
50 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

COVER FEATURE OUTLOOK

Hong Mei and Yao Guo, Peking University

In recent years, operating systems have expanded beyond

traditional computing systems into the cloud, IoT devices, and

other emerging technologies and will soon become ubiquitous.

Despite the apparent differences among existing OSs, they all

have in common so-called “software-defined” capabilities—

namely, resource virtualization and function programmability.

In the January 2016 issue of Computer, Dejan Milo-
jičić and Timothy Roscoe predicted what OSs would
look like in a decade based on current hardware and
application trends.1 Whereas they focused on OSs

for traditional computing systems such as PCs, servers,
and embedded systems, we instead examine the future of
OSs more broadly from a software-defined perspective.

In recent years, various OSs have been proposed and
developed for devices large and small, at the scale of sin-
gle computers as well as clusters, at both the hardware
and software levels, and for applications ranging from
smart homes to smart cities. Although these OSs might
look very different from one another, they all embody
the same general principles and characteristics as tradi-
tional OSs—namely, resource virtualization and func-
tion programmability.

Resource virtualization and function programmabil-
ity also lie at the heart of so-called “software-defined”
systems including software-defined networks (SDNs),2
software-defined storage (SDS), and software-defined
datacenters (SDDCs). Just as a traditional OS manages a
hardware system with software abstractions and pro-
vides runtime support for applications, we believe that
future OSs will provide all of the software-defined capa-
bilities for emerging technologies. Thus, an SDN is an OS
for networking hardware, while a software-defined cloud
is an OS for the cloud. We refer to these OSs as ubiquitous
operating systems (UOSs).

A BRIEF HISTORY OF OPERATING SYSTEMS
An OS is a layer of system software that lies between
applications and computer hardware, managing resources

Toward Ubiquitous
Operating Systems:
A Software-Defined
Perspective

 J A N U A R Y 2 0 1 8 51

such as processors, memory, and storage
while providing support to the applica-
tions running above it.3

There were no OSs on the earliest
computers, as software applications ran
directly on bare-metal machines. How-
ever, as computing systems became
increasingly complex, it became harder
to manage the resources directly in an
application. Consequently, more com-
mon functionalities were abstracted
as drivers and libraries, creating a sys-
tem software layer that could be shared
among different applications. This
software layer was called an “operating
system” because it was originally devel-
oped to abstract a system’s operating
capabilities to ease the burden on oper-
ators. However, current OSs no lon-
ger emphasize system “operation” but
instead handle resource management,
application development, and runtime
support for a given system.

Table 1 lists major traditional OSs
and compares their key character-
istics. Modern OSs mostly employ a
Unix-based architecture, while cus-
tomizing their functionalities for a
particular type of system. For example,
OSs such as Windows and macOS focus
on GUIs to provide better user experi-
ences for desktop users, while OSs such

as Android and iOS include a layer to
support mobile app development and
execution to provide better experi-
ences for mobile users.

With the rapid adoption of com-
puter networks in the 1980s, it became
critical for OSs to provide networking
capabilities, leading to the creation of
networking middleware and many new
network OSs (NOSs). The earliest NOSs
such as Novell Netware focused on
connecting computers within a local
network. These were later discontin-
ued when connecting to the network
became a necessity for many users and
most such capabilities were incorpo-
rated in newer versions of desktop OSs.

Talk of an Internet OS began in the
mid-1990s during the war between Mic-
rosoft and Netscape, which announced
a set of new tools and programming
interfaces for next-generation Internet-
based applications. Since then, many
Internet OS implementations have
been proposed, including the Java-
based JavaOS and, most recently, Goo-
gle’s browser-based Chome OS.

Many NOSs and Internet OSs offer
networking capabilities or incorpo-
rate Internet-related data-management
functionalities with OS-like struc-
tures. Their components might run on

geographically distributed computer
systems or even virtual machines (VMs),
providing specific services through
Internet connections. These new “meta-
OSs” often run above traditional OSs
such as Windows or Linux to provide
support for Internet-based applications
and services.

A SOFTWARE-DEFINED
PERSPECTIVE
“Software-defined” has become one
of the hottest buzzwords in both aca-
demia and industry. It describes a fam-
ily of technologies including SDNs,
SDS, and SDDCs that are collectively
sometimes referred to as “software-
defined everything” (SDX). In a software-
defined system, hardware resources
can be virtualized and managed by
OS routines or the control plane, and
users can write programs to access
and manage the services provided by
virtualized resources.4

We argue that OSs offer these same
capabilities. For example, a tradi-
tional OS such as Linux or Windows
provides virtualization of hardware
resources through hardware driv-
ers, and application development and
runtime support through software
development kits (SDKs) and libraries.

 TABLE 1. Evolution of traditional operating systems.

Timeframe Representative OS(s) Computer system Main characteristics

1956 GM-NAA I/O IBM 704 The first practical OS
Simple batch processing
I/O management

1960s IBM OS/360 series IBM 360 series—mainframes Time-sharing
Multibatch processing
Memory management
Virtual machines (VM/370)

1970s Unix Minicomputers/workstations First modern OS
Developed with machine-independent languages (C)
Provides standard interfaces
Integrated development environment

1980s Mac OS, Windows, Linux Personal computers (PCs) Provides modern GUI
Improves usability for personal users

2000s Apple iOS, Google Android,
Windows Phone

Smartphones Customization of traditional OSs
Improves usability for mobile devices
New app delivery model (App Store, Google Play)

52 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

Mobile OSs such as Android pro-
vide an extra software-defined layer
with higher-level abstractions for
mobile apps, including management
of mobile data (for example, contact
and location data), a set of APIs for app
development, and a set of libraries to
support app execution. Whether OSs
run on small devices (such as TinyOS5)
or huge clusters (such as cloud OSs),
they offer both resource virtualiza-
tion and function programmability.
Put another way, a “software-defined”
technology is really just an OS for that
technology. In an SDN, for example,
the control plane provides the abil-
ity to write high-level applications to
manage the networking functions,
while the data plane virtualizes net-
working resources.

In sum, as Figure 1 shows, OSs and
software-defined systems are mostly
based on the same principles.

UBIQUITOUS OPERATING
SYSTEMS
More than a quarter of a century ago,
Mark Weiser envisioned a world in
which computing was ubiquitous.6
His prediction seemed unrealistic at
the time but is becoming a reality with
the emergence of the IoT and the pro-
grammability of everyday objects—for
example, smart lights that sense the
environment and brighten or darken
accordingly. We likewise argue that
OSs will become ubiquitous.

UOSs constitute a new type of OS
for a software-defined world where
software will be used to manage all

aspects of our lives. To understand the
enormous impact UOSs will have, con-
sider these examples:

 › Web OSs. Web OSs, also known
as web desktops or webtops,
provide a Linux-like environ-
ment within a browser for users
to run applications and manage
all their data and storage. They
also include APIs for developers
to create applications that can
run within the browser. Exam-
ple web OSs include Firefox OS,
Chrome OS, eyeOS, YouOS, and
G.ho.st.

 › The Robot Operating System. ROS
is a meta-OS that provides devel-
opment and runtime support
for complex and robust robotic
applications.7 Its extensive
collection of open source tools,
libraries, abstractions, and APIs
can be used across a wide variety
of platforms.

 › HomeOS. A Microsoft initiative
to enable “smarter homes for
everyone,” HomeOS aims to sim-
plify the creation and manage-
ment of home automation tech-
nology.8 It provides both intuitive
user controls and higher-level
abstractions for device orches-
tration. Research prototypes of
HomeOS have been deployed in
more than a dozen homes.

 › City OSs. There are many ini-
tiatives to create OSs to facil-
itate growth, energy use, and
environmental sustainability.

For example, the Living PlanIT
Urban Operating System
(living-planit.com) provides
abstractions and management
interfaces for energy, water,
waste management, transporta-
tion, telecommunications, and
healthcare systems, as well as
programming APIs to ensure
interoperability among different
platforms.

 › Cloud OSs. Conceptually, a cloud
OS does what a traditional OS
does—manage applications and
hardware—but at the scale of
cloud computing, replacing file
systems with object storage and
enabling almost unlimited stor-
age capacity and I/O throughput.
Instead of managing processes
on physical machines, a cloud
OS manages tasks on VMs. More
importantly, it offers various APIs
for cloud apps to utilize cloud
resources. Many cloud service
providers have created their own
cloud OS, including Microsoft
Azure, Amazon Web Services
(AWS), and Huawei FusionSphere.
There are also popular open
source cloud OSs such as Open-
Stack and Apache CloudStack.

 › IoT OSs. Google’s Android
Things (Brillo) is an embedded
OS platform designed for low-
power and memory-constrained
IoT devices that uses Android
APIs and Google Services.

Figure 2 shows a general architec-
ture for UOSs, which is similar to that
of traditional OSs. UOSs embody the
same key concepts as traditional OSs—
resource virtualization and function
programmability—but these concepts
are more generally defined for ubiqui-
tous scenarios:

Op
er

at
in

g
sy

st
em

s

SD
X

(s
of

tw
ar

e-
de

	n
ed

ev
er

yt
hi

ng
)

Desktop OSs
(Linux/Windows)

Software-de	ned desktop computers

Software-de	ned wireless
sensor network motes

Software-de	ned cloud

SDNs (software-de	ned networks)

SDS (software-de	ned storage)

SDDCs (software-de	ned datacenters)

TinyOS

OS for networks

Cloud OS

OS for storage systems

OS for datacenters

FIGURE 1. Operating systems and software-defined systems are mostly based on the
same principles.

 J A N U A R Y 2 0 1 8 53

 › Abstractions for resource man-
agement. A UOS provides
abstractions to manage var-
ious resources beyond tradi-
tional computing and storage
resources. These function much
like drivers or hardware abstrac-
tion layers in traditional OSs but
enable resource virtualization
more generally. APIs are also
provided for users and applica-
tions to access these virtualized
resources. For example, a UOS
for social networks manages
user information and relation-
ships, as well as tracks user
actions and communications
between users.

 › Development and runtime support
for ubiquitous applications. A UOS
provides APIs, programming
models, libraries, and develop-
ment tools for applications like
a traditional OS. However, this
support is at a higher level, as
ubiquitous applications run atop
the UOS, which in turn runs above
traditional OSs such as Linux and
Windows. The key difference is
that UOSs support apps by third-
party developers, whereas exist-
ing non-OS solutions are typically
implemented as a proprietary
layer on a system.

UOS OUTLOOK
As Figure 3 shows, we envision UOSs for
many different entities, both real and
virtual, as well as traditional IT systems.

UOS principles
Underlying this vision are three basic
principles.

UOSs can be scaled to any size sys-
tem. OSs have already been created for
small embedded systems and mobile

devices such as smartphones and tab-
lets, traditional desktop PCs and lap-
tops, standalone workstations and net-
worked servers, and server clusters and
clouds. We foresee OSs being extended
to include almost all legacy and
next-generation systems, from tiny edge
computing devices to huge distributed

computing environments that span
continents. UOSs can also be built for
emerging application domains such as
big data and artificial intelligence.

A UOS can be built for every object
(or collection of objects) in the phys-
ical world. The goal of ubiquitous

App App App App

Software development kits (SDKs)

Resource management

Abstractions

Data/
information

Computation/
processes

Storage/
database

Communication/
relationships

APIs
Programming

models
Libraries Development tools

……

FIGURE 2. General ubiquitous operating system (UOS) architecture. A UOS provides
abstractions to manage hardware and software as well as resource virtualization along
with programming and runtime support for applications, especially those created by
third-party developers.

OSs for the virtual world

OSs for the physical world

OSs for IT systems

Robot OS
IoT OS

Manufacturing OS

Embedded OS
Desktop OS
Server OS
Cloud OS

Big data OS
Internet OS

AI OS

Home OS
Building OS
Vehicle OS

Campus OS
City OS

Enterprise OS

Personal OS
Social network OS

Family OS

FIGURE 3. Different categories of UOSs for real and virtual entities as well as traditional
IT systems.

54 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

computing is to expand computation
capabilities beyond traditional IT
systems to make all objects smarter.
That will eventually mean making
these entities programmable, which
will require an OS. Robots (even Lego
robots) already have OSs. In a smart
home, all appliances—including TVs,
washing machines, refrigerators,
lights, microwave ovens, and coffee
machines—will need an OS to become
programmable. Every moving object
including vehicles, drones, bicycles,
wheelchairs, and even strollers will
need a UOS as well.

A UOS can be built for each entity in
the virtual world. In addition to phys-
ical objects and systems, OSs could
also be created for entities in specific
application domains. For example,
organizations of various types and
sizes including families, enterprises,
institutions, and government agen-
cies could be equipped with software-
defined capabilities to manage per-
sonnel, information, schedules, and
inventory. OSs would provide abstrac-
tions to manage resources as well as
support for the development and exe-
cution of new applications.

UOS categories
Given these principles, we can expect
to see many different categories of
UOSs, for example:

 › Big data OS. Big data appli-
cations have been built for a
wide variety of domains. A big
data OS could provide special
functions for data abstraction
and management, data access
and management APIs, and
programming models and lan-
guages for big data applications.

 › Enterprise OS. Future enterprises

or organizations might need an
OS to support the efficient man-
agement of processes as well
as resources including people,
funds, and machines. Enter-
prise OSs could be created out
of existing enterprise systems,
such as management informa-
tion systems (MISs) or enterprise
resource planning (ERP) sys-
tems, by adding programming
APIs to support flexible enter-
prise application development.

 › Industrial/manufacturing OS.
Many manufacturers have
already deployed automated pro-
duction and robotic control sys-
tems. Although many of these
systems have been managed
with simple embedded systems,
new software-defined abstrac-
tions and communication capa-
bilities will improve the systems’
efficiency and intelligence.

 › Human-cyber-physical OS. An
emerging trend in computing is
the convergence of three previ-
ously isolated domains: human
beings, cyber systems, and the
physical world. This will bring
many interesting applications
beyond current cyber-physical
systems and the IoT. How-
ever, new software-defined
abstractions and capabilities
will be required to support
human-cyber-physical system
management, application devel-
opment, and communications.

 › Artificial intelligence OS. An OS
will be needed to provide abstrac-
tions for machine learning or
deep learning capabilities, as well
as programming support for AI
applications. Android cofounder
Andy Rubin recently predicted
that AI would be the next major

OS breakthrough.9 An AI OS will
become essential infrastructure
to the success of new types of
intelligent applications.

Technical challenges
Despite their promise, UOSs present
numerous technical challenges.

 › UOS models and architectures. A
generic UOS model and architec-
ture likely will not be suitable
for all UOSs. The most import-
ant factor is the granularity of
abstractions and programming
interfaces. Smaller granularity
enables more flexibility, but at
the potential cost of application
runtime performance. Deter-
mining this tradeoff will be cen-
tral to UOS architecture design.

 › Resource virtualization. Virtu-
alization is the key technology
enabling all OSs and SDX. With
UOSs, computing will be pushed
from the central cloud to the
edge, such as in smartphones
and IoT devices. Thus, we need to
investigate lightweight virtual-
ization technologies to provide
efficient OS abstractions and
support software-defined edge
computing.

 › Performance optimization. In
UOSs for small-scale computer
systems or objects with weak
computing capabilities, improv-
ing application execution per-
formance will become critical.
As more types of hardware,
resources, and applications
emerge, it will be a challenge to
provide efficient services, espe-
cially for high-throughput and
massively parallel scenarios.

 › Security and privacy. Software
is more vulnerable to security

 J A N U A R Y 2 0 1 8 55

threats than hardware. With a
UOS in place, software becomes
the control center of a system
or environment, making it the
main target of attackers. In
addition, for the UOSs of systems
that manage sensitive personal
data or critical information, pri-
vacy will also become a first-
order consideration.

 › Domain-specific programming
languages. Current high-level
programming languages such
as C/C++ and Java are designed
with computers in mind. New
domain-specific languages will
be needed to develop more effi-
cient apps for particular UOSs—
for example, for an enterprise OS.

 › Achieving true intelligence. Soft-
ware is the basis for all intelli-
gent applications. To achieve
true intelligence, UOSs as well
as applications must be able to
“think”—to manage and execute
intelligently.

INTERNETWARE OS:
A PROTOTYPE UOS
Internetware is a paradigm for new
types of Internet applications that are
autonomous, cooperative, situational,
evolvable, and trustworthy.10,11 Inter-
netware consists of a set of autono-
mous software entities distributed
over the Internet, together with a set of
connectors to enable various collabo-
rations among these entities. Software
entities sense dynamic changes in the
runtime environment and continu-
ously adapt to them through struc-
tural and behavioral evolutions.

We have been researching and
building an OS for Internetware that
includes a set of software-defined
features to abstract the low-level
resource management functionalities

of Internetware applications.12 Figure
4 shows the general architecture of
our Internetware OS, which we regard
as a prototype UOS for future Inter-
net-based applications. Within the OS,
an Internetware application runs on
top of the existing hardware systems
including the cloud and edge devices.
The Internetware OS core provides
abstractions to manage both cloud
and edge resources, while an applica-
tion framework layer accommodates
applications for different domains—
for example, enterprise computing,
mobile computing, and data as a ser-
vice (DaaS).

Examples of Internetware OS
instances we have built include the
following:

 › YanCloud. A cloud OS for private
cloud computing systems within
an organization, YanCloud13
supports almost all existing VM
technologies including Xen,

VMware, and KVM. It features
software-defined capabilities
to generate cloud management
applications with architecture-
based, model-driven runtime
management mechanisms.
YanCloud has been deployed
by many businesses as well as
major cloud server manufactur-
ers such as Lenovo and Founder.

 › CampusOS. A prototype OS to
support Internet-based appli-
cations at a university campus,
CampusOS14 manages resources
including student and faculty
personal information, course
schedules, and school activities.
It also provides abstractions to
manage these resources, as well
as software-defined APIs and
SDKs to support campus applica-
tion development and execution.

 › YanDaaS. Most recently, we devel-
oped an Internetware OS for data
management and sharing among

Computing Storage Network Devices PCs Phones Tablets TVs

Internetware
processing APIs

Internetware
data APIs

Internetware
networking APIs

Internetware
device APIs

Cloud resources Edge resources

Internetware OS core

Enterprise computing
app framework

Mobile computing
app framework

Data-as-a-service
(DaaS)

app framework

Smart campusSmart
enterprise

Smart citySmart grid ……

Resource
management

System calls

Application
frameworks

Application

FIGURE 4. Internetware OS architecture. Internetware applications run on top of the
cloud and edge devices. The Internetware OS core provides abstractions to manage both
cloud and edge resources, while an application framework layer accommodates applica-
tions for different domains.

56 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

different types of legacy software
systems. As its name implies, Yan-
DaaS provides DaaS functional-
ities. Its main goal is to connect
isolated legacy software systems
and applications through auto-
mated API generation and new
application development without
legacy source code.15 YanDaaS has
been successfully deployed within
hundreds of industrial legacy
systems covered by China’s Smart
City program.

With rapid IoT development,
many UOSs will emerge to
provide software-defined

capabilities, especially resource vir-
tualization and function programma-
bility, to support the efficient deploy-
ment and management of new types
of ubiquitous applications. However,
several key technical challenges still
must be resolved with respect to UOS
architecture, system performance, and
security and privacy. Nonetheless, we
foresee UOSs appearing in various com-
puting and computer-assisted domains
including robotics, enterprise com-
puting, manufacturing, big data, and
AI. Toward this end, our future work
includes developing Internetware OSs

for new areas such as unmanned sys-
tems, industrial control, and brain-like
computing.

REFERENCES
1. D. Milojičić and T. Roscoe, “Outlook

on Operating Systems,” Computer,
vol. 49, no. 1, 2016, pp. 43–51.

2. N. McKeown et al., “OpenFlow:
Enabling Innovation in Campus
Networks,” ACM SIGCOMM Computer
Communication Rev., vol. 38, no. 2,
2008, pp. 69–74.

3. H. Mei and Y. Guo, “Network-Oriented
Operating Systems: Status and Chal-
lenges,” Scientia Sinica Informationis,
vol. 43, no. 3, 2013, pp. 303–321 (in
Chinese).

4. H. Mei et al., “Understanding
Software-Defined from the Perspec-
tives of Software Researchers,” Comm.
China Computer Federation, vol. 11, no.
1, 2015, pp. 68–72 (in Chinese).

5. P. Levis et al., “TinyOS: An Operating
System for Sensor Networks,” Ambient
intelligence, W. Weber, J. Rabaey, and E.
Aarts, eds., Springer, 2005, pp. 115–148.

6. M. Weiser, “The Computer for the
21st Century,” Scientific Am., vol. 265,
no. 3, 1991, pp. 94–105.

7. M. Quigley et al., “ROS: An Open-
Source Robot Operating System,” ICRA
Workshop Open Source Software, vol. 3,

no. 3.2, 2009; www.willowgarage
.com/sites/default/files/icraoss09
-ROS.pdf.

8. C. Dixon et al. “An Operating System
for the Home,” Proc. 9th USENIX
Symp. Networked Systems Design and
Implementation (NSDI), 2012, pp. 25–25.

9. T. Haselton, “The Man behind
Android Says A.I. Is the Next Major
Operating System,” CNBC, 18 Aug.
2017; www.cnbc.com/2017/08/18
/andy-rubin-says-ai-is-next-big
-operating-system.html.

10. H. Mei, G. Huang, and T. Xie, “Inter-
netware: A Software Paradigm for
Internet Computing,” Computer, vol. 45,
no. 6, 2012, pp. 26–31.

11. H. Mei and J. Lü, Internetware: A New
Software Paradigm for Internet Com-
puting, Springer, 2016.

12. H. Mei and Y. Guo, “Development
and Present Situation of Internetware
Operating Systems,” Science & Technol-
ogy Rev., 2016, vol. 34, no. 14, pp. 33–41
(in Chinese).

13. X. Chen et al., “Towards Runtime
Model Based Integrated Manage-
ment of Cloud Resources,” Proc. 5th
Asia-Pacific Symp. Internetware (Inter-
netware 13), 2013, article no. 1.

14. P. Yuan, Y. Guo, and X. Chen,
“Towards an Operating System for
the Campus,” Proc. 5th Asia-Pacific
Symp. Internetware (Internetware 13),
2013, article no. 24.

15. G. Huang et al., “Programming Sit-
uational Mobile Web Applications
with Cloud-Mobile Convergence: An
Internetware-Oriented Approach,”
IEEE Trans. Services Computing, 2016;
doi:10.1109/TSC.2016.2587260.

ABOUT THE AUTHORS

HONG MEI is a professor and director of the Chinese Ministry of Education

(MOE) Key Laboratory of High-Confidence Software Technologies at Peking

University as well as vice president of the Beijing Institute of Technology. His

research interests include systems software and software engineering. Mei

received a PhD in computer science from Shanghai Jiao Tong University. He

is a member of the Chinese Academy of Sciences and a Fellow of IEEE, the

China Computer Federation, and the World Academy of Sciences. Contact him

at meih@pku.edu.cn.

YAO GUO is a professor at the Chinese MOE Key Laboratory of High Confi-

dence Software Technologies and in the School of Electronics Engineering and

Computer Science at Peking University. His research interests include mobile

computing, operating systems, and mobile application analysis. Guo received

a PhD in computer engineering from the University of Massachusetts Amherst.

He is a member of IEEE and ACM. Contact him at yaoguo@pku.edu.cn.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

