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Abstract The multi-criteria decision aid (MCDA) has

been a fast growing area of operational research and

management science during the past two decades. The

clustering problem is one of the well-known MCDA

problems, in which the K-means clustering algorithm is

one of the most popular clustering algorithms. However,

the existing versions of the K-means clustering algorithm

are only used for partitioning the data into several clusters

which don’t have priority relations. In this paper, we pro-

pose a complete ordered clustering algorithm called the

ordered K-means clustering algorithm, which considers the

preference degree between any two alternatives. Different

from the K-means clustering algorithm, we apply the rel-

ative net flow of PROMETHEE to measure the closeness

of alternatives. In this case, the ordered K-means clustering

algorithm can capture the different importance degrees of

criteria. At last, we employ the proposed algorithm to solve

a practical ordered clustering problem concerning the

human development indexes. Then a comparison analysis

with an existing approach is conducted to demonstrate the

advantages of the ordered K-means clustering algorithm.

Keywords Ordered cluster � PROMETHEE method �
Weight vector � K-means clustering

1 Introduction

Clustering is a fundamental problem in the data analysis,

which can be widely applied to machine learning, pattern

recognition, information retrieval and data mining [1–5].

The main idea of clustering is to divide the set of data into

a certain number of clusters (groups, subsets, or categories)

which has high similarity in the same cluster according to

the clustering objective.

One of the most well-known clustering algorithms is the

K-means algorithm [6], which minimizes the sums of the

distances of all the alternatives to the corresponding cluster

center. The K-means clustering has become one of the

most popular clustering algorithms because it is very fast

and simple for implementation. A lot of studies have

focused on this category of algorithms. For instance,

Melnykov [7] discussed the k-mean clustering algorithm

under Mahalanobis distances and proposed a novel

approach for initializing covariance matrices. Bezdek [8]

proposed the fuzzy c-means algorithm, which is based on

the K-means clustering algorithm and fuzzy logic, to deal

with nontrivial data and uncertainties encountered in real

life [9, 10]. More generally, Xu and Wu [11] extended the

fuzzy c-means algorithm to the intuitionistic fuzzy envi-

ronment [12] and proposed the intuitionistic fuzzy c-means

algorithm. Chen et al. [13] investigated the K-means
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clustering algorithm under hesitant fuzzy environment. In

order to produce the nonlinear separating hypersurfaces

between clusters, the kernel K-means clustering algorithm

and fuzzy kernel K-means clustering algorithm have been

developed [2]. In recent years, the K-means algorithms

have been employed and developed so that they can benefit

big data processing. Deng et al. [14] used a K-means

clustering to separate the big dataset into several parts. In

Mashayekhy et al. [15], Bolon-Canedo et al. [16] and Duan

et al. [17], the K-means algorithm was implemented for

real-time big data processing. This algorithm has also been

considered for funds classification [18] and electron

microscopy [19] in big data setting. A generalized version

of K-means algorithm has also been proposed for pro-

cessing temporal data [20].

However, the existing K-mean clustering algorithms are

mainly used to cluster the data into several groups which

don’t have any relation among them. In multi-criteria

decision aid (MCDA), the decision maker (DM) may desire

to get ‘‘ordered clusters’’ in which there exist the ordered

relations among the clusters. This kind of problems can be

referred to as multi-criteria ordered clustering problems.

The identification of ordered clusters can provide the pri-

ority relations of alternatives for the DMs. Although the

ordered clusters can’t provide more accurate relations of

alternatives than the complete rankings of all the alterna-

tives, the ordered clustering is also necessary in the real life

problems. For example, in the ranking of world universi-

ties, the DMs may not give the accurate rankings of some

universities because they have no obvious differences.

Therefore, it is reasonable that we partition the alternatives

with no significant differences into the ordered clusters. For

multi-criteria ordered clustering problems, De Smet et al.

[21] proposed an exact algorithm (we call it De Smet

et al.’s method) to find a completely ordered partition

based on the valued preference degrees. However, De Smet

et al. [21] only used the ordinal properties of the pairwise

preference relations to obtain the ordered clusters. They

didn’t fully exploit the underlying structure of a data set to

produce better ordered clustering results.

As we know, the PROMETHEE method developed by

Brans [22] is one of the effective outranking methods to

solve the multi-criteria decision making (MCDM) prob-

lems [23–25]. The net outranking flow of the PRO-

METHEE II is a key technique to capture the relatively

priority degrees of alternatives. Inspired by the PRO-

METHEE method and the K-means clustering algorithm,

we propose an ordered clustering algorithm which is

referred to as the ordered K-means clustering algorithm

(OKM). Particularly, the OKM fully employs the net

outranking flow of the PROMETHEE method to measure

the alternatives with respect to the respective ordered

cluster. The OKM first randomly generates the ordered

cluster center, and constructs an optimization model to

minimize the total net outranking flow of all ordered

clusters. Meanwhile, the OKM applies the K-means clus-

tering algorithm’s idea to produce the better ordered clus-

tering results.

The rest of the paper is organized as follows: Sect. 2

describes the classical PROMETHEE II and the classical

K-means clustering algorithm. In Sect. 3, we propose the

OKM based on the net outranking flow. In Sect. 4, we

employ the human development index problem to

demonstrate the applicability and the implementation pro-

cess of the proposed algorithm. This section also provides a

comparative analysis with the De Smet et al.’s method.

Section 5 ends the paper with some conclusions.

2 The classical K-means clustering algorithms
and the PROMETHEE methods

In the following, we give a review of the classical K-means

clustering algorithm and the PROMETHEE method.

2.1 The classical K-means clustering algorithm

The classical K-means clustering algorithm [6] was intro-

duced to deal with the clustering problem. For simplicity,

let A ¼ fa1; a2; . . .; ang � <m be a sample set to be parti-

tioned into K disjoint clusters C1;C2; . . .;CK . The K-means

clustering algorithm obtains the clustering result by mini-

mizing the objective given by

Fða1; a2; . . .; anÞ ¼
XK

k¼1

Xn

i¼1

dik ai � ckk k2;

where dik is a clustering indicator variable with dik ¼ 1 if

ai 2 Ck and 0 otherwise, and ck ¼
Pn

i¼1

dikai

�Pn

i¼1

dik is the

centroid of the k-cluster, and :k k represents the distance

norm used by the K-means clustering algorithm. Usually,

the Euclidean norm is applied by the K-means clustering

algorithm.

For the optimization problem, the K-means clustering

algorithm produces a solution by alternating optimization

(AO) [26]. The K-means clustering algorithm’s procedure

is listed as follows:

Step 1 Input the dataset A ¼ fa1; a2; . . .; ang � <m and

predefine the cluster number K.

Step 2 Randomly select K points of the dataset A ¼
fa1; a2; . . .; ang as the initial cluster centers

ck; k ¼ 1; 2; . . .;K.

Step 3 According to the minimization distance from

each point to the cluster center, we assign each point to the

respective cluster center:
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dik ¼ 1; arg min1� k�K ai � ckk k2

0; otherwise

�
: ð1Þ

Step 4 Re-compute the cluster center by the following

formula:

c0k ¼
Xn

i¼1

dikai

,
Xn

i¼1

dik: ð2Þ

Step 5 If the cluster centroid updated by Eq. (2) has only

negligible changes in the former cluster center, i.e.,

max1� k�K ck � c0k
�� ��2
n o

\e, where e is a predetermined

constant (usually let e ¼ 10�3), then we obtain the cluster

results. Otherwise, turn to Step 3.

2.2 The classical PROMETHEE methods

In what follows, we introduce the basic principles and

some basic concepts related to the PROMETHEE method

(see Brans and Mareschal [22] for more details). We first

consider a MCDM problem where A ¼ fa1; a2; . . .; ang is

a set of n alternatives that are evaluated with respect to a

set of criteria G ¼ fg1; g2; . . .; gmg. Let flðaiÞ represent the

evaluation of the alternative ai with respect to the crite-

rion gl. The preference function Plðai; ajÞ, which should

be given by the DM, represents the degree of preference

of the alternative ai to the alternative aj with respect to

the criterion gl. There are six basic types of preference

functions that can be utilized (see Brans and Vincke [27]).

Certainly, the DM has to give the value of an indifference

threshold q, and the value of a strict preference threshold

p for each criterion. We can write the preference function

as follows:

Plðai; ajÞ ¼ Flðdlðai; ajÞÞ 8 ai; aj 2 A; ð3Þ

where dlðai; ajÞ ¼ flðaiÞ � flðajÞ, and Flð�Þ is a monotoni-

cally non-decreasing function varying from 0 to 1.

For any two alternatives ai; aj 2 A, we have

pðai; ajÞ ¼
Xm

l¼1

wl � Plðai; ajÞ; ð4Þ

where pðai; ajÞ represents the total degree of preference of

the alternative ai to the alternative aj taking into account all

criteria. The weight wl represents the relative importance of

the criterion gl in the set of all criteria.

In order to get the ranking of all the alternatives, the

positive outranking flow, the negative outranking flow and

the net outranking flow were introduced by Brans and

Vincke [27] as follows:

/þðaiÞ ¼
1

m� 1

X

x2An aif g
pðai; xÞ;

/�ðaiÞ ¼
1

m� 1

X

x2An aif g
pðx; aiÞ;

/ðaiÞ ¼ /þðaiÞ � /�ðaiÞ;

where the positive outranking flow /þðaiÞ represents how

much the alternative ai prefers to all the other alternatives.

The larger /þðaiÞ, the better the alternative ai. Similarly,

the negative outranking flow /�ðaiÞ represents how much

all the other alternatives prefer to the alternative ai. The

smaller /�ðaiÞ, the better the alternative ai. Generally, the

larger the net outranking flow /ðaiÞ, the better the alter-

native ai. If /ðaiÞ ¼ 1, then the alternative is strictly better

than all the other alternative. If /ðaiÞ ¼ /ðajÞ, then the

alternative ai is indifferent to aj. Therefore, we can get a

complete ranking according to the value of net outranking

flow for each alternative.

3 The ordered K-mean clustering algorithm

In this paper, we consider a special clustering problem

called ordered clustering problem, which was first addres-

sed by Smet and Gilbart [28] for dealing with the country

risk evaluation problem. As previously noted, the identifi-

cation of the ordered clusters can provide a necessary

support for the DM to sort the alternatives. Unlike the

classical clustering problem, the ordered clustering prob-

lem not only partitions the alternatives into the predeter-

mined number of clusters, but also has a completely

ranking relationship of these clusters.

Let A ¼ fa1; a2; . . .; ang � <m be a sample set whose

elements are evaluated under a set of criteria

G ¼ fg1; g2; . . .; gmg. If a partition satisfies the following

conditions, then we say that the partition is an ordered

partition:

ðiÞ A ¼
[

i¼1;2;...;K
Ci;

ðiiÞ 8i 6¼ j; Ci \ Cj ¼ ;;

ðiiiÞ C1 � C2 � � � � � CK ;

where Ci represents the ith ordered cluster and � denotes

the priority relation. If Ci � Cj, then the elements in the

ordered cluster Ci is better than the elements in the ordered

cluster Cj.

As we know, the classic K-mean clustering algorithm

has been widely used for the classical clustering problems.

However, the K-mean clustering algorithm can’t be used

for dealing with the ordered clustering problem. That is

because that the K-mean clustering algorithm uses the

Euclidean norm to measure the similar degree between

alternatives, but the Euclidean norm doesn’t consider the

relative importance between the criteria for the DM.
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Fortunately, the PROMETHEE method not only considers

the difference between criteria, but also can get the priority

degree between any two alternatives. Inspired by the

PROMETHEE method, in the next section, we will propose

an ordered K-mean ordered clustering algorithm based on

the net outranking flow to identify the best K-ordered

cluster.

3.1 The minimum net outranking flow objective

Similar to the K-means clustering algorithm, we define the

objective function:

min JðU;VÞ ¼
XK

i¼1

X
aj2Ci

/Ci
ðajÞ

�� ��2; ð5Þ

where Ci is the set of the alternatives in the ith cluster and

the partial net outranking flow can be obtained by

/Ck
ðajÞ ¼

1

Ckj j
X

ai2Ck

pðaj; aiÞ �
X

ai2Ck

pðai; ajÞ
 !

: ð6Þ

As have been stated before, the net outranking flow of

the PROMETHEE method is used to characterize the

quality of alternatives. The larger the net outranking flow

/ðaiÞ, the better the alternative ai. In order to get an

ordered cluster of all the alternatives, we propose the

partial net outranking flow to capture the similarity of

alternatives and reconstruct the optimization model (5) to

cluster the alternatives. Compared with the classical

K-means clustering algorithm, our proposed optimization

model has the following two advantages: (1) the partial net

outranking flow takes the weight of each criterion into

account; (2) the partial net outranking flow considers the

preferences of all the alternatives in the same cluster.

For the optimization problem, all the alternatives A are

divided into K ordered clusters with minimizing the sum of

all the alternatives’ partial net outranking flows. Using the

exhaustive method, we know that there are Kn divisions.

The objective function isn’t a convex function. As noted

above, finding an exact solution to this problem is NP-hard.

Inspired by the AO [26], we try to construct two reduced

problems:

Problem P1: Fix V ¼ V̂ and solve the reduced problem

JðU; V̂Þ.
Problem P2: Fix U ¼ Û and solve the reduced problem

JðÛ;VÞ.
The matrix U represents a partition of all the alternatives

with
PK

j¼1 uij ¼ 1; i ¼ 1; 2; . . .; n; uij ¼ 0 or 1; i ¼
1; 2; . . .; n; j ¼ 1; 2; . . .;K: The set V ¼ c1; c2; . . .; cKf g
represents the ordered cluster center with ci is the ith

cluster center. In the following two sections, we give the

solutions of these two problems respectively.

3.2 Update the cluster

In the classical K-means clustering algorithm, the shortest

Euclidean distance is used to update the membership of

cluster. The Euclidean distance only considers the actual

distance between alternatives. However, this is not suit-

able for the ordered clustering of MCDM. The net

outranking flow can reflect the relative importance of each

alternative for the cluster, but it is relative to the alterna-

tives in the cluster. We try to find the relationship between

the partial net outranking flow and the corresponding

cluster center, and then obtain

where flðaiÞ represents the evaluation of the alternative ai
with respect to the criterion gl, and ck represents the center

of the kth cluster Ck.

/Ck
ðajÞ ¼

1

Ckj j
X

ai2Ck

pðaj; aiÞ �
X

ai2Ck

pðai; ajÞ
 !

¼ 1

Ckj j
X

ai2Ck

Xm

l¼1

wl � Plðaj; aiÞ �
X

ai2Ck

Xm

l¼1

wl � Plðai; ajÞ
 !

¼ 1

Ckj j
X

ai2Ck

Xm

l¼1

wl � FlðflðajÞ � flðaiÞÞ �
X

ai2Ck

Xm

l¼1

wl � FlðflðaiÞ � flðajÞÞ
 !

¼ 1

Ckj j
X

ai2Ck

Xm

l¼1

wl � FlðflðajÞ � flðckÞ þ flðckÞ � flðaiÞÞ �
X

ai2Ck

Xm

l¼1

wl � FlðflðaiÞ � flðakÞ þ flðakÞ � flðajÞÞ
 !

;
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If the function Flð�Þ is a linear function, then

/Ck
ðajÞ ¼

1

Ckj j
X

ai2Ck

Xm

l¼1

wl � FlðflðajÞ � flðckÞÞ
 

�
X

ai2Ck

Xm

l¼1

wl � FlðflðakÞ � flðajÞÞ
!

þ 1

Ckj j
X

ai2Ck

Xm

l¼1

wl � FlðflðckÞ � flðaiÞÞ
 

�
X

ai2Ck

Xm

l¼1

wl � FlðflðaiÞ � flðckÞÞ
!

¼ /ck
ðajÞ þ /Ck

ðckÞ;

where ck represents the center of the kth cluster Ck and

/ck
ðajÞ ¼

P
ai2Ck

pðaj; ckÞ �
P

ai2Ck

pðck; ajÞ
 !

.

Brans and Vincke [27] gave six types of particular

preference functions: (1) usual criterion, (2) U-shape cri-

terion, (3) V-shape criterion, (4) level criterion, (5)

V-shape with indifference criterion, and (6) Gaussian cri-

terion. These preference functions (except for Gaussian

criterion) are linear functions. Therefore, the transforma-

tion can be established.

For the large data, we can see /Ck
ðajÞ � /ck

ðajÞ þ
/Ck

ðckÞ if the linear preference functions are adopted. For

simplicity, we use the center ck of cluster to represent the

corresponding cluster and compute the relative distance

between the alternative and the center of cluster.

For the problem P1, the cluster center V ¼
c1; c2; . . .; cKf g is given, and the solution can be given by

uil ¼ 1; if /cl
ðaiÞ

�� ��� /cj
ðaiÞ

���
��� for 1� j�K;

uit ¼ 0 if t 6¼ l: ð7Þ

In order to facilitate the presentation, Eq. (7) can be

rewritten as follows:

uik ¼ 1; k ¼ arg min1� l�K /cl
ðxiÞ

�� ��2

0; otherwise

�
: ð8Þ

Thus, each alternative is assigned to the ordered cluster

which has the smallest relative preference with the

alternative.

3.3 Update the centroid of cluster

For the optimization problem P2, we have to update the

centroid of cluster according to the clustering result. In the

classical K-mean clustering algorithm, Eqs. (1) and (2) are

used to update the centroid of cluster. Equation (2) is the

optimal solution of the following optimization problem:

ci ¼ arg min
a2<m

1

2

X

aj2Ci

a� aj
�� ��2

; i ¼ 1; 2; . . .;K: ð9Þ

To capture the ordered feature of cluster, the clustering

center of P2 can be obtained by:

ci ¼ arg min
x2<m

1

2
/Ci

ðxÞ
�� ��2; i ¼ 1; 2; . . .;K; ð10Þ

where /Ci
ðxÞ represents the partial net outranking flow of

the data x 2 <m and can be computed by Eq. (6).

The model (9) of the classical K-means clustering

algorithm uses the Euclidean distance to identify the center

of cluster, while our proposed optimization model (10)

utilizes the partial net outranking flow to identify the center

of cluster. According to Eq. (6), we can find that the partial

net outranking flow is the total preference degree in the kth

ordered cluster. Thus, the optimization model (10) can

capture the relationship between alternatives in the same

cluster. Meanwhile, the partial net outranking flow takes

the importance degrees of criteria into account. The model

is suitable for the multi-criteria ordered clustering

algorithm.

However, the exact result of the optimization model (10)

usually cannot be obtained directly, because the opti-

mization objective usually can’t be differentiable. Thus, we

propose an approximate method to estimate the clustering

center:

ci ¼ arg min
aj2Ci

/Ci
ðajÞ

�� ��2: ð11Þ

Note that Eq. (11) is not a K-means-type updating but is

a K-medoids-type one. We use it instead of Eq. (10) so that

the complexity of the optimization model can be reduced.

If the number of the alternatives is sufficiently large, then

the value obtained from Eq. (11) will be a good approxi-

mation of the cluster. In fact, as will be seen in Sect. 4,

Eq. (11) can perform very well. However, if the data set is

not densely distributed in each cluster, Eq. (11) may not

perform so well. In such a case, we may need to consider

Eq. (10) or its other kinds of approximations.

3.4 The proposed algorithm

The procedure of the OKM is developed as follows:

Step 1 Input the dataset A ¼ fa1; a2; . . .; ang � <m and

predefine the cluster number K.

Step 2 Randomly select K points of the dataset A ¼
fa1; a2; . . .; ang as the initial cluster centers

ck(k ¼ 1; 2; . . .;K), and reorder the cluster centers as

cðkÞ(k ¼ 1; 2; . . .;K) with cð1Þ � cð2Þ � � � � � cðKÞ, where

the order � is defined according to the net outranking flow,

i.e., cðiÞ � cðjÞ if /ðcðiÞÞ[/ðcðjÞÞ for any i; j ¼ 1; 2; . . .;K.
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Step 3 According to the minimization distance from

each point to the cluster center, we assign each point to the

respective cluster center:

uik ¼ 1; k ¼ arg min1� l�K /cl
ðxiÞ

�� ��2

0; otherwise

�
: ð12Þ

Step 4 Re-compute the cluster center by Eq. (11).

Step 5 If the cluster centroid updated by Eq. (11) has

only negligible changes in the former cluster center, i.e.,

max1� k�K /c0
k
ðckÞ

���
���
2

� �
\e, where e is a predetermined

constant (usually let e ¼ 10�3) and c0k is the updated center

of the cluster Ck, k ¼ 1; 2; . . .;K, then we obtain the clus-

tering results. Otherwise, turn to Step 3.

Since the objective function of the optimization problem

(5) isn’t a convex function, then finding an exact solution

to this problem is NP-hard. Until now, there is no any

polynomial time algorithm to obtain the global optimiza-

tion solution, so we try to find out a local optimization

solution. We find that the OKM has the following result:

Theorem 1 The OKM converges to a local optimal

solution of the problem (5) in a finite number of iterations.

Proof As pointed out in Sects. 3.2 and 3.3, the solutions

obtained by Eqs. (11) and (12) is the local (or approximate)

optimal solution of the problems P1 and P2. Therefore, the

objective value JðU;VÞ is monotonically decreasing in the

process of the OKM. Meanwhile, the objective function has

a lower bound as the collection of feasible solutions is

finite. Thus, the proof is completed.

4 Application and comparative analysis

In order to illustrate the effectiveness of the OKM, let us

consider the human development index (HDI) problem,

which is adopted by Ref. [21]. The HDI was created to

emphasize that people and their capabilities should be the

ultimate criteria for assessing the development of a coun-

try, not only economic growth. The United Nations

Development Program (UNDP) has proposed the so-called

HDI ranking where 179 United Nations countries are

evaluated on the basis of three criteria: the life expectancy,

the education and the income index. The HDI ranking can

be obtained according to the values which are aggregated

by three criteria for each country. However, some scholars

[29–32] have criticized the method adapted by the UNDP.

In this section, we don’t care the exact ranking problem of

countries, and only try to partition the countries into sev-

eral ordered clusters.

In the following, we use the OKM to regroup the

countries: the complete lists of the countries, as well as

their performances on the three criteria for the year 2008,

are given in the Appendix of Ref. [21]. In order to apply

our method, we first compute the preference degrees

between the countries under the above three criteria. As

Behzadian et al. [33] pointed out that the PROMETHEE

method has lots of advantages compared to other

outranking methods (such as the ELECTRE methods [34]).

Thus, we use the PROMETHEE outranking method to

compute the preference degrees. For each criterion, we

consider the following V-shape preference function:

FlðdÞ ¼
0; d� ql
ðd � qlÞ=ðpl � qlÞ; ql\d� pl
1; d� pl

8
<

: ; l ¼ 1; 2; 3;

ð13Þ

where the values of two thresholds and the weights of three

criteria are listed in Table 1 (for more details about the

parameters, please refer to De Smet et al. [21]).

Based on the above parameters of the PROMETHEE

and the linear preference function, we can apply Eq. (4) to

obtain the preference degree between any two countries.

Before applying the OKM, the number of clusters should

be specified by the DM. In the following, we first consider

the clustering problem where the number of clusters is 4.

They can be respectively signed as the very highly devel-

oped countries, highly developed countries, medium-de-

veloped countries and low developed countries. The

ordered clustering results obtained by using the OKM are

presented in Fig. 1, where the x-axis represents the label of

the countries (from 1 to 179) and the y-axis denotes the

number of clusters. For example, we can get that the

alternative 30 belongs to the cluster one and the alternative

100 belongs to the cluster two. From Fig. 1, we can easily

find that the ordered clustered results are highly consistent

with the HDI ranks, which are given by the UNDP. There

is only one alternative (the alternative 157) that is incon-

sistent with the HDI ranks. The first 50 countries belong to

the very high developed countries, the countries 51–124 are

the high developed countries, the countries 125–159 except

the country 157 are the medium developed countries and

Table 1 The indifference,

preference thresholds and the

weight of each criterion

Parameters Life expectancy Adult literacy index GDP

Strict preference threshold: pl 0.704 0.719 0.828

Indifference threshold: ql 0 0 0

Weight of criterion: wl 0.333 0.333 0.333
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other countries are the low developed countries. In order to

get intuitive feeling of the result, we mark out each country

in a three-dimensional map according to the values of three

criteria. The results are presented in Fig. 2, where the first

axis represents the life expectancy, the second axis denotes

the adult literacy index and the third axis indicates the

GDP.

To illustrate the advantage of the OKM, we make a

comparative analysis with the similar methods. As men-

tioned previously, the classical K-means clustering algo-

rithm is an effective method for clustering data. For the

above problem, we apply the classical K-means clustering

algorithm to partition the countries and the results are

shown in Fig. 3. The meanings of two axes coincide with

Fig. 1. We notice that the partition result is seriously

inconsistent with the HDI ranks. The main reason of this

phenomenon is that the classical K-means clustering

algorithm uses the Euclidean distance to measure the

similar degree between any two countries. Since the sym-

metry of the Euclidean distance, there is no preference

relationship between the clusters obtained from the clas-

sical K-means clustering algorithm.

Based on the above analysis, the OKM has lots of

advantages over the classical K-means clustering algorithm

for the ordered clustering problems. However, the OKM is

based on the idea of classical K-means clustering algo-

rithm, and thus, there are two inherent deficiencies: the

cluster number is predefined before clustering and the

result is dependent on the initial values. To reduce the

effect, we will run the OKM ten times and select the par-

tition with the least objective function value. If the DM

can’t fix the cluster number, then we compute all the

clustering results for several possible cluster numbers and

find out the optimization cluster number.

Figure 4 shows the drift of the total sum of all alterna-

tives’ net outranking flow with respect to the cluster

numbers. We test the cases when the numbers of cluster

increase from 1 to 9. It is obvious that the total sum is

decreasing in regards to the cluster numbers. Therefore, the

larger the cluster number, the smaller the total sum of all

the alternatives’ net outranking flow. Consider that more

classes will not lead to deeply increase the quality of the

partition. Thus, we suggest that the best cluster number

should be 5 or 6.

In order to further illustrate the advantage of the OKM,

we make a comparative analysis with the similar method

Fig. 1 The results of the ordered partition for four clusters by using

the OKM. The x-axis represents the label of the countries and the y-

axis denotes the number of clusters
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Fig. 2 The ordered clustering results using the OKM. The three axes represent the life expectancy, the adult literacy index and the GDP,

respectively
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proposed by De Smet et al. [21] as mentioned previously. It

is worthwhile to point out that the De Smet et al.’s method

is a better clustering algorithm than the classical K-means

clustering algorithm for the multi-criteria ordered cluster-

ing problems. The main procedure of the De Smet et al.’s

method is summarized as follows:

Step 1 Input the preference matrix p of all the alterna-

tives and the predefined cluster number K, let the matrix

M ¼ 0.

Step 2 Select the largest value pij of the preference

matrix p, if pij [ 0, go to Step 3; if pij ¼ 0, then go to Step

4.

Step 3 Test if putting directed arc from the alternative i

to the alternative j creates a cycle or a path longer than

K � 1 in the graph induced by the new M matrix. If not,

then we let Mij ¼ 1 and pij ¼ 0. If yes, then we let Mij ¼ 0

and pij ¼ 0. After that, we update the preference matrix p
and go to step 2.

Step 4 The K-ordered partition is obtained by the

determination of the ranks of the graph induced by the

matrix M.

Figure 5 given by De Smet et al. [21] presents the

clustering results of the HDI ranking problem when the

cluster number is 4. From Fig. 5, we observe that the

ordered clustering results are very high consistent with the

HDI ranks. By comparing Figs. 1 and 5, we can see that

the clustering results of De Smet et al.’s method and the

OKM are different. The first 80 countries belong to the

first cluster in Fig. 5, while only the first 50 countries

belong to the first cluster in Fig. 1. Meanwhile, the

number of alternatives in the higher priority cluster is

larger than the number of alternatives in the lower priority

cluster in Fig. 5.

Since the De Smet et al.’s method is based on the lex-

icographic comparison of the inconsistent preference

matrix, then the largest preference value can be considered

first. As De Smet et al. [21] pointed out, if several elements

of the preference matrix have the same value, then the

order of the elements will affect the results. Therefore, the

De Smet et al.’s method is too sensitive to the changes of

the elements in the preference matrix.

We have analyzed the proposed approach and the De

Smet et al.’s method [21] and the clustering results derived

from these two methods about the HDI ranking problems.

It is not hard to see that the OKM has some desirable

advantages over the De Smet et al.’s method [21]. We

summarize them as follows:

Fig. 3 Cluster results obtained from the classical K-means clustering

algorithm (four clusters). The x-axis represents the label of the

countries and the y-axis denotes the number of clusters
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Fig. 4 The sum of the net outranking flows under different cluster

numbers

Fig. 5 The results of the ordered partition for four clusters by using

the De Smet et al.’s method. The x-axis represents the label of the

countries and the y-axis denotes the number of clusters
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1. The OKM can estimate the suitable clustering number

according to the total sum of all alternatives’ net

outranking flows; while the De Smet et al.’s method

[21] can only get the ordered clustering result under

the predefined cluster number and can’t judge which

cluster number is suitable.

2. The OKM uses the net outranking flow to measure the

similarity of alternatives, and the net outranking flows

consider the relative importance of each alternative for all

the rest alternatives. Thus, the clustering result obtained

from the OKM can’t change dramatically. However, the

De Smet et al.’s method [21] is too sensitive to the

changes of the elements in the preference matrix.

3. The OKM partitions the alternatives into several

ordered clusters according to the similarity of alterna-

tives, thus the intra-relationships of alternatives can be

captured; while the De Smet et al.’s method [21]

considers the order of elements in the preference

matrix to identify the best K-ordered partition and

doesn’t consider the intra-relationships of alternatives.

It is obvious that the proposed OKM can be demon-

strated by some other datasets. We adopt the HDI problems

for demonstration just for the purpose of comparing the

OKM with similar techniques.

In our opinion, the OKM possesses potential effective-

ness for practical applications, such as big data processing.

In fact, in the era of big data, clustering and classification

are crucial techniques for discovering knowledges from

data. Priorities and orders exist in clusters and classes due

to the nature of specific problems. For instance, when

facing the imbalanced data sets, such as medical big data,

the patterns in the negative cluster (patterns of illness) own

great priorities, comparing with patterns in the positive

cluster (normal patterns). Another example can be found in

sentimental analysis of social networks. In this case, dis-

covering negative comments is more important than

understanding positive comments. Because managers and

organizations can realize the weaknesses of their services

or products. Therefore, the ordered clustering and classi-

fication commonly exist in big data processing. However, it

should be noticed that the OKM should be well improved

and implemented so that it can meet other requirements of

bid data processing.

5 Concluding remarks

In this paper, we have mainly considered the multi-criteria

ordered clustering problems. In order to deal with this type

of problems, we have proposed an ordered clustering

algorithm based on K-means clustering algorithm, which is

called ordered K-means clustering algorithm. As the net

outranking flow is an effective way to compute the sorting

of all alternatives, we have applied the idea of net

outranking flow to identify the clustering center of each

cluster. Different from the classical k-means clustering

algorithm, the sum of all alternatives’ net outranking flow

can be used as the objective function. There is a complete

ordered relationship between the clusters, which is

obtained from the ordered K-means clustering algorithm.

The effectiveness of the ordered K-means clustering

algorithm has been illustrated by the human development

index problem. The ordered clustering results obtained

from the ordered K-means clustering algorithm are very

highly consistent with the HDI ranks. Meanwhile, the De

Smet et al.’s method [21] has been introduced to compare

with the ordered K-means clustering algorithm. The com-

parison analysis with the De Smet et al.’s method [21] has

shown that (1) the ordered K-means clustering algorithm

has a good robust; (2) the ordered K-means clustering

algorithm can select the suitable cluster number according

to the total sum of all alternatives’ net outranking flows; (3)

the clustering results obtained from the ordered K-means

clustering algorithm can take full account of the intra-re-

lationships between alternatives.

For future work, we can consider the application of the

proposed OKM to other practical problems related to

ordered clustering. The deep discussions of using the non-

linear preference function in the OKM are interesting. In

addition, the introduction of the proposed OKM to big data

clustering is also meaningful.
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ELECTRE methods and their recent extensions. J Multi Criteria

Decis Anal 20:61–85

Int. J. Mach. Learn. & Cyber.

123


	An ordered clustering algorithm based on K-means and the PROMETHEE method
	Abstract
	Introduction
	The classical K-means clustering algorithms and the PROMETHEE methods
	The classical K-means clustering algorithm
	The classical PROMETHEE methods

	The ordered K-mean clustering algorithm
	The minimum net outranking flow objective
	Update the cluster
	Update the centroid of cluster
	The proposed algorithm

	Application and comparative analysis
	Concluding remarks
	Acknowledgements
	References




