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Abstract
In WSN the requested data is collected from the initial node i.e. sender and the information are uploaded on a cloud

platform. Only numeric Data type is considered in this error detection and correction technique. Map Reduce algorithm is

applied on clusters made by big data and Weighted Fuzzy C-Means Clustering (WFCM) technique is used for clustering.

Completely different operations are performed on the cloud platform like error detection, location finding, data cleansing

and error recovery. Throughout the filtering of big data sets, whenever an abnormal knowledge is encountered, detection

rule has to perform two tasks. ‘‘fd (n/e,t)’’ is decision making function. It is used to determine whether the detected

anomalous data is a true error. In other words, fd (n/e,t) has two outputs, ‘‘false negative’’ for detecting a true error and

‘‘false positive’’ to select non-error data. ‘‘fl (n/e,t)’’ is a function for tracking and returning original error source.

Keywords Map reduce � Weighted fuzzy C-means clustering � Error detection � Error localization � Kernel SVM

1 Introduction

The wireless sensor networks (WSN) has several inde-

pendent wireless sensor nodes connected with each other to

form a network. Each and every individual sensor node is

capable of sensing and processing information [1]. The

WSN monitors and interacts with people’s physical envi-

ronment [2] and the collected data is hopped to the

requested node through the gateway. With the tremendous

improvement in technology where daily life starts with

sharing of data, the data collected from the Sensor nodes

collectively form the Big Data. Big data is a term for data

sets that are so large or complex that traditional data pro-

cessing application software is inadequate to deal.

WSN consist of a large numbers of wireless sensor

nodes dispersed in one or more base stations, where big

sensor data is collected. While transforming the informa-

tion in sensor network, loss of big sensor data or error may

be spotted in the received data [14]. Big data challenges

include capturing data, data storage, data analysis, search,

sharing, transfer, visualization, querying, error detection

and correction, updating and information privacy.

Big sensor data has five characteristics such as volume,

variety, veracity, velocity and value which are known as

5 V’s of big data. The big data is collected from several

areas such as meteorology, connectomics, complex physics

simulations, genomics, biological study, gene analysis and

environmental research [4]. These collections can start

from complex framework structures such as boundless

scale sensor frameworks and relational association [9].

The big data collected from the Wireless Sensor Net-

work is called as the big sensor data. The big sensor data

can be easily corrupted and lost, due to the presence of

hardware faults and inaccuracies in nodes which may occur

naturally or by intrusion [6, 12]. In real time network

application, the collected big data can be abnormal and

errors might occur [15]. Specifically numerical data errors

are set down and introduced in big data [7]

But the big sensor data collected from WSN has to be

clean, accurate, error free and of less loss for an efficient

decision making [3]. Therefore, Big sensor data error has to

be detected and corrected in an efficient way which is a

challenging one [5]. For the error detection process, ini-

tially the errors are identified by error classification
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method. Classification can be done using several algo-

rithms for numerical errors [13].

In Big Sensor Data, error detection often requires real

time processing and storage for massive sensor data which

uses the complex error model to detect the event of

abnormality [10]. It deals with context of using inherently

complex error models to spot and locate events of abnor-

malities [11].

The map reduce error detection approach is usually used

in big sensor data for finding errors in data sets [8]. The

defined error model will trigger the error detection process,

compares the result with the previous error detection

methods of sensor network systems.

2 Litrature survey

José Carlos et al. [16] examined fault detection and diag-

nosis (FDD) based on weightless neural networks (WNN)

with applications in univariate and multivariate dynamic

systems. The proposed system executed the selection of

attributes in the multivariable case and did the time series

mapping of the data. In the intermediate stage, the WNN

performed the detection and diagnosis per class. The net-

work outputs were then passed through a clustering filter in

the final stage of the system, if a diagnosis per fault groups

was necessary. The system was tested with two case

studies: one was an actual application for the temperature

monitoring of a sales gas compressor in a natural gas

processing unit; and the other one used the simulated data

for an industrial plant. The results showed the efficiency of

the proposed systems for FDD with classification accura-

cies of up to 98.78 and 99.47% for the respective

applications.

Cai et al. [17] described that Bayesian Network (BN)

was a commonly used tool in probabilistic reasoning of

uncertainty in industrial processes. Motivated by reduction

of the overall complexities of BNs for fault diagnosis, and

the reporting of faults that immediately occur, a real-time

fault diagnosis methodology of complex systems with

repetitive structures is proposed using Object-Oriented

Bayesian networks (OOBNs). The modeling methodology

consists of two main phases: an off-line OOBN construc-

tion phase and an on-line fault diagnosis phase. In the off-

line phase, sensor historical data and expert knowledge are

collected and processed to determine the faults and

symptoms, and OOBN-based fault diagnosis models were

developed subsequently. In the on-line phase, operator

experience and sensor real-time data were placed in the

OOBNs to perform the fault diagnosis. According to

engineering experience, the judgment rules were defined to

obtain the fault diagnosis results.

Chun et al. [18] recommended the wireless sensors

operating in harsh environments had the potential to be

error-prone. A distributive model-based diagnosis algo-

rithm that identifies nonlinear sensor faults had been pre-

sented. The diagnosis algorithm has advantages over

existing fault diagnosis methods such as centralized model-

based and distributive model-free methods. An algorithm

was presented for detecting common non-linearity faults

without using reference sensors. The study introduced a

model-based fault diagnosis framework that was imple-

mented within a pair of wireless sensors. The detection of

sensor nonlinearities was shown to be equivalent to solve

the Largest Empty Rectangle (LER) problem, given a set of

features extracted from an analysis of sensor outputs. A

low-complexity algorithm that gave an approximate solu-

tion to the LER problem was proposed for embedment in

resource constrained wireless sensors. By solving the LER

problem, sensors corrupted by nonlinearity faults can be

isolated and identified. Extensive analysis evaluated the

performance of the proposed algorithm through simulation.

Feng et al. [19] described with the fast development of

electronics and wireless communication technologies in

recent years. Intelligent wireless sensor nodes were

becoming increasingly popular in the online machinery

condition monitoring systems. From this bring a number of

benefits, such as reduced investment on the installation and

maintenance of expensive communication cables, ease of

deployment and upgrading. For the condition monitoring of

dynamic signals, distributed computation on wireless sen-

sor nodes is getting popular. Wireless sensor nodes are

becoming more computation powerful and power efficient.

As a widely recognized algorithm for bearing fault diag-

nosis, envelope analysis had been previously proved suit-

able for being embedded on the wireless sensor nodes to

effectively extract fault features from common machinery

components such as bearings and gears. As a continuation

several envelope detection methods, including Hilbert

transform, spectral correlation, band-pass squared rectifier

and short-time RMS were studied. Regarding to the fact

that only low frequency components in the bearing envel-

ope is of interest, spectral correlation could be simplified

for fast calculation and short-time RMS method could be

considered as a simplified band-pass squared rectifier, in

which partial aliasing was allowed. Thereafter, spectral

correlation and short-time RMS are employed to speed up

the calculation of envelope analysis on a wireless sensor

node, which thereafter provided the potential to reduce

power consumption of wireless sensor nodes. The com-

putation speed comparison showed that the spectral cor-

relation method and short-time RMS can speed up the

computation speed by more than two times and five times

in comparison with the Hilbert transform method. The

simulation study showed that spectral correlation and
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short-time RMS based methods achieves similar level of

accuracy as Hilbert transform. Furthermore, the experi-

mental study showed that spectral correlation and short-

time RMS based methods can well reveal the simulated

three types of bearing faults while with the computation

speed significantly improved.

Guesmi et al. [20] have proposed that online induction

machine faults diagnosis was a concern to guarantee the

overall production process efficiency. Nowadays, the

industry demands the integration of smart wireless sensors

networks (WSN) to improve the fault detection in order to

reduce cost, maintenance and power consumption. Induc-

tion motors can develop one or more faults at the same

time that could produce severe damages. The origin of

most recurrent faults in rotary machines is in the compo-

nents: stator, rotor, bearing and others. A novel method-

ology for the online faults diagnosis in induction motors is

experimented. The technique uses smart WSN to obtain the

machine condition based on the motor stator current anal-

ysis. The implementation of the proposed smart sensor

methodology allowed the system to perform online fault

detection in a fully automated way. Simulation results were

presented to show the efficiency of the proposed method to

detect simple and multiple faults in induction machine. It

provides detailed analysis to address the challenges in

designing and deploying WSNs in industrial environments,

and its reliability. Suresh et al. [21] have described about

security in cloud based environment.

Panda et al. [22] has described that distributed fault

detection in wireless sensor network was an important

problem where every sensor node identifies its own fault

status based on the information from its neighboring sensor

nodes. A novel distributed fault detection algorithm to

detect the soft faulty sensor nodes in sparse wireless sensor

networks is presented. In the proposed scheme, every

sensor node gathered the information only from their

neighboring nodes in order to reduce the communication

overhead. The Neyman–Pearson testing method was used

to predict the fault status of each sensor node and the

neighboring sensor nodes. A voting scheme was applied on

the fault status information to obtain the final fault status of

each sensor node. The generic parameters such as detection

accuracy, false alarm rate, time complexity, message

complexity, detection latency, network life time and energy

consumption were considered to be evaluated and the

performance of the proposed scheme had been studied

analytically as well as through simulation. The result

showed that the proposed scheme significantly improves

the performance over the existing algorithms.

Zhiyang et al. [23] recommended to consider a novel

fault diagnosis mechanism for wireless sensor networks

(WSNs). Without additional agents, the built-in and self-

organized diagnosis mechanism can monitor each node in

real time and identify faulty nodes. As the diagnosis was

operated within a cluster of nodes, it could reduce the

power consumption and communication traffic. A model of

the diagnosis algorithm for WSNs, with a probabilistic

analysis of the local and global performance is presented.

Extensive experiments demonstrate the effectiveness of the

proposed method.

Alic et al. [24] describes the error correction method in

Next Generation Sequencing (NGS) data. Error correction

strategies are separated into three classes: k range based,

addition cluster/tier based and Multiple Sequence Align-

ment (MSA) based. A method called Muffinec is intro-

duced as an indel aware multi-technology correction

method for NGS data.

Weng et al. [25] demonstrated to accomplish both the

adaptability and close universally ideal results for bad data,

topology error detection and recognition issues, by leading

completely distributed algorithms over convexified issue

definitions. To diminish the unwinding error in convexifi-

cation technique, an atomic standard punishment was

added to recognize unique issues. At last, Weng et al.

proposed another metric to assess discovery and recog-

nizable proof results, which empowered a framework

administrator to describe certainty for further framework

operations.

3 Problem identification

Wireless sensor networks have some problems. Some of

the problems are given below.

– In wireless sensor hacker can enter and access all the

user information easily.

– Wireless sensor network has lower speed when com-

pared to wired network.

– Less secure because hackers can enter the access point

and obtain all the information.

– Wireless sensor networks are public frequency network

and its interface is to be used for official private

information.

– It has difficult setup so that signals are prone to be

disrupted by the infrared and radio signals.

– Wireless networks can be accessed by any computer

within range of the network’s signal and so information

transmitted through the network including encrypted

information may be intercepted by unauthorized users.

– Wireless sensor networks are distracted by other

wireless devices.

– Nodes need to be charged at regular intervals. Battery

life of the nodes is very low.

– In wireless sensor networks, much less power is

consumed in processing data than transmitting it.
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– A sensor network consists of a large set of sensor

nodes. It follows that the cost of an individual node is

critical to the overall financial metric of the sensor

network.

4 Proposed methodology

The sensing elements data values are collected and pro-

cessed, wherever tend to do error detection. For finding

errors, spatial and temporal correlation models are

approached. The error shows a sign of quick Error

Recovery and Map reduce is adopted as a trendy technique.

The projected error detection approaches are going to be

classified based on error varieties. Specifically for numer-

ical data errors square measure is set down and introduced

in big data error detection approach.

The outlined error model can trigger the error detection

method, compared to previous error detection of sensor

network systems. It is designed and developed by utilizing

the large processing capability. Additionally, the design

feature of advanced networks also be analyzed to mix the

parallel computing with an additional efficient method.

Error Detection victimization Kernel SVM, is used to train

the data that is received from the sensors and then it detects

incorrect data. It increases its responsibility and updates the

training data. Error detection is done with new data and

KSVM’s results are accustomed to improve the correct

knowledge collection.

Figure 1 shows the flow of the proposed big sensor data

error detection and correction methodology.

4.1 Training

HDFS is a scaling portable and distributed file system

written in Java for the Hadoop framework and it is the file

system component of Hadoop.

It stores file system metadata and application data alone.

As in the case of other distributed file systems, like Lustre,

GFS and PVFS, HDFS stores metadata on dedicated ser-

vers called the Name Node. Application data is stored on

other servers called the Data Node. All servers are fully

communicated and connected with each other using TCP

based protocols. Default HDFS stores three separate copies

of the all the data block to ensure reliability, availability,

and performance. In large clusters these replicas are spread

across different physical racks.

So, HDFS is flexible towards two common failure sce-

narios: individual data node breakdown and failures that

combine an entire rack offline. Replicating blocks across

physical machines also increases opportunities to share,

locate data processing in the time table of Map Reduce

jobs, since many of the copies yield more opportunities of

exploitation locality.

4.2 Mapping

Map Reduce records the isolated tasks using the Mappers.

The output of the Mappers is then got together into the

second set of tasks named the Reducers, where outputs

from various Mappers can be joined together. Map Reduce

has to be usually readily separated into independent sub-

tasks that can be treated in parallel. The Map and Reduce

function are both specialized in terms of the date structured

in key and value pairs. Each reducer just treats and receives

information for one specific key at a time and outputs the

data it treats as a Key, Value pairs. The Hadoop Map

Reduce engine has Job Tracker and one of many Task

Trackers.

A Map Reduce work has to be managed by job trackers

which then separate the jobs into tasks processed by the

task trackers. Job Trackers sends jobs and splits to mappers

Fig. 1 Proposed big sensor data error detection and correction
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or reducers as each step finishes. Trackers implement task

send by the Job Tracker and reports rank to Job Trackers.

Mapping step: The master node gets the input and splits

it into smaller sub problems, then dispenses it to the worker

nodes that may do this again in turn which leads to a multi

level structure of tree. The worker node passes the answer

block to its master node. The master node then collects the

answers to all the sub problems and joins them in some

way to form the output of the problem. Here consider 1000

data and that some of the data’s are considered as training

data, then it will be clustered with the aid of WFCM.

4.2.1 Weighted fuzzy C-means clustering

The W-FCM algorithm follows an iterative optimization

similar to FCM, and consequently it is affected by some of

its strengths, such as its convergence in a finite number of

iterations. Also, the same applies to the weights, creating

the possibility that these could be far from representing the

relevancy of features. By considering feature importance,

WFCM algorithm is indicated as follows,

JðW ; U; VÞ ¼
Xc

k¼1

Xn

i¼1

u2
k;iðd

ðWÞ
k;i Þ2 ð1Þ

where dk,i
(W)is computed by:

d
ðWÞ
k;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

j¼1

Wb

vuut ðxi;j � vk;jÞ2 ð2Þ

Minimizing Eq. (3) vk and uk,i is indicated as follows,

vk ¼
Xn

i¼1

ðuk;iÞm
xi=

Xn

i¼1

ðuk;iÞm; 8k ¼ 1; . . .c ð3Þ

uk;i ¼ 1

,
Xc

k¼1

d
ðwÞ
k;i

.
ðwÞ
k;�k

� �2=m�1

ð4Þ

The main steps of weighted fuzzy c means clustering

algorithm (W-FCM) is given as follows:Initialize the

quantity of cluster asc, where 2 B c B n and the fuzzy

separation matrix as U through an unsystematic value that

it gratify the situation

Xc

k¼1

uk;j ¼ 1 8j and 0\
Xn

i¼1

uk;i\n 8k ð5Þ

Initialize the weighting vector W with a random value such

that it satisfies conditions (7) and (8).

Calculate the fuzzy centers vk using (4).

Modernize the fuzzy partition matrix U with (5).

Update the weighting vector W

Wj ¼

0 ifDj ¼ 0
1

Ph
t¼1

Dj

Dt

� � 1
B�1

if Dj 6¼ 0

8
>><

>>:
ð6Þ

Dj ¼
Xk

k¼1

Xn

i¼1

uk;iðxi;j � vk;jÞ2 ð7Þ

Replicate the process until the execution principle is

fulfilled.

Map Reduce algorithm is applied on clusters that are

made by big data here WFCM technique is used for

clustering.

4.3 Kernel based support vector machine
for classification

The mobile commerce system predicts a user’s next pur-

chase behavior with the aid of kernel based SVM. Then,

the finest attributes are delivered to the fusion kernel sup-

port vector machine for categorization. Now, the chosen

attribute from the previous progress is efficiently engaged

for the isolation of two modules. For the principle of pro-

cessing the non-linear procedure, the kernel functions are

stated in the SVM categorization. There are two very

important phases in the SVM procedure, the training phase

and the effortless phase.

Training phase The output of attribute choice is pro-

vided as the input for the preparation stage. The input

utility supplies the group of values which cannot be

alienated. Approximately each and every one of the prob-

able isolation of the position places are comprehended by a

hectic plane. In the Lagrange pattern, it is probable to put

the partition of the hectic plane standard vector during the

divergent kernel task. In this association, a kernel sym-

bolizes a few tasks, which communicates to a dot product

for definite kind of attribute recording. Yet, recording a

position in a better quality dimensional gap is probable to

direct unnecessary assessment period and enormous stor-

age requirements. In concrete, an original kernel task is

initiated which is competent of openly estimating the dot

product in the better-quality dimensional gap. The frequent

edition of the kernel task is provided as follows.

K U;Vð Þ ¼ u Uð ÞTu Vð Þ ð8Þ

In this view, the majority broadly engaged kernel tasks

contain the linear kernel, Polynomial kernel, Quadratic

kernel, Sigmoid and the Radial Basis task. Specified

beneath are the terms for the different kernel task. For

Linear Kernel:
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lineark U;Vð Þ ¼ uT v þ c ð9Þ

where u, v represents the inner products in linear kernel

and c is a constant. For Quadratic Kernel:

quadk U;Vð Þ ¼ 1� u � v2

u � v2 þ c
ð10Þ

where, u, v- are the vectors of the polynomial kernel

function in the input space. For Polynomial Kernel:

polyk U;Vð Þ ¼ kuT v þ c
� �e

; k[ 0 ð11Þ

For Sigmoid Kernel:

sigk U;Vð Þ ¼ tanh kuT v þ c
� �

; k[ 0 ð12Þ

The effectiveness of the SVM consistently orients on the

variety of the kernel. The occurrence of the attribute gap is

linearly indivisible hence it has to be recorded into a better-

quality dimensional gap using the Radial basis task kernel,

so that the concern appears as linearly detachable. Addi-

tionally, amalgamation of any two kernel tasks is proficient

to defer outstanding accuracy than that acquired by uti-

lizing some single kernel task. In the original procedure, an

original KSVM is predicted and dedicated for the note-

worthy development in the categorization system. At this

point, two kernel tasks such as the linear and the quadratic

kernel task mutually defer outstanding presentation ratios.

By uniting (6) and (7), the standard is predictable as rec-

ommended in the original technique. The mutual kernel

task is successfully engaged in the KSVM and the standard

of the kernel task, avgk(U, V)is delivered beneath.

avgk U;Vð Þ ¼ 1

2
link U;Vð Þ þ quadkðU;VÞð Þ ð13Þ

avgk U;Vð Þ ¼ 1

2
uT þ c
� �

þ 1� u � v2

u � v2 þ c

	 
	 

ð14Þ

Error Detection victimization Kernel SVM is used to

train the data that is received from the sensors, and also it

detects incorrect data. This increases its responsibility and

updates the training data. Error detection with new data and

KSVM results are accustomed to improve the correct

knowledge collection.

4.4 Error detection and correction

The main focus is on error detection for numeric big data

sets from complex networks by considering specific fea-

tures of the numeric data errors. The error detection pro-

cess needs to filter big data sets from the network. When

there is data abnormality the whole network should be

traversed for finalizing the error and correcting the error. In

scale free network, only few nodes in the hierarchy will

have large set of links to the nodes. So based on node

which has huge links can be grouped in the cluster so that

the error can be located easily. So, navigate to search the

error and the location of the source. The proposed clus-

tering method can reduce the time of detection of the error

and also reduce the workload of processing the whole data.

4.4.1 Error detection in sensor network

Data error detection in sensor network and complex net-

work is unavoidable in real world complex network sys-

tem. As there is a dramatic increase in big data, locating the

error is also a quite challenging task with normal com-

puting and network system.

4.4.1.1 Flat line error Flat line error (Fig. 2) indicates

that nodes in the network are kept unchanged for unac-

ceptable time series. In real world application, the trans-

mitted data will have changes over time flow.

4.4.1.2 Data loss error Data loss error (Fig. 3) means that

there is missing of data over time. It might have occurred

when the data was generated or during exchange process.

This requires data cleaning.

4.4.1.3 Out of bound error The value of the data is

observed based on the domain knowledge gained in gen-

eral. In real world applications, if any wave is beyond a

fixed threshold then it is treated as out of bound error

(Fig. 4).

4.4.1.4 Spike error The spike error (Fig. 5) is that in a

time series, data items would be out of predicted threshold

all of a sudden and normal over the time series.

4.4.2 Error correction in sensor network

The error can be corrected with the aid of correlation

coefficient procedures. The calculation of the covariance

(c0) and correlation (cr) are given in the Eqs. (15) and (16)

respectively. The relationship between two random vari-

ables is measured using the covariance and correlation,

after correcting a big data sensor error is discussed.

Fig. 2 Flat line error
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Network sensor errors are corrected with the aid of

covariance correlation technique.

The following notations are used throughout, EX = lx,

EY = ly, varx = rx
2 and vary = ry

2.

The covariance of X and Y is the number defined by,

covðx; yÞ ¼ Eððx � lxÞðy � gyÞÞ ð15Þ

The correlation of X and Y is the number defined by

pðx; yÞ ¼ covðx; yÞ
rxry

ð16Þ

Here, one exact fault rectification format cannot be

implemented for the entire functions and installed cir-

cumstances of WSN. The choice of a finest fault rectifi-

cation code for wireless sensor network is broadly analyzed

by means of numerous researchers in the earlier period.

According to its essential stage of big data set, the fault

rectification is used to choose a finest appropriate fault

rectification format for an exact function in wireless sensor

network.

5 Results and discussion

The investigational outcome of NN-GSOFF based classi-

fier is described below. The projected system is executed

by using Java 2014 and the testing is processed with i5

processor of 3 GB RAM.

5.1 Dataset description

Linked Sensor Data [26] is an RDF dataset containing

expressive descriptions of * 20,000 weather stations in

the United States. The data originated at MesoWest, a

project within the Department of Meterology at the

University of Utah that has been aggregating weather data

since 2002.

5.2 Evaluation metrics

An approximate measurement is used to measure the effi-

ciency of the proposed system. It comprises efficient

technique that tracks the general fundamental estimation

approach. Some of the measurements considered for esti-

mation are specificity, sensitivity and accuracy.

5.2.1 Running time

On the basis of memory values, the running time in Java

with Cloud Sim program is directly rooted. The time

complication is usually represented in such a way that the

coefficients are ignored. The time duration is computed in

milliseconds (ms), in lower order terms and in most cases.

5.2.2 Memory usage

The Java with Cloud Sim program does an effective

organization of the memory for use. New objects are cre-

ated and placed in the stack and the memory usage of the

proposed work is computed in bits.

5.2.3 Accuracy

Accuracy of the proposed method is the ratio of the total

number of TP and TN to the total number of data.

Accuracy ¼ TNþ TP

ðTNþ TPþ FNþ FPÞ ð17Þ

5.3 Analysis process

The time based efficiency is attained from Table 1 and its

corresponding graph is shown in Fig. 6a. The proposed

time is measured based on a training data percentage such

Fig. 3 Data loss error

Fig. 4 Out of bound error

Fig. 5 Spike error
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as 50, 60, 70 and 80. In the training data 50% attains a time

measure of 1,965,457 ms and the remaining training set 60,

70 and 80% attains time measure of 2,005,484, 2,178,848

and 2,268,883 ms respectively. Therefore, a minimum

amount of time is required to complete the process.

Table 1 also shows the cluster evaluation time measures

and the performance analysis of memory by varying

number of training data set percentage.

The computational memory measure is shown in

Table 1 based on training set such as 50, 60, 70 and 80. A

training set of 50% obtains 10578485 bits of memory. In

the training set 60% attains 11184872 bits of memory and

the remaining training set 70 and 80% attains a memory of

12272859 bits and 13,227,288 bits. The graphical repre-

sentation is shown in Fig. 6b.

Table 1 also shows the computational accuracy mea-

sures based on training set such as 50, 60, 70 and 80%. In

the training set 50% obtains 73.64% accuracy. In the

training set 60% attains 74.98% accuracy and the remain-

ing training set 70 and 80% attains an accuracy of 76.82

and 79.36% accuracy. Figure 6c shows the graphical rep-

resentation of the same.

The identified errors based on training data is shown in

Table 1 set as 50, 60, 70 and 80% where the identified

number of error is 1268, 1007, 863 and 611 respectively.

Figure 6d shows the graphical representation of the same.

5.4 Comparative analysis

The current work and the proposed work are compared in

order to demonstrate that the proposed work is better. For

this, FCM technique is taken to be compared with WFCM

technique. The accompanying table demonstrates the sim-

ilar result.

The graphical representation of the existing and pro-

posed method is compared in Fig. 7. For clustering,

Weighted FCM Clustering is used and then a Kernel SVM

technique is utilized for classification. It can be claimed

that our proposed work helps to attain very good results for

the clustering of data. And also WFCM technique gives

better outcome when compared to the Existing FCM

method. The comparison outcomes are presented in the

following Table 2.

From Table 2, it can be said that our proposed work

gives a better accuracy. A better accuracy result is obtained

on the training set of 50, 60, 70 and 80% as 73.64, 74.98,

76.82 and 79.36% from proposed WFCM whereas existing

FCM gives 65.48, 68.78, 71.58 and 75.89% of accuracies.

Table 3 shows the comparison results of proposed

KSVM and existing SVM. Here 80% of the training data is

taken and the accuracy for proposed KSVM is greater than

existing SVM which is 85.56% and 82.41% respectively.

The proposed KSVM gives an accuracy of 80.03% in

neural network and accuracy of 79.12% in Fuzzy network.

From Table 3, the Kernel based SVM outperforms the

existing methods because of effective clustering using

WFCM.

Hence, our proposed WFCM clustering and KSVM

produces high accuracy. Hence, the proposed WFCM

accuracy and KSVM accuracy is better than the existing

techniques (Fig. 7).

Table 1 Time, memory, accuracy measure and error data on training

data

Training % Time Memory Accuracy Error data

50 1,965,457 10,578,485 73.64 1268

60 2,005,484 11,184,872 74.98 1007

70 2,178,848 12,272,859 76.82 863

80 2,268,883 13,227,288 79.36 611

Fig. 6 Graphical representation of a time measures, b memory

measure, c accuracy measures and d error data on training data

0

50

100

50 60 70 80

Proposed WFCM Accuracy
Existing FCM Accuracy

Fig. 7 Comparison of proposed and existing method
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6 Conclusion

Various implementation strategies of error detection tech-

niques in WSN are presented. The main aim is at particular

implementation strategy for error detection and correction

is discussed with the aid of Weighted FCM and KSVM. In

order to detect and find the location of error in big data set,

a sensor network system is mainly used and a novel

approach is developed with cloud computing. First, the

classification of error in big data sets is presented. Second,

the correlation comparison between sensor network sys-

tems and the scale-free complex networks are introduced.

Accordingly the error types are defined. Different strategies

for detecting and locating errors in big data sets on cloud

are used.

Acknowledgements R. Sheeba gratefully thanks UGC fellowship

provided by Government of India, NewDelhi, India. The scholarship

id is 201516-MANF-2015-17-TAM-54669.

References

1. Muhammed, T., Shaikh, R.A.: An analysis of fault detection

strategies in wireless sensor networks. Proc. J. Netw. Comput.

Appl. 78, 267–287 (2017)

2. Yang, C., Chang, L., Xuyun, Z., Surya, N., Jinjun, C.: A time

efficient approach for detecting errors in big sensor data on cloud.

Proc. J IEEE Trans. Parallel Distrib. Syst 26(2), 329–339 (2015)

3. Kumar, A.R., Ashok, M., Sam, R.P.: Error detection and cleaning

for big data sets from sensor network systems on cloud. Int.

J. Comput. Sci. Trends Technol. 4(5), 261–265 (2016)

4. Sreenivasulu, P., Rudra Kumar, M., Subramanyam, A.: Data error

detection and time reduction for big sensor data sets. In: Pro-

ceedings of International Journal of Computer Science and

Engineering and Scientific Technology (2016)

5. Damini, V.S., Priyashree, K., Jayashubhaj, K.: Optimized error

detection analytics with big data on cloud. Proc. Int. J. Innov.

Res. Sci. Eng. Technol. 5(10), 236–242 (2016)

6. Bhuvaneswari, S., Sibiya, I.: Temporal approach for big data

error detection and correction on cloud in WSN. Proc. Int. J. Adv.

Res. Trends Eng. Technol. 3(2), 259–264 (2016)

7. Jyothsna, C., Suhasini, N.S.: An approach for detecting and

analyzing errors of big sensor data on cloud. Proc. Int. J. Adv.

Technol. Innov. Res. 8(10), 1946–1950 (2016)

8. Patil, D.S., Gaikwad, R.: An efficient approach to error detection

and data recovery using map reduce. In: Proceeding of Interna-

tional Conference on In Signal Processing, Communication,

Power and Embedded System (SCOPES), pp. 35–39 (2016)

9. Goyal, Ankur, Nareda, Vinita: A review studies on burst error

detection and correction in big data. Proc. Int. J. Sci. Res. 6(5),
943–947 (2017)

10. Anusha, G, Guruprasad, N.: Reducing the time factor for ana-

lyzing the errors and fixing in big sensor data. In: Proceedings of

International Journal of Advanced Networking & Applications

(IJANA), pp. 78–81, Special issue

11. Neela, S., Chandramouli, H., PrasadBabu, B.R.: An approach for

detecting and correcting errors of big sensor data. Proc. Int.

J. Eng. Res. 5(4), 790–991 (2016)

12. Goyal, A., Nareda, V.: A fast block-level error identification and

rectification of error burst in big data on cloud. Proc. Int. J. Adv.

Res. Comput. Sci. 8(5), 2486–2490 (2017)

13. Pansare, J.R., Bajad, V.D.: Errors detection in big sensor data on

cloud using time efficient technique. In: Proceedings of the ACM

Symposium on Women in Research 2016, pp. 12–14

14. Logapriya, R., Preethi, J.: Efficient methods in wireless sensor

network for error detection, correction and recovery of data. Proc.

Int. J. Novel Res. Comput. Sci. Softw. Eng. 3(2), 47–54 (2016)

15. Sabde, P., Shahapure, P., Sable, S., Pagar, P., Patil, V.: Detection

and recovery of errors on cloud in efficient time using hadoop.

Proc. Imp. J. Interdiscip. Res. 2(6) (2016)
16. Oliveira, J.C.M., Pontes, K.V., Sartori, I., Embiruçu, M.: Fault
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