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Augmented reality (AR) applications capture sensor input from a user’s surroundings and overlay virtual 
output on their perception of the world, enabling new, immersive experiences. However, this technology 
raises serious security and privacy risks such as malicious or buggy AR output.

A ugmented reality (AR) technologies enable users 
to interact with virtual content in fundamen-

tally new ways. AR applications capture input from 
a user’s surroundings, such as video, depth sensor 
data, or audio, and they overlay output (for instance, 
visual, audio, or haptic feedback) directly on the user’s 
perception of the real world, through devices like 
smartphones, head-mounted displays (HMDs), or 
automotive windshields.

While the vision of AR is decades old,1 AR technolo-
gies are only now on the cusp of commercial viability 
and beginning to capture the attention of users world-
wide. From the wildly popular mobile AR app Pokémon 
Go to powerful HMDs like Microsoft’s HoloLens and 
Meta’s Meta2, as well as AR-enabled car windshields2 
and military applications,3 interest in AR technologies 
across diverse industry sectors is increasing. Figure 1 
shows two examples.

Although AR technologies promise great potential 
benefits, they also raise new and serious computer secu-
rity and privacy risks. For example, AR applications’ 
need for rich, continuous sensor data (such as video and 
audio feeds) raises privacy concerns for both users and 
bystanders. The ability for AR applications to generate 
virtual (visual, audio, or haptic) content that modifies a 
user’s perception of the physical world also raises new 

security and safety risks. For example, consider a buggy 
or malicious AR windshield application that obscures 
real-world pedestrians, overlays misleading information 
on real-world road signs, startles the user while driving, 
or strategically obstructs virtual content from another, 
simultaneously running AR application. Addressing AR 
output risks is particularly critical for fully immersive 
AR systems, such as HMDs and car windshields, where 
users cannot easily disengage from their devices if  
output security issues arise.

Figure 2 shows an abstract architecture of an AR  
platform, with sensor input coming in and virtual con-
tent produced as output. The academic computer secu-
rity community has begun turning its attention to the 
potential input and output risks with AR4—focusing 
primarily on risks from buggy or malicious applications 
rather than the AR platform itself—and exploring poten-
tial solutions to mitigate these risks. On the input side, 
prior efforts have studied user perception of AR privacy 
risks5 and worked to mitigate these risks, for instance, 
by limiting the amount of sensor data made available to 
AR applications6–8 or by enforcing context-based poli-
cies on sensor data collection.9,10 (This and additional 
related work is discussed further in the conference ver-
sion of this article.11) However, little work has consid-
ered risks or mitigations on the output side.
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In this article, we thus discuss the potential secu-
rity risks of AR output from buggy or malicious appli-
cations, and we explore how an AR operating system 
can be designed to mitigate these risks. Specifically, we 
describe the design of Arya, a prototype AR platform 
with output security as an explicit, first-class goal. In our 
threat model, Arya is trusted, but the AR applications 
running on Arya are untrusted. With Arya’s security 
mechanisms enabled, applications still have significant 
flexibility to create immersive AR experiences, but their 
visual content is constrained by the platform based 
on output policies, such as ensuring that windshield 
applications cannot obscure real-world road signs or 
pedestrians while the car is moving. This work, which 
is described in more detail in our conference and work-
shop papers,11,12 both identifies and overcomes numer-
ous challenges in designing AR systems to mitigate 
output security and safety risks.

We stand today at a pivotal juncture with AR technolo-
gies, just as we did in the early 2000s with smartphones—
there are clear indicators that these emerging technologies 
are on the horizon, yet it is still very early in their life 
cycles. Thus, now is the time to consider security for AR, 
while the technologies are still young and designs are not 
yet set in stone.

Motivation and Threat Model
Unlike today’s single-app AR experiences (for 
instance, AR smartphone games like Pokémon Go), 
we envision that with emerging immersive HMD 
platforms like HoloLens, users will wish to run multi-
ple AR applications simultaneously augmenting their 
views of the world. For example, while playing a game 
like Pokémon Go, users may also wish to use an app 
that overlays walking directions to nearby restaurants, 
or that recognizes and identifies nearby social media 
contacts. To reap the full benefits of these apps, the 
user must use them while actively moving about and 
interacting with the real world.

Unfortunately, in addition to creating novel oppor-
tunities, AR applications have a unique ability to impact 
users’ perceptions of the real world in undesirable or 
harmful ways. Specifically, the interaction of multiple 
AR apps with each other and with the user’s view of the 
real world raises new risks. If one of the apps was mali-
cious or buggy, it could annoy or distract the user with 
spurious content (such as poorly placed ads), endanger 
the user by occluding critical information in the real 
world (for instance, by obscuring oncoming vehicles), 
or perform a denial-of-service attack on another applica-
tion by occluding that application’s output (for instance, 
a Pokémon creature that prevents the user from seeing 
navigation directions). A recent concept video sketches 
out a possible future in which AR technologies fail to 

address these types of threats, as shown in Figure 3. 
While we describe these risks in terms of an HMD 
platform here, we stress that they extend across plat-
forms and domains, such as AR-enabled windshields, 
which—like HMDs—are fully immersive.

Thus, the high-level challenge we address in this 
work is how an AR platform should constrain the output 
behaviors of potentially buggy, malicious, or compro-
mised applications, and how it should handle conflicts 
between output from multiple applications. We argue 
that emerging and future AR platforms must address 
these questions if they wish to support rich, untrusted 
applications that can be run simultaneously and safely 
used while the user interacts with the physical world 
(for instance, while walking or driving, not only while 
sitting at a desk). We observe that undesirable output is 
not a new concern in and of itself: recall the early days 
of the web, when web applications frequently opened 
popups and used blink tags. Browser vendors eventually 
constrained these undesirable behaviors by enabling 
popup blocking by default13 and by obsoleting the blink 
tag. Unlike misbehaving applications on the early web, 

Figure 1. Examples of augmented reality (AR). (a) A  
Microsoft HoloLens demo showcasing multiple 
Windows 10 applications (image source: www.geek 
.com/microsoft/microsofts-hololens-demo-steals 
-the-show-at-build-2015-1621727/). (b) Hyundai’s 
windshield demo at the Consumer Electronics Show 
(image source: https://www.youtube.com/watch?v 
5iZg89ov75QQ). Notice the AR warning sign partially 
occluding the car.

(a)

(b)
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the effects of problematic AR output can range from 
minor annoyance to direct physical harm.

The above risks inform our threat model and secu-
rity goals. Specifically, we consider one or more mali-
cious, buggy, or compromised applications that create 
AR content, which may intentionally or accidentally:

■■ obscure another application’s virtual content in order 
to hide or modify its meaning;

■■ obscure important real-world content, such as traffic 
signs, cars, or people; or

■■ disrupt users physiologically, such as by startling 
them (for instance by suddenly creating or quickly 
repositioning virtual objects).

This set of threats is comparable to that used to moti-
vate our prior work on AR output security,12 though how 
to build a system to achieve these goals was then unknown.

To combat these threats, we designed Arya, an 
AR platform with a centralized, trusted output policy  
module that enforces policies on AR content. These 
policies aim to mitigate the above classes of threats, 
for instance, by preventing applications from blocking 
important real-world information, such as people, with 

AR content. Arya handles policies that can constrain 
when and where applications display content; it does 
not support policies that constrain what content is dis-
played (for example, a 3D animal versus a 3D rock).

We assume that Arya’s operating system, drivers, 
and platform hardware are trusted. However, appli-
cations are not trusted by the system. Specifically, we 
assume that applications may be intentionally mali-
cious, unintentionally buggy, or compromised, poten-
tially leading to undesirable AR output. For example, 
an adversary might attempt to sneak an intentionally 
malicious application onto an open platform’s app 
store (like the HoloLens app store), or different trusted 
development teams within a closed AR platform (for 
instance, a closed automotive AR platform) might pro-
duce applications that interact with each other unex-
pectedly in undesirable ways.

We also assume that Arya’s operating system 
employs traditional, standard security best practices, 
such as application isolation. In this article, we focus 
only on threats between applications as they relate to 
the interaction of their AR output.

In addition, we do not address the question of how 
Arya-enforced AR output policies are distributed. We 
assume that these policies may (for example) be pre-
loaded by the device’s manufacturer, introduced by 
third-party sources, or set based on user preferences. 
We assume that policies may be buggy or malicious, 
and we do not require Arya to trust the sources of these 
policies. Thus, our design must consider the possibility 
of malicious or buggy policies.

Finally, we focus specifically on visual AR content, 
and we consider issues related to nonvisual output (for 
instance, haptic and audio) to be out of scope. How-
ever, the lessons in this work may apply to other output 
modalities as well.

Design: The Arya Platform
In our conference paper,11 we presented Arya, an AR 
platform with output security as a first-class goal. Given 
space limitations, we focus here on the overall Arya 

Figure 2. AR platform pipeline. AR platforms sense the real world (input), provide this sensor data to applications running on the platform, and 
process application requests to display virtual content (output). Prior work introduced a trusted input module to limit application access to 
sensitive sensor input. Our work introduces a trusted output module that constrains application output.
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Figure 3. AR concept image. This concept image of an AR 
user on a bus could represent a possible future in which 
AR output remains unregulated, leaving users unable to 
control the intrusiveness of AR applications. Full video is 
available at www.theverge.com/2016/ 5/20/11719244 
/hyper-reality-augmented-short-film.
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system design. We refer readers to our conference paper 
for additional details and a more thorough analysis, 
including in-depth discussions of the key challenges 
that we encountered and the design tradeoffs we faced 
in overcoming them.

Arya System Overview
AR applications fundamentally require the ability to 
continuously capture and process sensor inputs, and 
to superimpose virtual output on the user’s view of 
the world. For example, consider the collision warning 
application in Figure 1. This application must process 
sensor inputs to track where other cars are relative to 
the user, and it must dynamically generate and update 
visual content as appropriate, for instance, to display a 
warning when a collision is imminent.

Arya thus consists of the following core modules, 
shown in Figure 4, that it employs to both support and 
constrain application behaviors in the face of a dynami-
cally changing environment:

■■ system sensors and recognizers, to gather and inter-
pret sensor data from the real world;

■■ the input policy module, to filter and dispatch this 
data to applications that require access;

■■ the output policy module, to process any new applica-
tion requests to create or modify virtual content, and, 
if applicable, modify this virtual content based on the 
types of policies we introduce in this article; and

■■ display drivers, to display updated virtual state.

These modules are used to support applications, which 
may call APIs to query information about the real world 
and create or modify virtual objects. Arya steps through 
a core workflow to process application requests and pro-
duce every output video frame displayed to the user.

How Arya Handles Input
Consider again the collision warning application from 
Figure 1. This application must be able to detect nearby 
vehicles, identify where those vehicles are in relation 
to the user’s view, and determine if a collision is immi-
nent. One way a system might support this capability 
is to expose the full camera sensor feed to the applica-
tion, allowing it to perform vehicle detection. However, 
as prior works note,6,9,10,14 applications that can access 
raw, unfiltered input from the real world raise seri-
ous privacy concerns. In addition, if multiple applica-
tions need to locate vehicles in the video feed, it would 
be inefficient for each to implement vehicle detection 
separately.

To address these privacy and performance issues, 
prior work6 proposed recognizers for AR platforms: OS 
modules that process raw sensor streams, detect specific 

types of information within those streams (for instance 
vehicles, people, faces, or planar surfaces), and expose 
these higher-level objects to applications. Recognizers 
enable a least-privilege model in which applications 
can be given access to only those recognized objects 
that they need. For example, a Pokémon game may not 
need a full video feed, but rather only information about  
planar surfaces in the user’s view, to sensibly place  
Pokémon on horizontal surfaces.

In our work, we found that recognizers provide an 
additional benefit beyond their original purpose of 
enabling input privacy. Recognizers give Arya—and 
thereby Arya’s output policy module—information 
about the user’s real-world surroundings. For example, 
to support a policy that prevents applications from 
occluding people, Arya must know whether and where 
there are people in the user’s view. Recognizers pro-
vide this information and allow Arya to enforce output  
policies that depend on the real world.

How Arya Handles Output
Our key research innovations for Arya center on meth-
ods to enable the OS to control the visual output of AR 
applications. At a high level, we do so by incorporat-
ing into the OS an output policy module, which con-
trols and modifies AR application outputs according to 
policies. Arya builds on and instantiates the AR object 
abstraction for displaying output, proposed in our ear-
lier work.12 Conceptually, AR objects are OS primitives 
that encapsulate virtual content that applications wish 
to overlay on a user’s view of the real world. For exam-
ple, a single Pokémon creature would be an AR object 
in Arya, and a single application may contain many 

Figure 4. Overview of Arya’s architecture. We designed Arya—an AR platform 
that consists of system sensors, recognizers, and an input policy module that 
filters input from the real world (based on prior work), as well as an output 
policy module that constrains application output (our primary contribution).
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such objects. An AR object has a visual representation 
and associated characteristics, such as size and opacity. 
AR applications require the ability to create and trans-
form these objects (for instance, by moving, rotating, 
or resizing them), and Arya supports these common 
operations.

In addition, rather than requiring that applications 
manually update the locations of their objects as the 
user moves throughout the physical world, Arya allows 
applications to create “world-locked” objects that are 
attached to real-world locations or objects, and Arya 
automatically updates where they are rendered in the 
user’s display. For example, if an AR application attaches 
a virtual object to a real-world table, Arya can maintain 
this mapping, not requiring that the application explic-
itly update how the object is displayed as the user moves. 
Applications can also create “head-locked” objects that 
appear at a fixed location in the user’s display. (Note 
that HoloLens similarly supports world-locked and 
head-locked objects. The key distinction is that Arya 
supports these features within the OS as part of its out-
put management, whereas HoloLens does so at the 
application layer.)

The AR object model differs from the “window” dis-
play abstraction traditionally provided to applications, 
in which applications have full control over a contigu-
ous rectangular screen area. A key benefit of AR objects 
is that they allow Arya to reason about application out-
put and enforce policies at the granularity of individual 
objects. For example, if one Pokémon creature obscures 
a real-world person, Arya can take action against that 
one object (for instance, to make it transparent) without 
affecting the rest of the Pokémon application’s output.

AR Output Policies
Central to Arya’s design, and its ability to protect users 
from dangerous or undesirable outputs, is its support 
for AR output policies. To help drive our design, we 
developed sample output policies for both HMD and 
automotive AR scenarios. We drew inspiration from 
existing sources of guidelines, including the HoloLens 
developer guidelines, the US Department of Transpor-
tation guidelines for in-vehicle electronic devices, the 
US Department of Labor occupational health and safety 
regulations, and guidelines regarding the visibility of 
street signs. Table 1 summarizes our sample policies.

Table 1. AR output policies.*

Identifier Description Applies to Source

P1 Avoid abrupt movement of AR objects. Car, HMD HoloLens Developer Guidelines

P2 Place AR objects at a comfortable viewing 
distance from the user.

Car, HMD HoloLens Developer Guidelines

P3 Allow the user to see the real world in the 
background.

Car, HMD HoloLens Developer Guidelines

P4 Avoid content that is “head-locked” (at a 
fixed location in the display).

HMD HoloLens Developer Guidelines

P5 Don’t display text messages or social media 
while driving.

Car NHTSA† Driver Distraction Guidelines

P6 Don’t obscure pedestrians or road signs. Car Portland Trees Visibility Guidelines

P7 Don’t obscure exit signs. HMD Occupational Safety and Health 
Regulations

P8 Disable user input on transparent AR objects. Car, HMD Literature on clickjacking15

P9 Only allow advertisements to be overlaid on 
real-world billboards.

Car, HMD N/A (New)

P10 Don’t allow AR objects to occlude other AR 
objects.

Car, HMD N/A (New)

* This table contains a set of policies that we use to drive Arya’s design. We identified existing policies from various sources (P1-P8) and, if 
necessary, modified them to apply to the AR context. We created two additional policies (P9 and P10) motivated by our threat model.
† NHTSA is the US Department of Transportation’s National Highway Traffic Safety Administration.
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One challenge we faced was translating these 
abstract guidelines into enforceable policies. We first 
observed that our sample policies tell us only what con-
ditions should be avoided, not what to do when the 
conditions are met. Thus, Arya separates the conditions 
under which policies apply (for example, when an AR 
object blocks a real-world person or is drawn too close 
to the user) and the mechanisms used to enforce the 
policies (for example, remove the AR object or make it 
transparent). Namely, an Arya output policy consists of 
two distinct components:

■■ a conditional predicate, or a Boolean expression that 
determines when a policy should be applied; and

■■ one or more mechanisms, or actions, that the output 
policy module should take when the policy’s condi-
tional predicate evaluates to true.

Determining how to express policies raised additional 
challenges. For example, policies comprised of arbitrary 
code could halt the system by performing unbounded 
computation, or modify AR objects in undesirable ways. 
Rather than allow the conditional predicates and mecha-
nisms to consist of arbitrary code, we restrict those pred-
icates and mechanisms in numerous ways. For example, 
we define a finite set of building blocks that policies can 
use to construct the conditional predicates. These predi-
cates can refer to attributes of objects, which are either

■■ visual properties of AR objects, such as size, transpar-
ency, and speed; or

■■ relationships between AR objects and other virtual or 
real-world objects.

Another challenge we faced in designing Arya’s pol-
icy mechanism framework was how to handle policies 
that might conflict with each other. For example, con-
sider a policy that makes virtual objects more transpar-
ent running simultaneously with a policy that makes 
virtual objects more opaque. If both policies are active at 
once, they will create a cycle in which the object appears 
to flicker. To avoid such conflicts, we designed Arya’s 
policies to be explicitly composable. Our key insight 
to enable policy composition is that Arya’s goal in con-
straining AR output is to protect users from undesirable 
or dangerous outputs—that is, AR output that modifies 
the user’s view of the world less is safer than output that 
modifies the user’s view of the world more. Thus, Arya 
supports only policy mechanisms that move AR objects 
toward less intrusive states; for example, mechanisms 
that make objects smaller, slower, or more transparent, 
or that remove them or deny their creation entirely. In 
this way, two policies triggered under the same condi-
tions will not yield conflicting mechanisms.

We discuss additional challenges and design trade
offs in “Securing Augmented Reality Output,”11 such 
as the nuances in how we specify policy predicates 
and mechanisms, where Arya evaluates policies in its 
workflow, as well as how much feedback Arya should 
provide to applications when they are impacted by 
policies.

Implementation
Our Arya prototype consists of several parts: an AR sim-
ulator and virtual scenes to represent the real world, the 
Arya core implementation (including the output policy 
module and infrastructure to support multiple applica-
tions), stand-alone applications that run on Arya, and 
AR output policies that are enforced by Arya.

AR Simulator
In practice, a full-fledged AR system has many moving 
parts—it continuously senses and processes real-world 
input, which feeds into applications as well as, in our 
design, the output policy module itself. However, 
real-world input is by its nature noisy and variable. 
Because the focus of our work is not on improving or 
evaluating AR input processing, and to support con-
trolled, repeatable experiments, we abstract away the 
input-handling part of Arya for our prototype. Instead, 
we create an AR simulator, which consists of a virtual 
reality (VR) back end to represent the real world. We 
build on the Unity game engine, using Unity virtual 
environments, or “scenes,” to represent the real world. 
This technique allows us to isolate the output manage-
ment portion of the system and reliably “detect” our 
simulated real-world objects.

Virtual Scenes Representing  
the Physical World
A benefit of our AR simulator is that it easily allows us 
to test output policies in different Unity scenes that rep-
resent various real-world scenarios. We developed three 
scenes to represent HMD and automotive scenarios: 
an “in-home” scene (based on a prebuilt scene from 
the Unity Asset Store (www.assetstore.unity3d.com 
/en/#!/content/44784), an “AR windshield” scene, 
and an “office” scene. Figure 5 shows these scenes; 
the bare scenes, without AR applications running, are 
shown in the left column.

Arya Core
Up to this point, we have described only our prototyp-
ing infrastructure for representing a model of the real 
world. We now turn to Arya itself. We build Arya’s core 
also on top of Unity, written in 3767 lines of C# code.

The Arya core includes recognizers, which we imple-
ment in our prototype by labeling specific “real-world” 
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objects in our virtual scenes as objects of interest, such 
as people, billboards, and signs. The Arya core also 
includes infrastructure for running multiple AR appli-
cations on top of it, including handling multiple appli-
cation threads and managing communication over local 
sockets. Arya exposes APIs to those applications for 
querying the real-world scene as well as for creating and 
modifying AR objects (such as Object.Move() and 
CreateObject()).

Applications
Multiple stand-alone applications can run atop the 
Arya core, to simultaneously create and interact with 
AR objects and augment the same “real-world” scene. 
Applications are isolated by running as separate OS 
processes, and they only interact with each other indi-
rectly by displaying output on the same scene. Arya 
applications are written in C# and extend our base class  
ARApplication (889 lines of C# code).

Prototype Policies
Finally, we prototype an AR output policy framework. 
Policies are written as stand-alone C# modules that 
extend our ARPolicy base class and are programmati-
cally instantiated by the Arya core. The Arya core pro-
vides a fixed set of AR object attributes (used in a policy’s 

conditional predicate) and enforcement mechanisms 
that policies can employ. Table 2 details the specific case 
study policies we implemented. Additional attributes 
could be defined, as could additional mechanisms.

Evaluation
We now evaluate the efficacy of Arya’s output policy 
module through case study applications that run within 
our three virtual scenes: a home, a driving scene, and 
an office. We designed our case study applications to 
exhibit both acceptable/desirable behaviors, as well 
as behaviors that violate one or more of our prototype 
policies detailed in Table 2. Figure 5 shows screenshots 
of our applications running in these scenes both with-
out (center column) and with (right column) policy 
enforcement active. The left column shows the bare 
scenes, with no applications running. In the confer-
ence version of our paper,11 we also evaluate the perfor-
mance overhead introduced by Arya’s prototype output 
policy module.

Case-Study Applications
We developed two applications per scene that test our 
various policies. These applications are inspired by real 
applications that might (or already do) exist for these 
emerging platforms.

Figure 5. Case studies. These screenshots show our case study scenarios: (a) HMD in the home, (b) car windshield, and  
(c) HMD in the office. The left column shows the bare scenes in our Unity-based AR simulator, representing the real world 
without any apps running. From our prototype’s perspective, everything in the bare scenes is part of the real world. The 
center column shows our case study apps running, exhibiting both desirable and undesirable AR output behaviors. The 
right column shows the result of policy enforcement, leaving only desirable AR output. Note that Unity’s object opacity 
(or alpha value) adjustment mechanism leaves visual artifacts to outline where violating AR objects would be.

(a)

(b)

(c)
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For the home scene (Figure 5a), we created a “Vir-
tual Pet” app, which displays a world-locked virtual cat 
that can move independently in the user’s environment. 
However, the application moves the cat at a distract-
ingly fast speed through the user’s view, and it displays 
a head-locked spider that the user cannot look away 
from. In addition, we built a tabletop game in which 
the user earns points by hitting coins with a ball. How-
ever, in-game purchase notifications block the output of 
other applications and may annoy the user.

For the driving scene (Figure 5b), we created an 
advertising application that displays targeted ads over 
real-world blank billboards. However, the application also 
displays ads throughout the rest of the user’s view, poten-
tially creating a driving hazard. In addition, we imple-
mented a “notification” application that displays dummy 
text messages, a calendar, and email alerts. Unfortunately, 
it continues to generate distracting alerts while the car is 
in motion.

For the office scene (Figure 5c), we imagined a 
group of engineers using AR to design a new automobile 
(inspired by an application for HoloLens: https://www 
.youtube.com/watch?v5yADhOKEbZ5Q). We built 
an application that allows users to view their car models 

from different angles simultaneously. In addition, we 
created an application that displays information to users 
about their colleagues, such as their names and roles in 
the company. While neither of these applications exhibits  
intentionally malicious behavior, their outputs some-
times obscure the user’s view by taking up too much 
of the screen, appearing too close to the user’s face, or 
blocking out important information in the real world 
such as exit signs.

Security Discussion
As Figure 5 illustrates, Arya successfully allows multiple 
case study applications to concurrently display content 
while simultaneously enforcing our prototype policies 
to prevent malicious or undesirable output behaviors. 
We refer to policies by their identifiers in Table 2.

■■ In the home scene, P4 prevents the head-locked spi-
der from being created. In addition, P10 prevents 
the in-app purchase dialog from occluding the cat  
(a virtual object from another application), and P1 
prevents the cat from moving too fast.

■■ In the driving scene, P6 prevents virtual ads from 
obscuring real-world pedestrians, and P9 constrains 

Table 2. Implemented policies.*

Identifier Conditions Mechanisms

P1 If an AR object’s speed exceeds X† Set the object’s speed to X

P2 If an AR object is within X feet of the user Set the object’s alpha value‡ to 0

P3 If an AR object occupies more than X percent of the 
display

Set the object’s alpha value to 0

P4 If an application attempts to create a head-locked object Deny the creation request

P5 If a user’s vehicle is in motion Set the alpha value of all applicable AR 
objects to 0

P6 If an AR object is occluding pedestrians or road signs Set the object’s alpha value to 0

P7 If an AR object is occluding exit signs Set the object’s alpha value to 0

P8 If an AR object’s alpha value is less than X Disable user interactions with the object

P9 If an AR object is not bounded by a real-world billboard Set the object’s alpha value to 0

P10 If an AR object is occluding another application’s AR 
object

Set the object’s alpha value to 0

* This table details the conditions under which our prototype policies are violated and the mechanisms Arya uses to enforce them. This list 
matches the policies in Table 1.
† X represents a parameterized value specified by individual policies. We note that policies may be selectively applied to specific applications 
or groups of applications—for example, P9 may apply only to an advertising app.
‡ An object’s alpha value defines how opaque or transparent it is—an object with alpha value 0 is fully transparent.
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them to appearing only over real-world billboards. P5 
prevents notifications from popping up while the car 
is in motion.

■■ In the office scene, P7 prevents the modeling applica-
tion from blocking real-world exit signs. Meanwhile, 
P2 and P3 make objects that get too close to the user 
or take up too much space partially transparent.

Through these case studies, we confirm the ability of 
our policy framework to support policies that constrain 
a range of behaviors in different contexts. Our case stud-
ies also highlight, for completeness, an output safety 
risk that our current policies cannot mitigate: risks 
with unsafe or frightening content, such as spiders. Our  
policies—just like conventional web browsers, desk-
tops, and mobile devices—do not prevent applications 
from displaying specific undesirable objects. This issue 
presents a potential avenue for future work.

Discussion
Designing a full-fledged operating system for AR plat-
forms that supports strong security, privacy, and safety 
properties while enabling rich application functionality 
is challenging. Prior work addresses many input privacy 
challenges for AR, and in this work, we make significant 
strides toward securely handling visual output. However, 
many challenges and open questions remain. For example:

■■ Handling noisy input sensing. While our prototype 
used simulated AR environments to enable controlled 
output-related experiments, real AR systems will need 
to handle potentially noisy sensor inputs, which may 
confound output policy management (for instance, if 
a recognizer fails to detect a person).

■■ More complex policies. By supporting policy mecha-
nisms that compose by design, Arya avoids challenges 
raised by potentially conflicting or flip-flopping  
policies. However, this design choice excludes some 
policy mechanisms, particularly those that move AR 
objects (because they might move objects to loca-
tions where they violate other policies). Future work 
should consider whether it is possible to design a 
more complex policy framework that supports poli-
cies that may conflict, for example, by employing 
constraint-solving approaches.

■■ Nonvisual AR output. Arya focuses on managing visual 
output, but as AR systems continue to evolve, we will 
likely see increased richness in nonvisual output, 
such as auditory or haptic. Thus, future work should 
explore how the design choices and lessons presented 
in this article can be applied to other types of AR 
output.

■■ Toward a production-ready system. Our Arya proto
type yielded promising results, but additional 

considerations must be made to translate the core 
Arya ideas to production-ready systems, includ-
ing addressing the above-mentioned challenges. For 
example, the performance overhead introduced by 
runtime output policy enforcement must be mini-
mal to allow AR systems to respond to dynamic 
real-world changes in real time. Rather than providing 
a final, production-ready solution, Arya takes the first 
concrete steps toward identifying and mitigating AR 
output security risks. The insights and challenges we 
identify can inform future work that seeks to incorpo-
rate output management into real AR platforms.

We discuss these and other open questions further 
in the conference version of this article.11

M odifying the user’s view of the world is a key 
feature of emerging AR applications, and left 

unconstrained, this ability can raise serious security 
and privacy risks. Now is the time to consider and 
address these risks. The design challenges we raise 
here and the solutions we propose through Arya rep-
resent a promising step toward securely augmenting 
reality. 
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