a ¼ ðT�TÞ�1T�y where superscript �
indicates the conjugate transpose of the matrix. However, a shortcoming
of the OLS method is its sensitivity to non-tidal variations, as it can over-
fit such effects while trying to minimize the residual error (Leffler and
Jay, 2009). The latest codes based on the HA uses the ‘Iteratively
Reweighted Least Squares’ algorithm which reduces the influence of the
non-tidal effects and the solution in this case is obtained as a ¼
ðT�WTÞ�1T�Wy, where W is some weighting matrix which is
greenwich phase gk.
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determined iteratively (see (Leffler and Jay, 2009) for details). The
standard parameters of the particular constituent k are then computed as

Lk ¼
��aþk ��þ ��a�k ��; lk ¼

��aþk ��� ��a�k ��
θk ¼

�
αþ
k þ α�

k

2

�
; gk ¼ vk �

�
αþ
k � α�

k

2

�

where Lk and lk are the semi-major and semi-minor axis of the ellipse
respectively, αþk ¼ angðaþk Þ, α�k ¼ angða�k Þ, θk is the angle of inclination
of the northern semi-major axis counter-clockwise from due east, and gk
is the Greenwich phase (see (Foreman)). The parameters could be visu-
alized as shown in Fig. 1.
2.1. Selection of constituents

There exists over 500 tidal constituents [see e.g. 2], considering all
astronomical and shallow water constituents however, inclusion of all of
them the HA demands almost 19 years of continuous data, which is hard
to obtain in reality. In practice, the choice of constituents are made
through the automated selection algorithm developed by (Foreman),
where constituents are selected from a basis of 45 astronomical and 24 of
the most important shallow water constituents. The Rayleigh criterion
(Godin) is used for constituent selection, whereby a time series of mini-
mum length T0 can distinguish tidal constituents with a frequency dif-
ference of T�1

0 . If two constituents do not satisfy the Rayleigh criterion,
then the one with a larger amplitude in the equilibrium analysis is
considered in the HA, with the other constituent ignored. HA is not
suitable for application to non-stationary processes unless the fre-
quencies of the non-stationary processes, if harmonic with known fre-
quencies, are included in the analysis (Jay and Flinchem, 1999).

3. Gaussian process regression

GPs represent a Bayesian non-parametric approach to modelling un-
known functions, and have been widely used in solving a variety of
regression problems (Ghahramani, 2015; Rasmussen and Williams). The
modelling framework considers a prior distribution directly in the space
of functions (see Fig. 2), with the properties of such functions governed
by the mean and covariance function of the GP – similar to the descrip-
tion of a multivariate Gaussian distribution in terms of its mean and
covariance matrix (MacKay, 2003). Consider a dataset with n observa-
tionsD ¼ fðxi; yiÞ; i ¼ 1;2; ::; ng and the objective is to make predictions
for new inputs x�. The outputs y are generated by a latent function f ðxÞ
with the addition of Gaussian white noise of constant variance (σ2n)

yj ¼ f
�
xj
�þ εj; εj � N

�
0; σ2

n

�
: (2)

A prior distribution is considered on the latent functions such that for
a given set of training points x ¼ fx1;x2;…;xng, the corresponding vector
Fig. 2. GPs describe a prior distribution in the space of functions. The prior distribut
a). Once inference is performed, the posterior distribution can be described. Essen
through the given data points. There is reduced uncertainty at locations near the ob
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of function evaluations is given by the n dimensional Gaussian distribu-
tion f � N ðmn;KnÞ, and the properties of the prior are dictated by the
choice of the mean vector mnðiÞ ¼ E½f ðxiÞ� and the covariance (kernel)
matrix Knði; jÞ ¼ E½ðf ðxiÞ� mðxiÞÞðf ðxjÞ� mðxjÞÞ�. Note, the symbol �
means ‘distributed according to’. The specification of the prior is
important as it fixes the properties of the function considered for infer-
ence (Rasmussen and Williams). The model likelihood function repre-
sents the difference between noisy measurements and the underlying
noise-free function (Rasmussen and Williams)

pðyjf Þ ¼ N
�
y; f ; σ2

nI
�
;

where σ2n is the noise variance and I is the identity matrix. Employing
Bayes theorem, the distribution of latent function values given the data
points can be expressed as

pðf jyÞ ¼ pðyjf Þpðf Þ
∫ pðyjf Þpðf Þdf :

Since in the GP framework we have a multi-dimensional Gaussian
distribution for any finite number of input points, the outputs of the
latent function at the training locations x and test locations x* can then be
given by the distribution�
f
f �

�
� N

��
mn

m�

�
;

�
Kn Kn*

K�n K��

�
:

�

whereKn is the covariance matrix expressing the correlations between all
the training points, Kn* is the vector of covariance between the training
points and the test target, K�� is the prior variance at the test locations,
while mn and m* are the mean vectors evaluated at the training and test
locations, respectively. σ2n y�Using Gaussian identities, we then have the
conditional distribution

pðf �jf Þ ¼ N
�
m� þ K�nK�1

n ðf �mÞ;K�� � K�nK�1
n Kn*

�
which is employed to determine the function values f � at the unknown
locations

pðf �jyÞ ¼ ∫ pðf �jf Þpðf jyÞdf :
Finally, the predictions of the output values y� can be given by

pðy�jyÞ ¼ ∫ pðy�jf�Þpðf�jyÞdf� ¼ N
�
μ�; σ

2
�
�

where

μ� ¼ m� þ K�n
�
Kn þ σ2nI

��1ðy�mnÞ (3)

σ2
� ¼ K�� þ σ2nI� K�n

�
Kn þ σ2

nI
��1Kn*; (4)
ion expresses our belief in problem understanding before seeing the data (figure
tially this is the distribution of functions which with some added noise passes
servations.



Fig. 3. Structure of Bayesian Gaussian process model for regression. The bold horizontal line represents a fully connected set of nodes. The variables within square
boxes are unknown quantities. The variable y� is the prediction at the unobserved input location x�.
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with Kn* being the matrix of covariance between the training points and
test locations and Kn* ¼ KT

�n. The mean function in the present applica-
tion is considered to be some constant plus a linear trend with respect to
time. The trend term can be ignored if desired. Overall the structure of
the Bayesian GP can be graphically summarized as in Fig. 3.

3.1. Kernel function

Various forms of the kernel function are known and they can be
combined in numerous way (addition, multiplication), depending upon
the problem, to model complex data, however the resultant matrix has to
be positive semi-definite (Rasmussen and Williams). Note, in the ma-
chine learning literature as well as in this paper, the terms kernel function
and covariance function are interchangeably used to denote the same
function. The covariance matrix is generated by the kernel function.
Designing an appropriate kernel function is an important aspect of a
machine learning problem. The exponentiated quadratic is one kernel
function which is ubiquitously used in solving a wide variety of problems

Kði; jÞ ¼ σ2f exp

 ��xi � xjj2
l2

!
; (5)

where σ2
f is the variance hyperparameter and l is the lengthscale

hyperparameter of the kernel function. Another popular kernel function
is the Mat�ern kernel function [see e.g. (Rasmussen and Williams), which
is more appropriate for modelling rougher (non-smooth) variations. For
the particular problem of tidal current prediction, given the harmonic
nature of the variations, a good choice of would be a periodic kernel
function:

Kði; jÞ ¼ σ2
f exp

��2
l2
sin2
�
π
��xi � xj

��
p

��
; (6)
logpðyjθMLEÞ ¼ �1
2
ðy �mnÞT

�
Kn þ σ2

nIn
��1ðy �mnÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

penalizes mismatch between data and prediction

�1
2

����Kn þ σ2
nIn

����
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{ penalizes model

�n
2
logð2πÞ
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where σ2f is the variance hyperparameter, l is the lengthscale hyper-
parameter and p is the period hyperparameter of the kernel, and given
the multiple number of distinct periodic tidal constituents, addition of
finite number of periodic kernel functions could be appropriate for the
present application. The variation of a periodic kernel function with same
frequency and signal variance but different length-scales is illustrated in
Fig. 4. One of the key strengths of the periodic kernel function is its
potential in capturing non-sinusoidal variations.

The posterior distribution pðy*jθ; yÞ is a function of unknown
hyperparameters θ which needs to be marginalized (integrating out the
uncertainty) as

pðy*jyÞ ¼ ∫ pðy*jθ; yÞpðθjyÞdθ; (7)

where pðθjyÞ is the posterior distribution of the hyperparameters. Using
the Bayes theorem to pðθjyÞ, the above equation can be expressed as

pðy*jyÞ ¼
∫ pðy*jθ; yÞpðyjθÞpðθÞdθ

∫ pðyjθÞpðθÞdθ (8)

where pðyjθÞ is known as the likelihood and pðθÞ is the prior distribution
on the unknown hyperparameters. One of the main challenges in the GP
approach is finding a solution to the intractable integrals in (7) and (8).
Two well known approaches of determining an approximate solution are
the maximum likelihood estimation (MLE) also known as the type-II
maximum likelihood, and the maximum a-posteriori (MAP) approach.
Both these approach typically work well with large datasets where the
likelihood function is typically highly peaked. The MLE approach ap-
proximates the likelihood function pðyjθÞ as a delta function at the
location of the hyperparameters maximizing it:
complexity

(9)



Fig. 4. Figure (a) shows an exponentiated quadratic kernel function with two different lengthscales, while figure (b) shows example draws from a GP prior with those
length scales. The red line corresponds to a longer length-scale than the blue line. Figure (c) and (d) shows the same but for a periodic kernel function. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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In the MAP method, the hyperparameter posterior pðθjyÞ in equation
(7) is considered to be a Dirac delta function at its maximum, with the
optimization performed on:

log pðθMAPjyÞ ¼ �1
2
ðy �mnÞT

�
Kn þ σ2nIn

��1ðy �mnÞ � 1
2
jKn þ σ2nInj

�n
2
logð2πÞ þ logpðθMAPÞ :

(10)

The prior pðθMAPÞ could either be approximated with a flat distribu-
tion or a probability distribution could be assigned to it. The optimization
is performed using the method of conjugate gradients. For large tidal
current datasets, we adopt the MAP approach for determining the
hyperparameters as it incorporates additional information through
hyperparameter prior distributions pðθMAPÞ. For short time-series data,
the approximation of hyperparameter posterior as a Dirac delta function
can often become inappropriate. AMarkov chainMonte Carlo (MCMC) in
the framework of Hamltonian Monte Carlo can be used to determine a
solution to (7) in such circumstances. The method simulates a fictitious
Hamiltonian dynamical system to achieve better exploration of the pos-
terior distribution of the hyperparameters (see (Rasmussen, 1996)).

3.2. Multi-output

The formulation described until now does not account for the corre-
lations between the output variables, which in the case of tidal current
prediction are the horizontal velocities u and v. In the GP framework, the
problem of multiple output reduces to the specification of an appropriate
covariance function, which while being positive semi-definite, captures
the dependencies between the data points across all the outputs (Alvarez
and Lawrence, 2011). The covariance function for multiple output can be
expressed as

K ¼
XM
q¼1

ϒq � K ;q (11)

where M indicates the finite number of frequencies considered from as-
tronomical considerations,
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Kqði; jÞ ¼ exp
�2
2
sin2

π�xi � xj� (12)
 
lq

 � �
pq

!!

and the matrix ϒq is assumed to be of spherical parametrization kind
(Pinheiro and Bates, 1996; Osborne et al., 2012) with

ϒq ¼ diag
�
eq
�
ST
qSqdiag

�
eq
�
: (13)

For example, where we have only two outputs, in (13), eq gives a
description for the length scale of each output variable

diag
�
eq
� ¼ � lu;q 0

0 lv;q

�
(14)

and S is an upper triangular matrix, the i th column of which is associated
with particular spherical coordinates of points of <i:

Sq ¼
�
1 cosθq
0 sinθq

�
(15)

and the final form of the coregionalization matrix is given by

ϒq ¼
 

l2u;q lu;qlv;qcosθq
lu;qlv;qcosθq l2v;q

!
: (16)

4. Analysis

The data analyzed in this work are from public datasets available
through National Oceanic and Atmospheric Administration (NOAA),
USA (www.noaa.gov). The classical HA is performed using the state-of-
the-art Unified Tidal analysis toolbox (UTide) developed by (Codiga,
2011–01) using the ‘Iteratively Reweighted Least Squared’ (IRLS) algo-
rithm (Leffler and Jay, 2009; Foreman) which performs a weighted sta-
tistical fitting such that the effect of the outliers are reduced. An
important point to note is that the GP is a non-parametric method, and
the hyperparameters – which are unknown – are different from param-
eters in parametric models (HA). The hyperparameters (e.g. length-scale,
variance, periodicity) govern the properties of functions chosen from the
GP. They do not necessarily have physical interpretations, although the
periodicity hyperparameters have some correspondence to the harmonic

http://www.noaa.gov


Fig. 5. The figure shows the variations of the horizontal velocities u and v with time at Sunshine Sky Bridge. Five months of data is used to predict the tidal current
variations for the next five months. The green ‘þ0 markers indicate the training points, the red solid line indicates the mean of the predictions, the black solid line
containing the region in grey indicates the 95% confidence interval and the blue dotted line indicates the actual values. The figures (a) and (b) provide a good
macroscopic view of the tidal prediction, however the details are obscured due to the vast amount of information it contains. Figures (c) and (d) shows a zoomed
portion of figures (a) and (b) respectively, including the transition from training to prediction zone in both cases. The last two figures clearly shows the predicted mean
(red) and confidence interval (grey), along with the periodic nature of the variations. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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nature of the tidal data. Computations for the two approaches (HA and
GP) are performed with the same number of tidal constituents, chosen by
the auto-selection algorithm developed by (Foreman). However note that
the Rayleigh criterion decides the number of periodic kernel components
of the GP; the form of the periodic kernel component enables the GP to
capture more nonlinearities than HA. The frequencies of the periodic
covariance functions in the GP formulation are specified to be the fre-
quencies determined by the auto-selection procedure (Foreman). The
locations of the longer datasets are presented in Table 1. The data used in
226
the analysis is sampled once every 24min. Fig. 5 (a) and (b) plots the
variation of the horizontal velocities (u and v) versus time obtained using
GP for one of the locations - Sunshine Sky Bridge (see Table 1). The mean
and confidence margins of the predictions agree well with the data. Due
to the vast amount of information contained in Fig. 5, the short-term
variations and the details are not properly visible. Fig. 5(c) and (d) pre-
sents a short section of Fig. 5(a) and (b) respectively, illustrating the
details of the GP outputs and the velocity data. Another example is
depicted in Fig. 6, showing the training and prediction data of the



Fig. 6. The figure shows the variations of the horizontal velocities u and v with time at Martinez-AMORCO Pier. Five months of data is used to predict the tidal current
variations for the next five months. The details are the same as the previous figure.

Table 1
Location of the tidal observation sites for long term predictions. The current
measurements at all the four locations are made at near surface.

Location Latitude Longitude

Southampton Shoal Channel 37	 54.9750 N 122	 25.3400 W
Old Port Tampa 27	 51.7720 N 82	 33.2240 W
Sunshine Sky Bridge 27	 37.5000 N 82	 39.3000 W
Martinez-AMORCO Pier 38	 2.0780 N 122	 7.5150 W
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horizontal velocities at Martinez-AMORCO Pier (see Table 1).
Table 2 shows the root mean squared error (RMSE) of tidal current

predictions using the GP and comparisons are made alongside with the
HA approach. The first column shows the location, the second column
shows the training duration, then the prediction/test duration followed
by the errors in u and v velocities respectively. Four locations are
considered and predictions are performed over 1 month, 2 months and 5
months for each of the cases. The auto-selection algorithm selects 35 tidal
constituents for all the four cases presented in Table 2, with a minimum
threshold factor of one in the Rayleigh criterion. The GP approach ach-
ieves better accuracy than the HA in each of the cases. On an average, the
GP approach reduces the RMSE by around 5 percent from the HA, and in
some cases doing better by as much as 10 percent. The observed fluc-
tuations in the errors over different prediction horizons can be attributed
to variations in the real-world data arising from non-tidal contributions,
as well as from low frequency tidal components which are not separated
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due to the lack of training data. Non-tidal effects can originate from sub-
tidal variations, storm surges, etc. The purpose of the comparison is to
show that the errors are comparable over different prediction horizons.

The training of the GP for the above cases is performed using an
optimization algorithm, and the computational time depends on the
number of function evaluations. On an average, the computational costs
involved in using the GP are in the order of hours, while the HA takes



Table 2
Comparison of the RMSE (in m/s) of the prediction using the HA and GP algorithm. The first column (left-most) indicate the locations, the second column shows the 5
month training period for the algorithms, while the third column present the prediction durations starting one day after the end of the training algorithm. All data for
training and testing have been obtained from NOAA.

Location Training Duration Prediction u v

HA GP HA GP

Southampton 25/03/13–24/08/13 1 month 0.0695 0.0668 0.1137 0.1083
Shoal Channel 2 months 0.0718 0.0687 0.1104 0.1050

5 months 0.0738 0.0720 0.1042 0.1008
Old Port Tampa 15/01/13–14/06/13 1 month 0.0573 0.0532 0.1179 0.1092

2 months 0.0562 0.0523 0.1174 0.1090
5 months 0.0634 0.0586 0.1310 0.1158

Sunshine Sky 29/04/14–28/09/14 1 month 0.1340 0.1247 0.0916 0.0836
Bridge 2 months 0.1375 0.1337 0.0942 0.0904

5 months 0.1252 0.1236 0.0841 0.0825
Martinez 29/04/14–28/09/14 1 month 0.1322 0.1250 0.0787 0.0756

2 months 0.1297 0.1239 0.0773 0.0735
5 months 0.1208 0.1180 0.0743 0.0713

Table 4
Comparison of the RMSE (in m/s) of the prediction using the HA and GP algo-
rithm for short-term data analysis.

Location Training
Duration

Prediction u v

HA GP HA GP

Derbin
Strait

12/06/
10–02/
07/10

03/07/
10–23/07/
10

0.3470 0.3433 0.3631 0.3542
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seconds to evaluate. The HA is a parametric approach and is quasi-
instantaneous; in contrast the Bayesian GP is non-parametric with the
number of parameters growingwith data, and as such takes more time for
evaluation. This shortcoming can be addressed by using scalable ap-
proaches to GP inference (Hensman et al., 2013; Ding et al., 1708), and
the results can be achieved in times comparable to that of HA.

Few short data-series are also analyzed, using the MCMC approach
(see Table 3 for the locations). Some of the locations record quite strong
tidal currents (Avatanak and Derbin Strait), which could make them
suitable for tidal energy projects. Approximately half of the available
data is used for training, while the rest for predictions. The auto-selection
algorithm selects 17 tidal constituents for all these cases. Table 4 shows
the RMSE of the predictions from the HA and GP approach for the short
datasets. In this case again, the GP based approach outperforms the HA.

Some of the cases in Table 4 have much larger RMSE than those in
Table 2. A general increase in error can be ascribed to the shorter length
of input data in Table 4, and fewer tidal constituents are selected in the
latter. However, the first two cases in Table 4 (Derbin and Avatanak
Strait) have the largest magnitudes of tidal currents, and produces the
largest values of RMSEs, although their percentage errors, with respect to
overall current magnitudes, are similar to others. The results for one of
the locations (Gibson Point) are shown in Fig. 8.

In many cases, we are interested in unified prediction of currents
(tidal þ non-tidal). The non-tidal effects are often non-harmonic and can
have energy comparable to that of the tidal. Such perturbations could
originate from a variety of sources – internal tides (Wunsch, 1975), river
discharge, meteorological forcing, estuarine currents. Prediction be-
comes challenging in circumstances when the low frequency non-tidal
variations are considerable. To accommodate such variations, the mean
of the GP can be modelled with another GP – meanGP:

m � GP ðmmean; kmeanÞ (17)

In a simple construction, the meanGP can have a constant mean
function mmean with value corresponding to the average of the training
dataset, while an exponentiated quadratic kernel function can be chosen
as its covariance function (as such variations do not necessarily have to
periodic). The generic kernel functions like the exponentiated quadratic
Table 3
Location of the tidal observation sites. - Short tidal series. The rightmost column
shows the approximate depth at which the measurements are made.

Location Latitude Longitude Approx. Depth (m)

Derbin Strait 54	 5.0350 N 165	 13.6240 W 67.18
Avatanak Strait 54	 6.7670 N 165	 28.5440 W 75.29
Hog Neck 41	 43.4330 N 70	 38.3630 W 8.53
Fire Island 61	 10.7540 N 150	 7.5320 W 8.44
Gibson Point 47	 13.1480 N 122	 35.3200 W 60.53
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have the capability of expressing correlations to data points which are up
to a length scale away from the domain of input data points, beyond
which the predictions resorts to the output from the mean function. The
length-scale hyperparameter in the exponentiated quadratic kernel
function regulates the range of dependencies in the process. A short
length-scale corresponds to rapidly varying functions with weak long-
range dependencies, while a large length-scale correspond to slowly
varying functions. The approach could ideally be useful for short-term
predictions as the non-deterministic component modelled through
meanGP can be hard to predict. We perform a short case study to show
that GP can be used to reasonable short-term predictions in such cases.
Data is considered from the location Port of Beaumont (Latitude:
30∘4:782', Longitude: 94∘5:175') through NOAA. A wavelet transform is
performed on the current velocities to obtain some qualitative descrip-
tion of the characteristics of the tidal current data series. Wavelet
transform (Daubechieset al, 1992) has been applied to a wide variety of
signal processing problems (Mallat, 1999), and unlike Fourier transform,
it provides a temporal description of the frequency spectrum, which
entails a loss in frequency resolution, but gain in some temporal
description. Fig. 7 shows the log of the wavelet power spectrum of the
current velocity plotted versus the period of the tidal constituents (ab-
scissa in log2 scale) and time (ordinate). As it can be noticed, the current
data possess significant amount of non-tidal energy especially at low
frequencies. It is not possible to capture such variations, appropriately,
using the HA approach. Note, the wavelet transform can resolve different
tidal species (diurnal, semi-diurunal) band, but not the tidal constituents
within the species (Guo et al., 2015). Fig. 9 shows the current data at the
Avatanak
Strait

11/06/
10–02/
07/10

03/07/
10–23/07/
10

0.2540 0.2442 0.2323 0.2267

Hog Neck 03/06/
09–27/
06/09

28/06/
09–21/07/
09

0.1873 0.1787 0.2431 0.2428

Fire Island 13/07/02
- 02/08/
02

03/08/
02–23/08/
02

0.1657 0.1645 0.0895 0.0850

Gibson 29/05/
15–22/
06/15

23/06/
15–17/07/
15

0.1209 0.1196 0.2081 0.2000



Fig. 7. Wavelet transform showing the log of the wavelet power spectrum of velocity of short tidal current data series at Port of Beaumont. The analysis is performed
using them methods of (Torrence and Compo, 1998) and (Liu and Miller, 1996). The Morlet wavelet has been used in the analysis and the black line encloses regions of
greater than 95% confidence for a red noise process with a lag-1 coefficient of 0.72. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 8. Training and prediction of a short tidal current data series at Gibson Point.

Fig. 9. Variation of horizontal current velocities (a) u and (b) v at Port of Beaumont (USA) between 22/May/2014 to 14/July/2014. The points in green indicate the
initial training data while the blue dashed-dotted line indicate the data points at the test locations which we intend to predict half-a-day in advance. (For interpretation
of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Table 5
RMSE of the half-a-day ahead predictions at Port of Beaumont. 1st half indicates
the duration between midnight and noon and 2nd half indicates between noon
till midnight on the same day. The interval between consecutive data readings is
24min, although there do exist some minor gaps in the data.

Prediction Duration u v

HA GP HA GP

09/07/14 1st half 0.0693 0.0531 0.0444 0.0385
2nd half 0.0512 0.0390 0.0346 0.0287

10/07/14 1st half 0.0456 0.0349 0.0346 0.0257
2nd half 0.0771 0.0575 0.0496 0.0409

11/07/14 1st half 0.0679 0.0490 0.0380 0.0289
2nd half 0.0819 0.0561 0.0534 0.0410

12/07/14 1st half 0.1068 0.0578 0.0632 0.0397
2nd half 0.0890 0.0520 0.0564 0.0289

13/07/14 1st half 0.1172 0.0447 0.0693 0.0254
2nd half 0.0945 0.0408 0.0619 0.0232

14/07/14 1st half 0.1128 0.0378 0.0712 0.0255
2nd half 0.0987 0.0361 0.0577 0.0195

D. Sarkar et al. Ocean Engineering 158 (2018) 221–231
location from 22/May/2014 to 14/July/2014 - which is 54 days of data,
and predictions are made over the last six days (shown in blue in the
figure), half-a-day in advance. For this particular case, 24 hours moving
average of the tidal current velocities is first computed and the meanGP
formulation (described earlier) is employed on the data points (from
moving average). Table 5 shows the RMSE of the half-a-day ahead pre-
dictions. Significant reductions in error have been achieved with an
overall (considering 7 days) decrease of 43 percent in the u velocity and
40 percent in the v velocity. This demonstrates that even in the absence of
additional information, ML can be used for enhanced current predictions.
One instance of such predictions (half a day in advance) is shown in
Fig. 10.

5. Discussion

The paper presents an alternate approach to the prediction of tidal
currents, different from all known existing methods. Comparisons are
made with the HA for some real tidal current datasets (see Tables 2 and 4)
which are almost stationary (ideally suited for HA), and the GP approach
is shown to outperform the HA. The advantages of the machine learning
approach lies in its flexibility and applicability in modelling a wide va-
riety of real world situations. In the GP framework, structures in the data
are captured primarily through kernel functions which comprises of
hyperparameters, and they are typically learned from the data. Unlike in
Fig. 10. Current velocity prediction half a day in advance. Note, the figure doesn't sho
of the references to colour in this figure legend, the reader is referred to the Web v
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HA which strictly requires the frequencies of the constituents to be pre-
determined, the periodicity hyperparameter in the GP do not necessarily
need to be known beforehand.

Additional information can be incorporated into the GP model which
can enable it to make better short-term predictions e.g. meteorological
forcing parameters like wind speed and direction which are known to
influence the tidal current variations can be considered as extra inputs to
the GP model. One can also be interested in knowing the tidal current
variations at an unknown location given the data of some nearby loca-
tions. In fact, vessel mounted acoustic Doppler current profilers (ADCPs)
are often used to gather data over a spatial domain within a certain
timeframe. It is not possible to perform robust predictions using classical
techniques for such datasets. Such cases would involve modelling the
spatial variability in addition, and a GP model with an appropriate kernel
function can be used for such purpose. With the problem being formu-
lated in the machine learning framework, we have at our disposal a wide
range of possibilities in modelling tidal datasets. Methods or algorithms
can be chosen depending on the specifics of the dataset. Some other
features of the presented methodology are:

� Non-stationarity could be introduced by some non-linear trans-
formation (warping) of the inputs [see e.g. Sampson and Guttorp,
1992] or outputs [see e.g. Snelson et al., 2004], and then using the
normal kernel functions (stationary) on the mapped space.

� There can be issues in modelling tidal current time series using HA
when the size of the basis matrix becomes large. Sparse algorithms of
the GP - sparse spectrum GP (L�azaro-Gredilla et al., 2010), fully in-
dependent training conditional (FITC) (Quinonero-Candela and Ras-
mussen, 2005) can be used in such circumstances. The algorithms
have been shown to handle large datasets successfully.

� The likelihood function in GP models the noise in the data. Although
the simple i. i.d. Gaussian distribution (white noise) is chosen in this
work, other noise models - Laplace, Warped Gaussian can be
considered within the same framework. Exact inference is not
possible in such cases and approximate deterministic inference
techniques (Variational Bayes, Expectation Propagation, Laplace)[see
(Minka, 2001) or numerical sampling techniques (like MCMC)
(Bishop, 2006) could be applied.

� The focus of the present paper is on tidal currents, however the
method is easily applicable to the prediction of tidal heights. The
latter involves just 1-D output (tidal heights) and hence is more
straightforward.
w the entire training data (in green) used for the predictions. (For interpretation
ersion of this article.)
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� Effect of additional unknown frequencies in the tidal signal data could
be incorporated by considering additional periodic kernel functions
with ‘free’ periodicity hyperparameter.

The GP formulation is a non-parametric approach, and therefore has
added flexibilities which are not provided by parametric methods like the
HA. The periodic kernel function chooses from the space of harmonic
functions and the output may not necessarily be exactly sinusoidal.

6. Conclusion

The problem of tidal current prediction is formulated in the frame-
work of Bayesian GP. The goal of this work was develop robust prediction
method which can address some of the shortcoming of the traditional
approaches. The kernel function of the GP captures the structures in the
data and amongst the wide choice of kernel functions, the periodic kernel
function is in particular relevant for the present application due to its
harmonic nature, without being restricted to just sinusoidal variations.
The hyperparameters of the kernel functions are inferred either deter-
ministically using MAP approach or stochastically using MCMC, with the
former method being preferred for large datasets. The probabilistic na-
ture of the machine learning approach enables it to handle uncertainty
and noise, and the method generates confidence intervals directly in the
time-domain (unlike HA), which would be useful in practical applica-
tions. The machine learning approach is also shown to capture non-
harmonic variation using the exponentiated quadratic kernel function
and can make better predictions in the short-term. We analyze and
perform predictions on several sets of field data at various locations
around USA. In general, the GP framework provide additional flexibil-
ities not provided by the traditional techniques and can enhance tidal
analysis. We have demonstrated that the GP based approach can achieve
better accuracy than the traditional HA over a wide range of cases and
varied signal characteristics. In general, enhanced prediction of currents
requires better understanding of the physical processes such as the con-
version of barotropic to baroclinic tides, decay of internal tides into
turbulence (Egbert and Ray, 2000), meteorological effects, etc. Avail-
ability of data related to the variation of relevant parameters e.g. the
meteorological forcing variables (wind stress intensity and direction) can
aid in the construction of better predictive models and exploit the full
potential of the machine learning algorithms.
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