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ABSTRACT In the industrial internet of things, wireless sensor network technology makes devices 
communicate with each other. The information integrated from multiple data sources will be transformed into 
productivity. However, the clusters close to the base station take a considerable load over multi-hop 
transmission, in this case, the lifetime of the industrial wireless sensor network is restricted. To solve this 
problem, a grid-based clustering algorithm via load analysis for industrial internet of things is presented in 
this study. First, the network load is quantitatively analyzed and then a load model is constructed. Furthermore, 
a set of expressions is deduced to indicate the network load distribution. It is concluded that the number of 
delivered packets in each level is related to the grid length at that level. The optimal grid length is obtained 
by solving polynomials to achieve the uniform energy consumption of nodes at each level. Finally, the 
network is partitioned into unequal grids according to the optimal cluster size and all the nodes of a grid are 
formed into a cluster. Results of the experiments show that compared with ACT, ER-HEED and RUHEED, 
our algorithm balances energy depletion effectively and extends the whole network lifetime. 

INDEX TERMS clustering algorithm, energy-balanced, load analysis, industrial internet of things, wireless 
sensor network

I. INTRODUCTION 
Industrial internet of things (IIoT) brings the 4th industrial 
revolution and makes the whole world move to Industry 4.0, 
it will increase the production efficiency by 25%. Industrial 
wireless sensor network(IWSNs) is the underlying support 
technique of IIoT. Meanwhile, the development of cloud 
computing [1,2] and mobile communicating technology [3] 
have made wireless sensor networks(WSNs) ubiquitous, 
numerous fields such as environmental monitoring [4,5], 
industrial production [6], smart home [7,8], traffic 
monitoring [9,10] and health care [11] have employed WSNs 
to collect data periodically from a monitored area. Some 
sensor nodes with finite energy, computation ability, and 
storage ability self-organize into a network to accomplish 
application tasks. However, the limited energy of sensor 
nodes (their batteries cannot be replaced conveniently) 
restricts the lifetime of a network. Prolonging the lifetime of 
a network is an important task.  

For prolonging the lifetime of a network, Cluster-based 
routing protocols are superior to flat routing protocols [12-
14]. However, energy consumption imbalance remains as a 
problem [15, 16]. In equal size clustering routing protocols, 
the cluster heads (CHs) close to the base station (BS) are 

burdened with more loads than those far from the BS [17-19]. 
Thus, the sensor nodes in these clusters exhaust their energy 
faster than those in other clusters, and finally the network is 
partitioned into pieces. Consequently, the network is unable 
to coverage the whole monitored area. Unequal size 
clustering has advantage to achieve balancing energy 
consumption of the network and prolonging the network 
lifetime. Since there are more CHs near the BS to undertake 
the network load than that under equal size clustering. In 
general, the network lifetime is defined as the round when 
the first dead node appears. Ideally, supposing that all nodes 
in a network deplete their energy at an equal rate, the network 
lifetime will be the longest. To realize the goal that 
maximizing the network lifetime, it is crucial to balance 
energy consumption of nodes in the network. The CH in a 
cluster receives packets from its cluster members (CMs) and 
other CHs. Thus, it consumes more energy than CMs and 
plays a key role in the network. Accordingly, several points 
need to be considered to achieve the goal: 

1. How to obtain the optimal unequal cluster sizes? 
2. How to select the optimal CHs? 
3. When and how to rotate the CHs? 
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The information such as location, energy, etc. is usually 
considered as a parameter to compute the optimal unequal 
cluster sizes. As for IWSNs, all nodes transmit their packets 
to the BS and hence the data transmission in IWSNs has 
characteristics of centripetal. In other words, it is helpful to 
obtain the optimal unequal cluster sizes by constructing a 
load analysis model. In the CH selection process, a large 
number of control packets are exchanged among nodes for 
selecting an optimal CH. The node with the most energy in a 
cluster is usually elected to be CH, however, the location of 
the CH need to be used as a reference when considering the 
balance of energy consumption. The CH rotation process 
ensures that the CH has more energy than its CMs. It is also 
a key step in achieving energy-balanced unequal clustering.  

In this study, a grid-based clustering algorithm via load 
analysis for industrial internet of things (GCA) is proposed 
for prolonging the network lifetime. The major contribution 
of this work can be summarized as follows:  

1. A load distribution model is presented for analyzing the 
network load. Furthermore, on the basis of the analysis of 
energy consumption, it is concluded that the number of 
delivered packets in each level is related to the cluster size at 
that level.  

2. The optimal cluster size can be determined to balance 
the energy consumption of the network by solving 
polynomials, and then the network is partitioned into grid 
clusters according to the obtained size. The load of the 
network is redistributed with unequal cluster size.  

3. The new CH in each cluster is selected based on the 
energy and distance information in that cluster. Thus, the 
energy consumption of the intra transmission is decreased 
and the overhead of CH selection lessens effectively.  

The remainder of this paper is organized as follows: 
several studies on clustering-based routing algorithms are 
presented in Section 2. The models used in this study are 
described in Section 3. Section 4 explains the cluster sizes 
optimization process. The routing algorithm is described in 
detail in Section 5, and a series of experiments is presented 
in Section6. The conclusion is drawn from the research 
results in Section 7. 

II. RELATED WORKS 
Different applications of WSNS have diverse requirements 
and challenges. However, the energy consumption imbalance 
is always the key issue in different applications, and not just in 
IIoT. Existing studies show that cluster-based protocols for 
energy efficiency optimization can be classified into two 
categories: CH optimization and cluster size optimization. At 
present, the latter is receiving more attention than the former. 
Several cluster size optimization algorithms are described in 
the following paragraphs. 

To solve the problem of uneven energy consumption, 
numerous unequal clustering algorithms are proposed, which 
are brought into sharp focus. According to the clustering 
formation process, these algorithms can be divided into two 

categories. On the one hand, the network is partitioned into 
clusters directly. The concept of competition radius is 
proposed to partition the network into several clusters with 
unequal sizes, such as in [20-24]. The CHs are selected with 
localized competition. The competition radius is the same as 
the cluster size. In [25], FPUC computes the competition 
radius according to the sensor node’s distance to the sink and 
the sensor node’s surrounding node density. HUCL [26], 
which is a hybrid of static and dynamic cluster approach also 
adopts the competition radius mechanism in the cluster setup 
phase, and the CH rotating in the intra-cluster effectively 
reduces the cluster overhead. In the above algorithms, the 
distribution of CHs is stochastic and the cluster size is usually 
related to the distance and energy information. On the other 
hand, the network will be initially partitioned into a series of 
concentric rings or levels and then the clustering process will 
be completed. A certain number of CHs are elected in each 
ring or level. In [27], the network is divided into inner and 
outer regions, and unequal clustering is implemented in the 
two different regions. In [18], the area is divided into some 
virtual tracks around the BS. Nodes located in the same track 
form clusters with similar sizes. The distance to the BS and the 
distance among the CHs are two criteria that influence on the 
cluster sizes at different tracks. But the overlap area should be 
taken into account when the competition radius is calculated. 
In [28], the optimal unequal cluster size is obtained at different 
layers with the symmetrical and unsymmetrical deployment of 
nodes. In [16], UCRP is evenly dividing the network into 
multi-layer rings. In [29], COCA is proposed for constructing 
optimal clustering architecture to minimize the total energy 
consumption of all sensor nodes. The region is initially divided 
into rectangles, and then the rectangles are divided into square 
units with the same width. Hierarchical network, with the 
uniform distribution of CH, ensures the network coverage 
ratio, but the overhead will be increased and the scalability of 
the algorithm is weak. 

According to the calculation process of cluster sizes, these 
algorithms can be divided into three categories to discuss. 
Many works fall into the same category such as [20-26]. All 
of these algorithms adopt competition mechanism. The cluster 
size is usually related to the distance between the CH and the 
BS or residual energy. That is, CHs close to the BS have 
smaller cluster sizes than those far from the BS. The optimal 
cluster sizes are computed on the base of the network 
performance analysis belongs to the second category. ACT is 
proposed in [30] for arranging the cluster sizes and 
transmission ranges of WSNs. The author uses theory analysis 
to calculate the cluster size based on the relaying load of the 
CH. The CHs close to the BS avoid the excessive relaying 
loads. However, the result of calculating the load may be 
inaccurate. In [31], a mathematical framework for calculating 
the optimal cluster size by finding the optimal value of kopt for 
one-hop communication networks between the CH and the BS 
is presented. However, the discussion on optimizing cluster 
size under the multi-hop transmission pattern is not included 
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in this previous study. The methods using fuzzy logic are the 
third category. In these methods, some parameters are used as 
input while competing radius as output. A fuzzy logic 
approach named EAUCF in [32] is adopted to handle 
uncertainties in estimating the radius of the CHs. Two fuzzy 
sets of the distance from a sensor node to the BS and the 
residual energy of a sensor node are regarded as input values. 
Meanwhile, the competition radius of the tentative CH is the 
output value. The membership function is the key point, but 
the author does not provide the selection principle. An 
improvement of EAUCF is proposed in [33]. The node degree 
is considered in the competitive radius computation process. 
Simultaneously, the CH degree is used for cluster formation to 
overcome the energy consumption imbalance around the BS. 
In [34], It uses a fuzzy-based CH selection technique for 
selecting nodes with high residually energy, having more 
number of neighboring nodes, and high quality of 
communication link as CHs. In [35], the fuzzy method is used 
to obtain the unequal cluster size. Distance, energy and load 
are as input parameters. With fuzzy control mechanism, the 
accuracy of the optimal cluster size is decided by the input 
parameters and fuzzy sets, but there is no rule for the fuzzy 
sets selection. According to the above algorithms, once the 
network scale is determined, the distribution of network flow 
is computable when no malicious node attacks the network. 
Thus, through the analysis of network performance, it is more 
accurate to calculate the cluster size. 

According to the shape of the cluster, these algorithms can 
be broadly divided into three categories which are circular 
clusters, grid cluster, and triangle cluster respectively. Most of 
unequal clustering algorithms adopt circular cluster, such as in 
[20-24]. In [36], EBCAG partitions the network into clusters 
with unequal circular cluster sizes, and each sensor node 
maintains a gradient value. Based on the analysis of the 
network load, the size of a cluster is decided by the gradient 
value of its CH. Data gathered from the CMs should follow 
the direction of the descending gradient to reach the BS. In 
[37], UMBIC divides the sensor field into number of virtual 
grids and constructs the candidate sensor set via selecting a 
certain number of sensor nodes with high energy in each 
virtual grid. The number of grids depends on the sensor field 
size and the maximum competition range. In [38], the 
monitoring area is divided into virtual grids with different 
sizes. The X-axis and Y-axis in the monitoring area are 
divided into several parts according to an arithmetic sequence 
with the equal difference being d. Only a small number of 
results belong to the third category. ‘Sierpinski Triangle’ is 
used to partition the network into unequal clusters in [39]. The 
manner of the cluster formation is static mode. The number of 
clusters is decided by the number of iteration. From the above 
discussion, the overlap area should be taken into account when 
the shape of the cluster is circle, and not when the cluster shape 
is grid or triangle. 

Through the above analysis, the cluster size is usually 
related to the value of energy, distance, coverage and link 

quality, etc., regardless of the method used. In this study, a 
grid-based clustering algorithm via load analysis for industrial 
internet of things is proposed. The network is partitioned into 
grid clusters, which increases the accuracy of load analysis. 
The entire network is covered by grid clusters with the overlap 
area not being considered. An energy consumption analysis is 
also conducted. By analyzing the load quantization and the 
energy balancing constraint, the optimal cluster sizes can be 
obtained without complex computations. Moreover, we prove 
that the clusters close to the BS have smaller cluster size than 
that far from the BS. Then, the network is partitioned into 
several grid clusters with obtained unequal cluster sizes. Each 
selected CHs collects the packets from CMs and then forwards 
them to the BS with the help of other CHs. 

III. MODELS PRESENTATION 

A. NETWORK MODEL 
It is assumed that the monitored IIoT area is a rectangular. N 
sensor nodes are uniformly distributed in the monitored IIoT 
area. The BS is near the monitored area with a fixed location. 
The parameters and situations of the network are assumed as 
follows: 

1. All sensor nodes with a unique ID are static and their 
transmission radii are adjustable. 

2. The network is divided into n-levels clusters based on the 
load analysis, and named as q1, q2, …, qn in sequence.  

3. The shape of the cluster is square with the length of li. 
4. Each sensor node generates packets at the speed of k bits 

in a period of t seconds and sends the packets to its CH. 
5. The packets dealt with by the CHs at the qi+1th-level are 

uniformly forwarded to the CHs at the qith-level.  
A demonstration of the network model is shown in Fig. 1. 

The grid cluster is used in this study. 

 
FIGURE 1 Demonstration of the network model 

 
TABLE I lists the description of the parameters and the 

notations used in this section. 
 

TABLE I 
PARAMETERS AND NOTATIONS 

Parameters Value or Description 

N Total number of sensor nodes in the network 
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qi qith-level cluster 
li Length of the cluster at the qi th-level 

r Network node density 

Pi 
Number of packets that should be handled at the 
qith-level 

d0 (m) Threshold distance with a value of 75 
Eelec (nJ/bit) Electronics energy with a value of 50 
efs (pJ/bit/m2) Amplifier energy with a value of 10 

eamp (pJ/bit/m4) Amplifier energy with a value of 0.0013 

k(bit) Packet size 

 
As all sensor nodes are distributed uniformly in the 

monitored area, the network node density r is given by 
                            = N

L W
r

´
                                  (1) 

B. ENERGY MODEL 
The energy model assumed in this study has been adopted 
widely in many research works, such as in [29, 36 and 38]. 
The energy consumption of sensor nodes generally consists 
of three parts: transmission energy consumption Et, receiving 
energy consumption Er and sensing energy consumption Es. 
Es is usually too small and is thus ignored, such as in [26, 29 
and 36]. Et and Er comprise the major portion of energy 
consumption in this study accordingly. Et is defined as 
follows when sensor node i transmits a packet with b bits to 
node j:     
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Et is dependent on the transmission distance d between node 
i and node j. According to the value of d, the propagation loss 
can be modeled as a free-space model or muti-path 
attenuation model, where Eelec is the electronic energy and 
depends on factors such as digital coding, modulation, and 
filtering of the signal, efs and eamp denote the amplifier energy 
and depend on the required receiver sensitivity and receiver 
noise figure. Reception energy consumption Er is defined 
as follows when sensor node i receives a packet with b bits 
from node j. 

                        
r elecE bE=                                    (3) 

C. LOAD ANALYSIS MODEL 
The network in this study is divided into several grid clusters 
with the length of li. Based on the preceding description of 
the parameters, the load can be formulated as follows.  

The number of sensor nodes at the qith-level cluster is Ni,  
                                Ni=li

2r                                      (4) 
where li is the length of the qith level cluster, and r  is the 
node density of the network. Each sensor node in the network 
generates one packet with k bits within a time period (e.g. 
each node generates a packet with k bits per 5 sec). Thus, the 

total number of bits generated by the qith-level cluster within 
a time period can be expressed as  

                                  P=Ni×k                                     (5) 
The number of CHs at the qith-level is  

i
i

WS
l

=                                        (6) 

The packets handled by the qi+1th-level cluster are 
forwarded to the qith-level cluster. The CH at the qnth level 
only deals with the generated packets. Thus, the total number 
of bits Pn dealt with by the CH at the qnth-level is 

                              2
n nP l kr=                                    (7) 

The total number of bits dealt with by the CH at the qn-1th-
level can be expressed as (8), which consists of the packets 
generated by the sensor nodes at the qn-1th-level cluster and 
the packets received from the qnth-level cluster. The packets 
at the qnth level are distributed equally to the CHs at the qn-

1th level, 

  

2

2 2
1 1 1

1

1
2

1 1 1 1( )

n
n n n

n n n
n

n

n n n n n n

W l k
S P l

P l k l k
WS
l

l l k l k l l l k

r
r r

r r r

- - -
-

-

- - - -

´
´

» + = +

       = + = +

          (8) 

Moreover, the total number of bits Pn-2 dealt with by each 
CH at the qn-2th-level can be expressed as 
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Thus, the total number of bits handled by each CH at the 
qith-level is  
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According to (10), once the parameters (such as node density 
and packet-generated speed) of the network are fixed, the 
number of packets dealt with by the clusters at each level is 
related to the cluster size. 

IV. CLUSTER SIZE OPTIMIZATION 
The network lifetime will be prolonged if the total energy 
consumption is minimized. Energy analysis is achieved 
using the clustering approach proposed in this study. The 
phenomenon of energy consumption imbalance typically 
appears among CHs. because their load is difference. The 
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energy consumption of each CH Ech consists of three parts: 
(1) receiving energy consumption Erch when a CH receives 
packets from other CHs, (2) Ercm when the CH receives 
packets from its CMs and (3) transmission energy 
consumption Et when the CHs forward the packets they 
receive and those that they generate by themselves. Thus, Ech 
can be expressed as 

                         ch rch rcm tE E E E= + +                     (11) 
The energy consumption of CH Ech

i at the qith level can be 
expressed as 

     21 1 ( )
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In (12), the first part represents the receiving energy 
consumption when the CHs at the qith level receive the 
packets from the qi+1th level, the second part represents the 
receiving energy consumption when the CHs at the qith level 
receive the packet from it CMs, and the last part represents 
the transmission energy consumption when the CHs at the 
qith level transmit all its receiving packets to the qi-1th level. 
n is related to the d0, if di is less than d0, n is set as 2 for the 
free space model, otherwise, n is set as 4 for the multipath 
model. 

The objective of balancing energy consumption is 
achieved if (13) is satisfied 

             ,i j
ch chE E i n j n» £ £  1£ £,1                              (13) 

Theorem 1 Equation (13) is satisfied only if the cluster 
size li shortens as the CH becomes close to the BS. 

Proof. Equation (12) shows that the energy consumption 
of CH is related to the number of bits Pi it deals with and the 
transmission distance. According to (10), the number of bits 
handled by the CH at the qith-level increases as the CH is 
close to the BS. Thus, Equation (13) is satisfied only if 
transmission distance di shortens as the CH becomes close to 
the BS. The transmission distance di is the distance between 
two CHs during data transmission and it is related to the 
cluster size li of the cluster at each level. Accordingly, 
Equation (13) is satisfied only if the cluster size li shortens as 
the CH becomes close to the BS. Nevertheless, arranging the 
location of CHs cannot influence the value of di.□ 

The total energy consumption can be expressed as 
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where, d1 is the average distance between the CH at the q1th 
level and the BS. This variable is related to the size of 
clusters at the q1th level. The length of cluster size li is 
satisfied as follows: 

                         1 2 3 nl l l l L+ + + + =                     (16) 
The value of Etotal should be the minimum and the optimal 

cluster size li can be obtained with (17),   
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The optimal solution is defined as an array {l1, l2, … ln, n}. 
Many approximate optimal solutions can be obtained by 
solving the Equation (17) with least square method, and then 
one of approximate optimal solutions who satisfies the 
equation (18) will be the optimal solution. That is to say, the 
cluster size li and the number of level n is determined finally. 

( )totalMin E                                     (18) 

V. GCA ALGORITHM FOR IIOT 
Clusters are formed after the cluster sizes are obtained, and 
data transmission is then performed. Clustering-based 
routing protocols generally consist of three parts: cluster 
formation, data transmission and cluster maintenance. In the 
cluster formation phase, the network is partitioned into 
several clusters, and each cluster has a CH. In the data 
transmission phase, two transmission modes are intra-
transmission and inter-transmission respectively. In the 
cluster maintenance phase, each CH judged whether the CH 
rotation process should be run.  

A. CLUSTER FORMATION 
At the beginning, the BS broadcasts a short packet that 
covers the monitored area. Sensor nodes calculate the 
location information based on the strength of the receiving 
signal. According to the analysis in Section 3, once the 
cluster size is determined, the network is partitioned into grid 
clusters with the same length at the same level and different 
lengths at different levels. Since the cluster size of cluster at 
each level is different, and the same as the number of cluster 
at each level which is equal to ⌈ w/lk ⌉. Obviously, one case 
that there is one cluster at each level is not a square may be 
happened. Thus, once the cluster formation is achieved, a 
cluster merging process is adopted to judge if the cluster 
which is not square should be merged. The merging 
condition is related to the number of nodes in that cluster.  
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In the CH selection process, an optimal CH is selected in 
each cluster.  A detailed analysis on optimizing cluster size 
in terms of minimizing communication overhead was 
presented in [40]. The authors investigated the effects of 
several parameters on optimizing cluster size. These 
parameters include cluster size, number of BS, position of 
CH, and node density. The authors concluded that the 
optimal CH position is at the center of the cluster. Compared 
with CHs at random locations or those close to the BS, a CH 
near the cluster center spends approximately 15% less 
energy. In this study, the selected CH is the sensor node that 
closes to the center of the cluster.  

In the first round, all the nodes have the same energy, thus, 
the CM with the minimum distance to the cluster center to 
which it belongs is the CH. The CH broadcasts a notification 
packet to notify CMs in its cluster and other CHs in other 
clusters. If some sensor nodes do not receive any notification 
packet from its CH within a certain period, the sensor node 
sends a request packet to find a CH with a minimum distance. 
In this manner, the cluster is formed. 

B. DATA TRANSMISSION PHASE 
Data transmission is achieved during this phase in two ways: 
intra-cluster transmission and inter-cluster transmission. In 
the former, the CMs of a cluster transmit their packets to the 
CH. For example, a sensor node “a” transmits its packets to 
its CH “b” as shown in Figure 2. The transmission radii of 
the CMs are equal to the cluster length, which ensures that 
CMs can communicate with the CH in one hop. That is  

                               R=li                                    (19) 
In inter-cluster transmission, the packets are forwarded to 

the BS with the help of the CHs at different levels. The CH 
chooses one of its neighbors with the minimum distance to 
the BS and the most energy. As shown in Figure 2, the CH 
“b” at the q2th level forwards its packets to the CH “c” at the 
q3th level with the minimum distance to the BS and the most 
energy. Simultaneously, CHs forward their packets 
uniformly to the CHs at the adjacent levels by considering 
load balance. In this manner, the data packet is forwarded to 
the BS. 

 
FIGURE 2. Data transmission phase 

C. CLUSTER MAINTENANCE 
CH rotation is an essential process ensures to balance the 
energy consumption of nodes. The rotation frequency and 

rotation strategy are the key points. This process may be 
extremely complex in some routing protocols. Negotiation 
among sensor nodes is typically used to select a new CH with 
higher remaining energy. Exchanging control packets among 
nodes will cause extra energy depletion. The CH is the 
manager of a cluster and can obtain the energy information 
of its CMs. Thus, in this study, the rotation process starts 
once the remaining energy of the CH becomes less than a 
threshold f. The value of threshold f can be expressed as 

avg
cf T E= ´                              (20) 

where, avg
cE  is the average remaining energy of cluster 

members in the cluster c, T is a factor related to the rotation 
frequency.  

There are two strategies usually used to choose a head in 
a cluster, which are the CM has most remaining energy or 
the CM close to its CH. However, both of these strategies are 
not optimal. The former will cause more intra transmission 
cost, and the latter will cause the unbalance energy depletion 
in a cluster. In this study, both the energy and location 
information are considered to elect a new CH, the current CH 
specifies a new CH and sends a notification packet to notify 
the new CH. Once the new CH receives the notification 
packet, it broadcasts the notification packet to notify other 
CMs and other CHs at other levels. This process is similar to 
the cluster formation phase. In this manner, the complexity 
of the GCA is O(1). 

D THE PSEUDOCODE OF GCA 
The pseudocode of GCA algorithm is illustrated in 
Algorithm 1. Before the CH formation process begins, the 
network is partitioned into n levels and ⌈ w/lk ⌉ clusters. The 
state of node i is the CM in the beginning. Each node chooses 
the cluster to which it belongs based on its location 
information. Once the node is chosen as the CH, then it 
broadcasts head_msg to notify other CHs and all of CMs in 
its cluster. The CM updates its state and sends join_msg to 
the CH, and the other CHs update their neighbor table, which 
is used in the data transmission phase. The cluster 
maintenance process begins when the energy of the CH is 
less than a threshold. A new CH near the cluster center is 
selected by the old CH in its cluster with the most energy. 
The state of the old CH is changed to be CM. The new CH 
receives the notify_msg from the old CH and changes the 
state into CH, and broadcasts head_msg. The following 
cluster maintenance process is similar to the cluster 
formation process.  

ALGORITHM1 Grid-based clustering algorithm 
Begin 
1 Initialization 

The optimal cluster size lk of each level is obtained 
based on (17) and (18). 

The network is partitioned into [w/lk] clusters at each 
level.  
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Node i judges the cluster ckj to which it belongs based 
on its location information. 
2 Cluster formation 

If node i near the center of the cluster, it will be chosen 
as the CH. 

  State[i]←cluster head. 
  node i broadcasts Head_msg. 
else 
   node j receives Head_msg 
   if node j is CH 
      Updates neighbor table 
   else State[j]←cluster member 
      Sends join_msg 
  end  
end 

 3 cluster maintenance 
   If the energy of the CH i is below a threshold f. 
     State[i]←cluster member. 
     Chooses a node k near the cluster center with the most 
energy in its cluster. 
     Sends notify_msg to node k 
  End  
  Node k receives notify_msg. 
  State[k]← cluster head. 

node i broadcasts Head_msg. 
end. 

VI. SIMULATION RESULTS 

The algorithms RUHEED [24], ACT [30], and ER-HEED 
[41] are chosen to evaluate their performance with GCA. 
Both the GCA algorithm and the ACT algorithm use the 
energy analysis to form unequal clustering. As to ACT 
algorithm, there is a slightly error in the energy analysis 
model. For example, the packets generated by the kth-level 
clusters are initially forwarded to the k-1th-level. Then, the 
received packets and those packets generated by the k-1th-
level clusters are forwarded to the k-2th level together. 
However, the number of packets is calculated in a different 
manner in ACT. In this previous study, the packets 
transmitted from the kth level to the k-1th level and those 
transmitted from the k-1th-level to the k-2th-level are 
accumulated when the receiving load in the k-2th-level is 
calculated. In this manner, the number of packets calculated 
is greater than that obtained in the usual manner. That is, the 
calculation of the received load by the CH is not exact, and 
this error directly affects the accuracy of the cluster size 
arrangement. As for RUHEED, unequal cluster mechanism 
is achieved based on competition radius as in [14], that is, 
the number of cluster is more than that far away from the BS, 
multi-hop transmission is adopted between CHs. As for ER-
HEED, it employs equal cluster mechanism to achieve 
cluster process. The CH rotation process is used in both 
RUHEED and ER-HEED. The CH chooses the CM in its 
cluster with most remaining energy to be the new CH. The 

four algorithms are simulated and the comparison among 
them is shown as follows. 

A. SIMULATION SETUP 
A total of 96 sensor nodes are distributed uniformly in a 
120m×80m rectangle area. The BS is located at the 
coordinate of (0, 40). The initial energy of each node is 0.5J, 
except for that of the BS, which has unlimited energy. The 
initial transmission radius of each node is set to 30m, and the 
BS has a maximum transmission radius that is equal to the 
length of the network. The radius or the length of the cluster 
in each level is presented in TABLE Ⅱ. As for GCA and 
ACT, the size of cluster is different in each level. The cluster 
size in RUHEED is range from 21 to 30. The cluster size is 
equal to 30 in ER-HEED. The number of levels is 3 for ACT 
and 4 for GCA based on calculations. R0 is set as 30m in both 
RUHEED and ER-HEED. In this study, the lifetime 
indicates the round when the first dead node appears, that is, 
the node exhausts its energy. For cluster-based protocols, the 
lifetime is defined as the number of rounds. The definition of 
round in this study is a completed data transmission process 
that begins with data generation and ends when data are 
received by the BS. The goal in this study is to balance the 
energy consumption and prolong the network lifetime, if the 
round when the first dead node appears is delayed effectively, 
then our goal is achieved. 

TABLE Ⅱ 
RADIUS OR LENGTH OF THE CLUSTER 

Algorithm Level 1 Level 2 Level 3  Level 4 

ACT(radius) 11.84 18.62 29.54  
GCA(length) 23.95 26.96 30.39 38.70 
RUHEED 21-30 
ER-HEED 30 

 
The optimal value of T is obtained based on Figure 3, it 

shows the round when the first dead node appears with the 
value of T set from 0.1 to 0.9. It is obviously that the round 
when the first dead node appears is latter than others when T 
is 0.5. The value of T is related to the CH rotation frequency. 
The smaller the value of T, the slowest the CH rotation 
frequency, it will cause the phenomenon of unbalance energy 
consumption and it will cause more extra control packets 
generated and more energy depletion on the contrary. Thus, 
the optimal value of T is set as 0.5 in the whole simulation. 
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FIGURE 3. The value of T 

B. PERFORMANCE EVALUATION 
The average remaining energy is compared among the four 
algorithms in Figure 4. The average remaining energy of 
sensor nodes in GCA is superior to the other three algorithms. 
The difference among ACT, ER-HEED and RUHEED is 
small, but the performance of ER-HEED is always the worst. 
The result presents that unequal cluster mechanism 
outperforms equal mechanism with the simulation situation 
in this study. In GCA, the network is partitioned based on 
energy analysis which redistributes the network load, and the 
CH rotation process pays attention to both the energy 
information and location information, thus, the energy 
consumption balancing is achieved better in GCA than that 
in the other algorithms. GCA is better than ACT, because 
load analysis is more precise in the former than that in the 
latter. There is an intersection of the ACT and RUHEED. 
Since the CH rotation process in RUHEED cost more energy 
than that in ACT with the operation of the algorithms. 

 
FIGURE 4. Average remaining energy of nodes 

 
We use the number of dead nodes shown in Figure 5 to 

evaluate the characteristic of energy consumption balancing. 
The dead node appears the first in ACT, and it appears later 
in ER-HEED and RUHEED than that in ACT. In GCA, it 
appears the latest among the four algorithms. The result 
shows that GCA prolongs the network lifetime effectively. 
When the round is 500, there are only 18 dead nodes, which 

less than the other three algorithms, As shown in Figure 4, 
when the round is 500, the average remaining energy is close 
to 0.1J, that is, when 10 percent energy is remained, most of 
nodes are alive, it is verified the effectiveness of GCA 
proposed in this study. Meanwhile, the balance characteristic 
of energy consumption is the best in GCA, as verified in 
Figure 4, which indicates the energy analysis in GCA is more 
accurate than that in ACT. 

 
FIGURE 5. The number of dead nodes 

 
The CH rotation process is different in four algorithms. In 

GCA, when the remaining energy of CH is less than half of 
the average remaining in its cluster the rotation process 
begins. As for ACT, the rotation process begins when the CH 
of energy is less than 15% of initial energy. It is different in 
ER-HEED that the rotation process works in each round, the 
same as RUHEED. Thus, the energy consumption of CH 
election in ER-HEED and RUHEED is more than that in 
GCA and ACT as shown in Figure 6. When the first dead 
node appears, the CH election process is running among all 
of nodes. The more the number of clusters, the more energy 
the CH election costs, vice versa. Accordingly, it appears 
fluctuations when first dead node appears in ER-HEED and 
RUHEED. On the contrary, the cost of CH election is less in 
GCA and ACT, the rotation process begins only when the 
condition is satisfied.  

 
FIGURE 6. The cost of CH election 
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As shown in Figure 7, the average remaining energy of the 
CHs in ER-HEED and RUHEED is greater than that of GCA 
and ACT. Since the node with the most energy is chosen as 
the new CH in a cluster in ER-HEED and RUHEED. In GCA, 
the location information is considered and it pays no 
attention to energy information in ACT. The fluctuations 
appear in four algorithms due to the rotation process is 
adopted. 

 
FIGURE 7. Average remaining energy of CHs 

 
The number of CHs is investigated among the four 

algorithms in Figure 8. According to the clustering 
mechanism in each algorithm, the number of clusters is 
decided once the optimal radius or length of the cluster is 
obtained in ACT and GCA. Thus, the number of clusters is 
always the same in the whole lifetime. As to ER-HEED and 
RUHEED, the number of clusters is changed once the first 
dead node appears, the new CHs are elected among all of 
nodes, and the number of CH will reduce with the remaining 
of energy or the number of nodes is decreased. 

 
FIGURE 8. The number of CHs 

 
An ideal cluster head is considered as close to the center 

of a cluster, and the average distance between the CH and it 
CMs will be the minimum. It will spend approximately 15% 
less energy which is verified in [42]. But the energy 
information should be used as a reference when rotating the 

CH just as in GCA. However, in ER-HEED and RUHEED, 
it only pays attention to the energy information, and in ACT, 
the location information is the only parameter considered for 
CHs selection. Based on the above analysis, Figure 9 shows 
that the distance between the CH and CM is bigger in ER-
HEED than the other three algorithms. The number of CH in 
RUHEED is more than that in ER-HEED as shown in Figure 
8, thus, the distance in RUHEED is smaller than that in ER-
HEED. The same result can be found between GCA and 
ACT. The distance between the CH and its CM is the 
minimum in GCA and hence the energy consumption of intra 
transmission is the least among the four algorithms. 

 
FIGURE 9. The average distance between CM and CH 

 
In IIoT, the requirement of node density is inconsistent 

according to different production modes. In the following 
experiments the node density is observed with the size of the 
monitored area fixed. The number of nodes is added to 100, 
200 and 300 gradually. As Figure 10 shown, with the 
increasing of the number of nodes, the network lifetime 
shortens. Because the number of packets increases with the 
number of nodes added, the energy consumption of nodes 
will speed up. It is obviously that the network lifetime of 
GCA is superior to the other three algorithms. But the 
difference among the other three algorithms is not clearly. 
But when the node increases, the network lifetime of ER-
HEED and RUHEED drops fast, because the cost of the CH 
election will increase with the number of nodes grows. 
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FIGURE 10. The round when the first dead node appears with changing 
the number of nodes 

 
Figure 11 shows the number of dead nodes in each 

algorithm when the number of nodes is changed. In each case, 
the number of dead nodes in GCA is much less than that in 
the other three algorithms. And the round when the dead 
node appears is ahead when the number of node increases as 
the CH undertakes more packets. Similarly, when the 
number of nodes increases, the performance of ACT is 
superior to that of ER-HEED and RUHEED as shown in 
Figure 11. The remaining energy of CH is shown in Figure 
12, the performance of ER-HEED and RUHEED outperform 
GCA and ACT regardless of the number of node. In ER-
HEED and RUHEED, they choose a new CH with most 
energy among nodes at higher frequency. With the 
algorithms running, the difference among GCA, ER-HEED 
and RUHEED is small, because the energy consumption of 
nodes in GCA is more uniform. 

 

 
FIGURE 11. Number of dead nodes when the number of nodes is 

changed 

 
FIGURE 12. The average remaining energy of the CH when the number of 
nodes is changed 

 
For showing the variation tendency obviously, we present 

the cost of the CH election from the 200 rounds to 300 rounds 
in Figure 13. The variety of energy consumption fluctuates 
obviously. For each algorithm, the cost of cluster election 
increases with the number of node grows. Clearly, the CH 
rotation frequency in ER-HEED and RUHEED is higher 
than that in GCA and ACT. As for considering the energy 
information and distance information, the elected new CH in 
GCA is more ideal than that in other algorithms, thus, the 
rotation frequency in GCA is the lowest among the four 
algorithms. 

 

FIGURE 13. the cost of CH election when the number of nodes is 
changed 

 
In the IIoT, the scale of network is changing with the 

industrial production scale. Thus, the size of the monitored 
area is extended gradually with node density fixed in the 
following experiments. The network lifetime is shown in 
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Figure 14. The initial energy of node is set as 2J. There is no 
doubt that the network lifetime shortens when the size of the 
monitored area extends. The network lifetime of GCA is 
always superior to the other three algorithms, but the 
difference lessens gradually with the size of the area extends. 
Thus, as to large scale of network, the performance of GCA 
needs to be improved further. 

 
FIGURE 14. The round when the first dead node appears with 

changing the size of the area 
 

Figure 15 illustrates the remaining energy of nodes when 
the size of the area extends. As the node density is fixed, the 
number of nodes tends to grow at an exponential rate. Thus, 
the speed of energy consumption is fast when the size of area 
increases gradually. However, the remaining energy of GCA 
keeps advantage among the four algorithms. At the same, the 
performance of ER-HEED and RUHEED drops fast as the 
size of area extends. The result indicates that the CH rotation 
process influence the performance of algorithm distinctly 
with the number of nodes increases. 

 
FIGURE 15. the average remaining energy of nodes when the area 

is changed 

VII. CONCLUSION 
IIoT is seen as the next industrial revolution that will 

improve the industrial productivity greatly. In this study, we 
focus on the problem of energy usage imbalance that occurs 
in cluster-based routing protocols in IIoT and present a new 
solution to this problem. Numerous works based on 
optimizing the number of CHs, fuzzy sets, or completive 
radii have been proposed to achieve balancing energy 

consumption. However, load distribution fundamentally 
affects energy consumption. We present a precise load 
analysis model to guide cluster size adjustment in this study 
and prove that the cluster near the BS should be smaller than 
that far from the BS. We also analyze the total energy 
consumption of a network. The comparison among GCA, 
ACT, ER-HEED and RUHEED is shown in Section 6. The 
death time of the first sensor node is delayed effectively in 
GCA. The performance of GCA is superior to the other three 
algorithms when the node density increases and the size of 
the monitored area extends. When it comes to large scale 
network, there is still much room for improvement in GCA. 
Our strategy is not only suitable for IIoT but also for 
numerous applications that require sensor nodes to collect 
data periodically, such as in environmental monitoring. Our 
future work will focus on the type of event trigger for IIoT. 
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