
44	 January/February 2018	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/18/$33.00 © 2018 IEEE

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

Arya: Operating System Support for
Securely Augmenting Reality

Kiron Lebeck, Kimberly Ruth, Tadayoshi Kohno, and Franziska Roesner | University of Washington

Augmented reality (AR) applications capture sensor input from a user’s surroundings and overlay virtual
output on their perception of the world, enabling new, immersive experiences. However, this technology
raises serious security and privacy risks such as malicious or buggy AR output.

A ugmented reality (AR) technologies enable users
to interact with virtual content in fundamen-

tally new ways. AR applications capture input from
a user’s surroundings, such as video, depth sensor
data, or audio, and they overlay output (for instance,
visual, audio, or haptic feedback) directly on the user’s
perception of the real world, through devices like
smartphones, head-mounted displays (HMDs), or
automotive windshields.

While the vision of AR is decades old,1 AR technolo-
gies are only now on the cusp of commercial viability
and beginning to capture the attention of users world-
wide. From the wildly popular mobile AR app Pokémon
Go to powerful HMDs like Microsoft’s HoloLens and
Meta’s Meta2, as well as AR-enabled car windshields2
and military applications,3 interest in AR technologies
across diverse industry sectors is increasing. Figure 1
shows two examples.

Although AR technologies promise great potential
benefits, they also raise new and serious computer secu-
rity and privacy risks. For example, AR applications’
need for rich, continuous sensor data (such as video and
audio feeds) raises privacy concerns for both users and
bystanders. The ability for AR applications to generate
virtual (visual, audio, or haptic) content that modifies a
user’s perception of the physical world also raises new

security and safety risks. For example, consider a buggy
or malicious AR windshield application that obscures
real-world pedestrians, overlays misleading information
on real-world road signs, startles the user while driving,
or strategically obstructs virtual content from another,
simultaneously running AR application. Addressing AR
output risks is particularly critical for fully immersive
AR systems, such as HMDs and car windshields, where
users cannot easily disengage from their devices if
output security issues arise.

Figure 2 shows an abstract architecture of an AR
platform, with sensor input coming in and virtual con-
tent produced as output. The academic computer secu-
rity community has begun turning its attention to the
potential input and output risks with AR4—focusing
primarily on risks from buggy or malicious applications
rather than the AR platform itself—and exploring poten-
tial solutions to mitigate these risks. On the input side,
prior efforts have studied user perception of AR privacy
risks5 and worked to mitigate these risks, for instance,
by limiting the amount of sensor data made available to
AR applications6–8 or by enforcing context-based poli-
cies on sensor data collection.9,10 (This and additional
related work is discussed further in the conference ver-
sion of this article.11) However, little work has consid-
ered risks or mitigations on the output side.

www.computer.org/security� 45

In this article, we thus discuss the potential secu-
rity risks of AR output from buggy or malicious appli-
cations, and we explore how an AR operating system
can be designed to mitigate these risks. Specifically, we
describe the design of Arya, a prototype AR platform
with output security as an explicit, first-class goal. In our
threat model, Arya is trusted, but the AR applications
running on Arya are untrusted. With Arya’s security
mechanisms enabled, applications still have significant
flexibility to create immersive AR experiences, but their
visual content is constrained by the platform based
on output policies, such as ensuring that windshield
applications cannot obscure real-world road signs or
pedestrians while the car is moving. This work, which
is described in more detail in our conference and work-
shop papers,11,12 both identifies and overcomes numer-
ous challenges in designing AR systems to mitigate
output security and safety risks.

We stand today at a pivotal juncture with AR technolo-
gies, just as we did in the early 2000s with smartphones—
there are clear indicators that these emerging technologies
are on the horizon, yet it is still very early in their life
cycles. Thus, now is the time to consider security for AR,
while the technologies are still young and designs are not
yet set in stone.

Motivation and Threat Model
Unlike today’s single-app AR experiences (for
instance, AR smartphone games like Pokémon Go),
we envision that with emerging immersive HMD
platforms like HoloLens, users will wish to run multi-
ple AR applications simultaneously augmenting their
views of the world. For example, while playing a game
like Pokémon Go, users may also wish to use an app
that overlays walking directions to nearby restaurants,
or that recognizes and identifies nearby social media
contacts. To reap the full benefits of these apps, the
user must use them while actively moving about and
interacting with the real world.

Unfortunately, in addition to creating novel oppor-
tunities, AR applications have a unique ability to impact
users’ perceptions of the real world in undesirable or
harmful ways. Specifically, the interaction of multiple
AR apps with each other and with the user’s view of the
real world raises new risks. If one of the apps was mali-
cious or buggy, it could annoy or distract the user with
spurious content (such as poorly placed ads), endanger
the user by occluding critical information in the real
world (for instance, by obscuring oncoming vehicles),
or perform a denial-of-service attack on another applica-
tion by occluding that application’s output (for instance,
a Pokémon creature that prevents the user from seeing
navigation directions). A recent concept video sketches
out a possible future in which AR technologies fail to

address these types of threats, as shown in Figure 3.
While we describe these risks in terms of an HMD
platform here, we stress that they extend across plat-
forms and domains, such as AR-enabled windshields,
which—like HMDs—are fully immersive.

Thus, the high-level challenge we address in this
work is how an AR platform should constrain the output
behaviors of potentially buggy, malicious, or compro-
mised applications, and how it should handle conflicts
between output from multiple applications. We argue
that emerging and future AR platforms must address
these questions if they wish to support rich, untrusted
applications that can be run simultaneously and safely
used while the user interacts with the physical world
(for instance, while walking or driving, not only while
sitting at a desk). We observe that undesirable output is
not a new concern in and of itself: recall the early days
of the web, when web applications frequently opened
popups and used blink tags. Browser vendors eventually
constrained these undesirable behaviors by enabling
popup blocking by default13 and by obsoleting the blink
tag. Unlike misbehaving applications on the early web,

Figure 1. Examples of augmented reality (AR). (a) A
Microsoft HoloLens demo showcasing multiple
Windows 10 applications (image source: www.geek
.com/microsoft/microsofts-hololens-demo-steals
-the-show-at-build-2015-1621727/). (b) Hyundai’s
windshield demo at the Consumer Electronics Show
(image source: https://www.youtube.com/watch?v
5iZg89ov75QQ). Notice the AR warning sign partially
occluding the car.

(a)

(b)

46	 IEEE Security & Privacy� January/February 2018

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

the effects of problematic AR output can range from
minor annoyance to direct physical harm.

The above risks inform our threat model and secu-
rity goals. Specifically, we consider one or more mali-
cious, buggy, or compromised applications that create
AR content, which may intentionally or accidentally:

■■ obscure another application’s virtual content in order
to hide or modify its meaning;

■■ obscure important real-world content, such as traffic
signs, cars, or people; or

■■ disrupt users physiologically, such as by startling
them (for instance by suddenly creating or quickly
repositioning virtual objects).

This set of threats is comparable to that used to moti-
vate our prior work on AR output security,12 though how
to build a system to achieve these goals was then unknown.

To combat these threats, we designed Arya, an
AR platform with a centralized, trusted output policy
module that enforces policies on AR content. These
policies aim to mitigate the above classes of threats,
for instance, by preventing applications from blocking
important real-world information, such as people, with

AR content. Arya handles policies that can constrain
when and where applications display content; it does
not support policies that constrain what content is dis-
played (for example, a 3D animal versus a 3D rock).

We assume that Arya’s operating system, drivers,
and platform hardware are trusted. However, appli-
cations are not trusted by the system. Specifically, we
assume that applications may be intentionally mali-
cious, unintentionally buggy, or compromised, poten-
tially leading to undesirable AR output. For example,
an adversary might attempt to sneak an intentionally
malicious application onto an open platform’s app
store (like the HoloLens app store), or different trusted
development teams within a closed AR platform (for
instance, a closed automotive AR platform) might pro-
duce applications that interact with each other unex-
pectedly in undesirable ways.

We also assume that Arya’s operating system
employs traditional, standard security best practices,
such as application isolation. In this article, we focus
only on threats between applications as they relate to
the interaction of their AR output.

In addition, we do not address the question of how
Arya-enforced AR output policies are distributed. We
assume that these policies may (for example) be pre-
loaded by the device’s manufacturer, introduced by
third-party sources, or set based on user preferences.
We assume that policies may be buggy or malicious,
and we do not require Arya to trust the sources of these
policies. Thus, our design must consider the possibility
of malicious or buggy policies.

Finally, we focus specifically on visual AR content,
and we consider issues related to nonvisual output (for
instance, haptic and audio) to be out of scope. How-
ever, the lessons in this work may apply to other output
modalities as well.

Design: The Arya Platform
In our conference paper,11 we presented Arya, an AR
platform with output security as a first-class goal. Given
space limitations, we focus here on the overall Arya

Figure 2. AR platform pipeline. AR platforms sense the real world (input), provide this sensor data to applications running on the platform, and
process application requests to display virtual content (output). Prior work introduced a trusted input module to limit application access to
sensitive sensor input. Our work introduces a trusted output module that constrains application output.

Raw
input

Trusted
input

module

Input privacy
(prior work)

Output security
(this article)

Untrusted

AR app

AR app

AR app

Trusted
output
module

Filtered
input

Filtered
output

App
outputs

Figure 3. AR concept image. This concept image of an AR
user on a bus could represent a possible future in which
AR output remains unregulated, leaving users unable to
control the intrusiveness of AR applications. Full video is
available at www.theverge.com/2016/ 5/20/11719244
/hyper-reality-augmented-short-film.

www.computer.org/security� 47

system design. We refer readers to our conference paper
for additional details and a more thorough analysis,
including in-depth discussions of the key challenges
that we encountered and the design tradeoffs we faced
in overcoming them.

Arya System Overview
AR applications fundamentally require the ability to
continuously capture and process sensor inputs, and
to superimpose virtual output on the user’s view of
the world. For example, consider the collision warning
application in Figure 1. This application must process
sensor inputs to track where other cars are relative to
the user, and it must dynamically generate and update
visual content as appropriate, for instance, to display a
warning when a collision is imminent.

Arya thus consists of the following core modules,
shown in Figure 4, that it employs to both support and
constrain application behaviors in the face of a dynami-
cally changing environment:

■■ system sensors and recognizers, to gather and inter-
pret sensor data from the real world;

■■ the input policy module, to filter and dispatch this
data to applications that require access;

■■ the output policy module, to process any new applica-
tion requests to create or modify virtual content, and,
if applicable, modify this virtual content based on the
types of policies we introduce in this article; and

■■ display drivers, to display updated virtual state.

These modules are used to support applications, which
may call APIs to query information about the real world
and create or modify virtual objects. Arya steps through
a core workflow to process application requests and pro-
duce every output video frame displayed to the user.

How Arya Handles Input
Consider again the collision warning application from
Figure 1. This application must be able to detect nearby
vehicles, identify where those vehicles are in relation
to the user’s view, and determine if a collision is immi-
nent. One way a system might support this capability
is to expose the full camera sensor feed to the applica-
tion, allowing it to perform vehicle detection. However,
as prior works note,6,9,10,14 applications that can access
raw, unfiltered input from the real world raise seri-
ous privacy concerns. In addition, if multiple applica-
tions need to locate vehicles in the video feed, it would
be inefficient for each to implement vehicle detection
separately.

To address these privacy and performance issues,
prior work6 proposed recognizers for AR platforms: OS
modules that process raw sensor streams, detect specific

types of information within those streams (for instance
vehicles, people, faces, or planar surfaces), and expose
these higher-level objects to applications. Recognizers
enable a least-privilege model in which applications
can be given access to only those recognized objects
that they need. For example, a Pokémon game may not
need a full video feed, but rather only information about
planar surfaces in the user’s view, to sensibly place
Pokémon on horizontal surfaces.

In our work, we found that recognizers provide an
additional benefit beyond their original purpose of
enabling input privacy. Recognizers give Arya—and
thereby Arya’s output policy module—information
about the user’s real-world surroundings. For example,
to support a policy that prevents applications from
occluding people, Arya must know whether and where
there are people in the user’s view. Recognizers pro-
vide this information and allow Arya to enforce output
policies that depend on the real world.

How Arya Handles Output
Our key research innovations for Arya center on meth-
ods to enable the OS to control the visual output of AR
applications. At a high level, we do so by incorporat-
ing into the OS an output policy module, which con-
trols and modifies AR application outputs according to
policies. Arya builds on and instantiates the AR object
abstraction for displaying output, proposed in our ear-
lier work.12 Conceptually, AR objects are OS primitives
that encapsulate virtual content that applications wish
to overlay on a user’s view of the real world. For exam-
ple, a single Pokémon creature would be an AR object
in Arya, and a single application may contain many

Figure 4. Overview of Arya’s architecture. We designed Arya—an AR platform
that consists of system sensors, recognizers, and an input policy module that
filters input from the real world (based on prior work), as well as an output
policy module that constrains application output (our primary contribution).

App App App

D
isp

la
y

dr
iv

er
s Input policy

module
Output
policy

module

Recognizers

System sensors

48	 IEEE Security & Privacy� January/February 2018

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

such objects. An AR object has a visual representation
and associated characteristics, such as size and opacity.
AR applications require the ability to create and trans-
form these objects (for instance, by moving, rotating,
or resizing them), and Arya supports these common
operations.

In addition, rather than requiring that applications
manually update the locations of their objects as the
user moves throughout the physical world, Arya allows
applications to create “world-locked” objects that are
attached to real-world locations or objects, and Arya
automatically updates where they are rendered in the
user’s display. For example, if an AR application attaches
a virtual object to a real-world table, Arya can maintain
this mapping, not requiring that the application explic-
itly update how the object is displayed as the user moves.
Applications can also create “head-locked” objects that
appear at a fixed location in the user’s display. (Note
that HoloLens similarly supports world-locked and
head-locked objects. The key distinction is that Arya
supports these features within the OS as part of its out-
put management, whereas HoloLens does so at the
application layer.)

The AR object model differs from the “window” dis-
play abstraction traditionally provided to applications,
in which applications have full control over a contigu-
ous rectangular screen area. A key benefit of AR objects
is that they allow Arya to reason about application out-
put and enforce policies at the granularity of individual
objects. For example, if one Pokémon creature obscures
a real-world person, Arya can take action against that
one object (for instance, to make it transparent) without
affecting the rest of the Pokémon application’s output.

AR Output Policies
Central to Arya’s design, and its ability to protect users
from dangerous or undesirable outputs, is its support
for AR output policies. To help drive our design, we
developed sample output policies for both HMD and
automotive AR scenarios. We drew inspiration from
existing sources of guidelines, including the HoloLens
developer guidelines, the US Department of Transpor-
tation guidelines for in-vehicle electronic devices, the
US Department of Labor occupational health and safety
regulations, and guidelines regarding the visibility of
street signs. Table 1 summarizes our sample policies.

Table 1. AR output policies.*

Identifier Description Applies to Source

P1 Avoid abrupt movement of AR objects. Car, HMD HoloLens Developer Guidelines

P2 Place AR objects at a comfortable viewing
distance from the user.

Car, HMD HoloLens Developer Guidelines

P3 Allow the user to see the real world in the
background.

Car, HMD HoloLens Developer Guidelines

P4 Avoid content that is “head-locked” (at a
fixed location in the display).

HMD HoloLens Developer Guidelines

P5 Don’t display text messages or social media
while driving.

Car NHTSA† Driver Distraction Guidelines

P6 Don’t obscure pedestrians or road signs. Car Portland Trees Visibility Guidelines

P7 Don’t obscure exit signs. HMD Occupational Safety and Health
Regulations

P8 Disable user input on transparent AR objects. Car, HMD Literature on clickjacking15

P9 Only allow advertisements to be overlaid on
real-world billboards.

Car, HMD N/A (New)

P10 Don’t allow AR objects to occlude other AR
objects.

Car, HMD N/A (New)

* This table contains a set of policies that we use to drive Arya’s design. We identified existing policies from various sources (P1-P8) and, if
necessary, modified them to apply to the AR context. We created two additional policies (P9 and P10) motivated by our threat model.
† NHTSA is the US Department of Transportation’s National Highway Traffic Safety Administration.

www.computer.org/security� 49

One challenge we faced was translating these
abstract guidelines into enforceable policies. We first
observed that our sample policies tell us only what con-
ditions should be avoided, not what to do when the
conditions are met. Thus, Arya separates the conditions
under which policies apply (for example, when an AR
object blocks a real-world person or is drawn too close
to the user) and the mechanisms used to enforce the
policies (for example, remove the AR object or make it
transparent). Namely, an Arya output policy consists of
two distinct components:

■■ a conditional predicate, or a Boolean expression that
determines when a policy should be applied; and

■■ one or more mechanisms, or actions, that the output
policy module should take when the policy’s condi-
tional predicate evaluates to true.

Determining how to express policies raised additional
challenges. For example, policies comprised of arbitrary
code could halt the system by performing unbounded
computation, or modify AR objects in undesirable ways.
Rather than allow the conditional predicates and mecha-
nisms to consist of arbitrary code, we restrict those pred-
icates and mechanisms in numerous ways. For example,
we define a finite set of building blocks that policies can
use to construct the conditional predicates. These predi-
cates can refer to attributes of objects, which are either

■■ visual properties of AR objects, such as size, transpar-
ency, and speed; or

■■ relationships between AR objects and other virtual or
real-world objects.

Another challenge we faced in designing Arya’s pol-
icy mechanism framework was how to handle policies
that might conflict with each other. For example, con-
sider a policy that makes virtual objects more transpar-
ent running simultaneously with a policy that makes
virtual objects more opaque. If both policies are active at
once, they will create a cycle in which the object appears
to flicker. To avoid such conflicts, we designed Arya’s
policies to be explicitly composable. Our key insight
to enable policy composition is that Arya’s goal in con-
straining AR output is to protect users from undesirable
or dangerous outputs—that is, AR output that modifies
the user’s view of the world less is safer than output that
modifies the user’s view of the world more. Thus, Arya
supports only policy mechanisms that move AR objects
toward less intrusive states; for example, mechanisms
that make objects smaller, slower, or more transparent,
or that remove them or deny their creation entirely. In
this way, two policies triggered under the same condi-
tions will not yield conflicting mechanisms.

We discuss additional challenges and design trade
offs in “Securing Augmented Reality Output,”11 such
as the nuances in how we specify policy predicates
and mechanisms, where Arya evaluates policies in its
workflow, as well as how much feedback Arya should
provide to applications when they are impacted by
policies.

Implementation
Our Arya prototype consists of several parts: an AR sim-
ulator and virtual scenes to represent the real world, the
Arya core implementation (including the output policy
module and infrastructure to support multiple applica-
tions), stand-alone applications that run on Arya, and
AR output policies that are enforced by Arya.

AR Simulator
In practice, a full-fledged AR system has many moving
parts—it continuously senses and processes real-world
input, which feeds into applications as well as, in our
design, the output policy module itself. However,
real-world input is by its nature noisy and variable.
Because the focus of our work is not on improving or
evaluating AR input processing, and to support con-
trolled, repeatable experiments, we abstract away the
input-handling part of Arya for our prototype. Instead,
we create an AR simulator, which consists of a virtual
reality (VR) back end to represent the real world. We
build on the Unity game engine, using Unity virtual
environments, or “scenes,” to represent the real world.
This technique allows us to isolate the output manage-
ment portion of the system and reliably “detect” our
simulated real-world objects.

Virtual Scenes Representing
the Physical World
A benefit of our AR simulator is that it easily allows us
to test output policies in different Unity scenes that rep-
resent various real-world scenarios. We developed three
scenes to represent HMD and automotive scenarios:
an “in-home” scene (based on a prebuilt scene from
the Unity Asset Store (www.assetstore.unity3d.com
/en/#!/content/44784), an “AR windshield” scene,
and an “office” scene. Figure 5 shows these scenes;
the bare scenes, without AR applications running, are
shown in the left column.

Arya Core
Up to this point, we have described only our prototyp-
ing infrastructure for representing a model of the real
world. We now turn to Arya itself. We build Arya’s core
also on top of Unity, written in 3767 lines of C# code.

The Arya core includes recognizers, which we imple-
ment in our prototype by labeling specific “real-world”

50	 IEEE Security & Privacy� January/February 2018

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

objects in our virtual scenes as objects of interest, such
as people, billboards, and signs. The Arya core also
includes infrastructure for running multiple AR appli-
cations on top of it, including handling multiple appli-
cation threads and managing communication over local
sockets. Arya exposes APIs to those applications for
querying the real-world scene as well as for creating and
modifying AR objects (such as Object.Move() and
CreateObject()).

Applications
Multiple stand-alone applications can run atop the
Arya core, to simultaneously create and interact with
AR objects and augment the same “real-world” scene.
Applications are isolated by running as separate OS
processes, and they only interact with each other indi-
rectly by displaying output on the same scene. Arya
applications are written in C# and extend our base class
ARApplication (889 lines of C# code).

Prototype Policies
Finally, we prototype an AR output policy framework.
Policies are written as stand-alone C# modules that
extend our ARPolicy base class and are programmati-
cally instantiated by the Arya core. The Arya core pro-
vides a fixed set of AR object attributes (used in a policy’s

conditional predicate) and enforcement mechanisms
that policies can employ. Table 2 details the specific case
study policies we implemented. Additional attributes
could be defined, as could additional mechanisms.

Evaluation
We now evaluate the efficacy of Arya’s output policy
module through case study applications that run within
our three virtual scenes: a home, a driving scene, and
an office. We designed our case study applications to
exhibit both acceptable/desirable behaviors, as well
as behaviors that violate one or more of our prototype
policies detailed in Table 2. Figure 5 shows screenshots
of our applications running in these scenes both with-
out (center column) and with (right column) policy
enforcement active. The left column shows the bare
scenes, with no applications running. In the confer-
ence version of our paper,11 we also evaluate the perfor-
mance overhead introduced by Arya’s prototype output
policy module.

Case-Study Applications
We developed two applications per scene that test our
various policies. These applications are inspired by real
applications that might (or already do) exist for these
emerging platforms.

Figure 5. Case studies. These screenshots show our case study scenarios: (a) HMD in the home, (b) car windshield, and
(c) HMD in the office. The left column shows the bare scenes in our Unity-based AR simulator, representing the real world
without any apps running. From our prototype’s perspective, everything in the bare scenes is part of the real world. The
center column shows our case study apps running, exhibiting both desirable and undesirable AR output behaviors. The
right column shows the result of policy enforcement, leaving only desirable AR output. Note that Unity’s object opacity
(or alpha value) adjustment mechanism leaves visual artifacts to outline where violating AR objects would be.

(a)

(b)

(c)

www.computer.org/security� 51

For the home scene (Figure 5a), we created a “Vir-
tual Pet” app, which displays a world-locked virtual cat
that can move independently in the user’s environment.
However, the application moves the cat at a distract-
ingly fast speed through the user’s view, and it displays
a head-locked spider that the user cannot look away
from. In addition, we built a tabletop game in which
the user earns points by hitting coins with a ball. How-
ever, in-game purchase notifications block the output of
other applications and may annoy the user.

For the driving scene (Figure 5b), we created an
advertising application that displays targeted ads over
real-world blank billboards. However, the application also
displays ads throughout the rest of the user’s view, poten-
tially creating a driving hazard. In addition, we imple-
mented a “notification” application that displays dummy
text messages, a calendar, and email alerts. Unfortunately,
it continues to generate distracting alerts while the car is
in motion.

For the office scene (Figure 5c), we imagined a
group of engineers using AR to design a new automobile
(inspired by an application for HoloLens: https://www
.youtube.com/watch?v5yADhOKEbZ5Q). We built
an application that allows users to view their car models

from different angles simultaneously. In addition, we
created an application that displays information to users
about their colleagues, such as their names and roles in
the company. While neither of these applications exhibits
intentionally malicious behavior, their outputs some-
times obscure the user’s view by taking up too much
of the screen, appearing too close to the user’s face, or
blocking out important information in the real world
such as exit signs.

Security Discussion
As Figure 5 illustrates, Arya successfully allows multiple
case study applications to concurrently display content
while simultaneously enforcing our prototype policies
to prevent malicious or undesirable output behaviors.
We refer to policies by their identifiers in Table 2.

■■ In the home scene, P4 prevents the head-locked spi-
der from being created. In addition, P10 prevents
the in-app purchase dialog from occluding the cat
(a virtual object from another application), and P1
prevents the cat from moving too fast.

■■ In the driving scene, P6 prevents virtual ads from
obscuring real-world pedestrians, and P9 constrains

Table 2. Implemented policies.*

Identifier Conditions Mechanisms

P1 If an AR object’s speed exceeds X† Set the object’s speed to X

P2 If an AR object is within X feet of the user Set the object’s alpha value‡ to 0

P3 If an AR object occupies more than X percent of the
display

Set the object’s alpha value to 0

P4 If an application attempts to create a head-locked object Deny the creation request

P5 If a user’s vehicle is in motion Set the alpha value of all applicable AR
objects to 0

P6 If an AR object is occluding pedestrians or road signs Set the object’s alpha value to 0

P7 If an AR object is occluding exit signs Set the object’s alpha value to 0

P8 If an AR object’s alpha value is less than X Disable user interactions with the object

P9 If an AR object is not bounded by a real-world billboard Set the object’s alpha value to 0

P10 If an AR object is occluding another application’s AR
object

Set the object’s alpha value to 0

* This table details the conditions under which our prototype policies are violated and the mechanisms Arya uses to enforce them. This list
matches the policies in Table 1.
† X represents a parameterized value specified by individual policies. We note that policies may be selectively applied to specific applications
or groups of applications—for example, P9 may apply only to an advertising app.
‡ An object’s alpha value defines how opaque or transparent it is—an object with alpha value 0 is fully transparent.

52	 IEEE Security & Privacy� January/February 2018

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

them to appearing only over real-world billboards. P5
prevents notifications from popping up while the car
is in motion.

■■ In the office scene, P7 prevents the modeling applica-
tion from blocking real-world exit signs. Meanwhile,
P2 and P3 make objects that get too close to the user
or take up too much space partially transparent.

Through these case studies, we confirm the ability of
our policy framework to support policies that constrain
a range of behaviors in different contexts. Our case stud-
ies also highlight, for completeness, an output safety
risk that our current policies cannot mitigate: risks
with unsafe or frightening content, such as spiders. Our
policies—just like conventional web browsers, desk-
tops, and mobile devices—do not prevent applications
from displaying specific undesirable objects. This issue
presents a potential avenue for future work.

Discussion
Designing a full-fledged operating system for AR plat-
forms that supports strong security, privacy, and safety
properties while enabling rich application functionality
is challenging. Prior work addresses many input privacy
challenges for AR, and in this work, we make significant
strides toward securely handling visual output. However,
many challenges and open questions remain. For example:

■■ Handling noisy input sensing. While our prototype
used simulated AR environments to enable controlled
output-related experiments, real AR systems will need
to handle potentially noisy sensor inputs, which may
confound output policy management (for instance, if
a recognizer fails to detect a person).

■■ More complex policies. By supporting policy mecha-
nisms that compose by design, Arya avoids challenges
raised by potentially conflicting or flip-flopping
policies. However, this design choice excludes some
policy mechanisms, particularly those that move AR
objects (because they might move objects to loca-
tions where they violate other policies). Future work
should consider whether it is possible to design a
more complex policy framework that supports poli-
cies that may conflict, for example, by employing
constraint-solving approaches.

■■ Nonvisual AR output. Arya focuses on managing visual
output, but as AR systems continue to evolve, we will
likely see increased richness in nonvisual output,
such as auditory or haptic. Thus, future work should
explore how the design choices and lessons presented
in this article can be applied to other types of AR
output.

■■ Toward a production-ready system. Our Arya proto
type yielded promising results, but additional

considerations must be made to translate the core
Arya ideas to production-ready systems, includ-
ing addressing the above-mentioned challenges. For
example, the performance overhead introduced by
runtime output policy enforcement must be mini-
mal to allow AR systems to respond to dynamic
real-world changes in real time. Rather than providing
a final, production-ready solution, Arya takes the first
concrete steps toward identifying and mitigating AR
output security risks. The insights and challenges we
identify can inform future work that seeks to incorpo-
rate output management into real AR platforms.

We discuss these and other open questions further
in the conference version of this article.11

M odifying the user’s view of the world is a key
feature of emerging AR applications, and left

unconstrained, this ability can raise serious security
and privacy risks. Now is the time to consider and
address these risks. The design challenges we raise
here and the solutions we propose through Arya rep-
resent a promising step toward securely augmenting
reality.

Acknowledgments
We thank Niel Lebeck, Ada Lerner, Amy Li, Peter Ney, Lucy
Simko, Anna Kornfeld Simpson, and Alex Takakuwa for valu-
able discussions and feedback on previous drafts; we thank
Seth Kohno for his help with our AR simulator. We also
thank our anonymous reviewers for their constructive feed-
back. This work was supported in part by the National Science
Foundation under awards CNS-1513584 and CNS-1651230,
and by the Short-Dooley Professorship.

References
1.	 I.E. Sutherland, “A Head-Mounted Three-Dimensional

Display,” Proc. Fall Joint Computer Conf. American Fed-
eration of Information Processing Societies (AFIPS), 1968,
pp. 757–764.

2.	 M. May, “Augmented Reality in the Car Industry,” LinkedIn,
1 Aug. 2015; www.linkedin.com/pulse/augmented
-reality-car-industry-melanie-may.

3.	 K. Mizokami, “The F-35’s $400,000 Generation ‘Magic’
Helmet Is Here,” Popular Mechanics, 4 Mar. 2016;
www.popularmechanics.com/military/weapons/news
/a19764/the-f-35s-third-generation-magic-helmet-is-here.

4.	 F. Roesner, T. Kohno, and D. Molnar, “Security and
Privacy for Augmented Reality Systems,” Comm. ACM,
vol. 57, no. 4, 2014, pp. 88–96.

5.	 T. Denning, Z. Dehlawi, and T. Kohno, “In Situ with
Bystanders of Augmented Reality Glasses: Perspectives
on Recording and Privacy-Mediating Technologies,” Proc.

www.computer.org/security� 53

SIGCHI Conf. Human Factors in Computing Systems, 2014,
pp. 2377–2386.

6.	 S. Jana et al., “Enabling Fine-Grained Permissions for
Augmented Reality Applications with Recognizers,” Proc.
USENIX Conf. Security, 2013, pp. 415–430.

7.	 S. Jana, A. Narayanan, and V. Shmatikov, “A Scan-
ner Darkly: Protecting User Privacy from Perceptual
Applications,” IEEE Symp. Security and Privacy, 2013;
doi:10.1109/SP.2013.31.

8.	 J. Vilk et al., “SurroundWeb: Mitigating Privacy Concerns
in a 3D Web Browser,” IEEE Symp. Security and Privacy,
2015, pp. 431–446.

9.	 N. Raval et al., “What You Mark Is What Apps See,” Proc.
Int’l Conf. Mobile Systems, Applications, and Services, 2016,
pp. 249–261.

10.	 F. Roesner et al., “World-Driven Access Control for Con-
tinuous Sensing,” ACM Conf. Computer & Communica-
tions Security, 2014, pp. 1169–1181.

11.	 K. Lebeck et al., “Securing Augmented Reality Output,”
IEEE Symp. Security and Privacy, 2017, doi:10.1109/SP
.2017.13.

12.	 K. Lebeck, T. Kohno, and F. Roesner, “How to Safely Aug-
ment Reality: Challenges and Directions,” Proc. 17th Int’l
Workshop Mobile Computing Systems and Applications,
2016, pp. 45–50.

13.	 R. Naraine, “Windows XP SP2 Turns ‘on’ Pop-Up Block-
ing,” 18 Mar. 2004; www.internetnews.com/dev-news
/article.php/3327991.

14.	 R. Templeman et al., “PlaceAvoider: Steering First-Person
Cameras Away from Sensitive Spaces,” Network and
Distributed System Security Symp., 2014.

15.	 L.-S. Huang et al., “Clickjacking: Attacks and Defenses,”
Proc. 21st USENIX Security Symp., 2012, p. 22.

Kiron Lebeck is a PhD candidate in the Paul G. Allen
School of Computer Science & Engineering at the
University of Washington. His research focuses
broadly on computer security and privacy for emerg-
ing technologies, with a particular interest in aug-
mented reality systems. Contact him at kklebeck@
cs.washington.edu.

Kimberly Ruth is an undergraduate student in the Paul
G. Allen School of Computer Science & Engineering
at the University of Washington. Her research cur-
rently focuses on computer security and privacy for
augmented reality systems. Contact her at kcr32@
cs.washington.edu.

Tadayoshi Kohno is a professor in the Paul G. Allen
School of Computer Science & Engineering at the
University of Washington. He received a PhD in
computer science from the University of California,
San Diego. His research focuses on computer

security, broadly defined. Contact him at yoshi@
cs.washington.edu.

Franziska Roesner is an assistant professor in the Paul G.
Allen School of Computer Science & Engineering at
the University of Washington. She received a PhD in
computer science and engineering from the University
of Washington. Her research focuses broadly on com-
puter security and privacy, with a particular interest
in understanding and improving security and privacy
for end users of existing and emerging technologies.
Contact her at franzi@cs.washington.edu.

Read your subscriptions through
the myCS publications portal at

http://mycs.computer.org

From the analytical engine to the
supercomputer, from Pascal to von
Neumann, IEEE Annals of the History of
Computing covers the breadth of computer
history. � e quarterly publication is
an active center for the collection and
dissemination of information on historical
projects and organizations, oral history
activities, and international conferences.

www.computer.org/annals

