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Abstract. Many real world applications involve classification of multi-
label data streams. However, most existing classification models mostly
focused on classifying single-label data streams. Learning in multi-label
data stream scenarios is more challenging, as the classification systems
should be able to consider several properties, such as large data vol-
umes, label correlations and concept drifts. In this paper, we propose
an efficient and effective ensemble model for multi-label stream classifi-
cation based on ML-KNN (Multi-Label KNN) [31] and propose a bal-
ance AdjustWeight function to combine the predictions which can effi-
ciently process high-speed multi-label stream data with concept drifts.
The empirical results indicate that our approach achieves a high accuracy
and low storage cost, and outperforms the existing methods ML-KNN
and SMART [14].
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1 Introduction

Due to the recent advances in computer networks and data storage, many data
are produced and accumulated at an ever increasing rate in the form of stream.
Such as online shopping information, logistics information, online news, stock
market data, emails, credit card transactions, etc. These data are real-time,
continuous and orderly arrival, and need to be analyzed promptly and effec-
tively. For example, in online mail systems, incoming emails need to be classified
into different categories, like spams, business emails, personal emails, important
emails, etc. This classification task, each stream example is associated with a sin-
gle class label l from a set of labels L (|L| > 1), is called single-label data stream
classification, and has been extensively studied [3,4,11,20,33] in the literature.
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In many emerging applications, each stream record may carry multiple class
labels. A good example is news reports in the online news systems, most news
reports carry multiple news topics (e.g. entertainment, financial and politics),
then this is called Multi-Label data Stream Classification (MLSC) [21]. For-
mally, the multi-label stream classification problem is to training a model to
attach a label subset Y ⊆ L to each instance in a high-speed data stream.
Although, multi-label classification has been studied in traditional database min-
ing scenarios, multi-label data stream classification is a relatively new concept
and has not been fully addressed yet.

An intuitive approach to solving the multi-label classification problem is to
transform it into one or more single-label classification problems. In this fashion,
traditional single-label classifiers can be employed to make single-label classifi-
cations. Finally, the multi-label predictions can be produced by combining these
multi-label predictions. On the other hand, an alternative category is to adopt
the existing single-label classifiers directly to multi-label classification [18,23].

The multi-label data stream environment has different challenges from the
traditional batch learning setting. As the instances in a multi-label data stream
contain multi-labels (multi-concepts), dealing with the concept drift is the most
important challenge to a classifier. Another challenge with regard to MLSC is
that, it is possible that an arriving example will belong to a set of labels, some
of which, will not have been previously observed because of the dynamic nature
of the set of labels [21]. Besides, the learner must be able to handle the stream
using limited memory in real time, because stream data flood in continuously
at a high speed, which makes it impossible to be stored in the memory and
processed offline [14].

To address the above issues, in this paper we propose an efficient and
effective ML-KNN-based ensemble model for multi-label stream classification
with a balance AdjustWeight function, called Streaming Weighted ML-KNN-
based Ensemble Classifier (SWMEC). More specifically, we first propose an ML-
KNN based algorithm to build the basic classifier Ci. The ensemble classifiers
C =< C1, C2, · · · , CL > will be build at the beginning of the stream with ran-
domly selected L test data chunks. This only needs to compute and save a small
amount of information of the cluster center points. Thus the building process is
highly efficient while consuming constant memory space. In addiction, each clas-
sifier Ci has its own weight wi, and C =< (C1, w1) , (C2, w2) , · · · , (CL, wL) >.
As data flow in, the weights will be adjusted and the classifier C will be updated
according to the weights. Thus the proposed SWMEC approach can work adap-
tively to evolving data and deal with concept drifts, and can efficiently classify
the incoming data in real-time.

The main contributions of this paper are as follows. (1) an adaption of the
existing multi-label methods to evolving data streams. (2) an effective weighting
adjustment strategy for ensemble classifiers. (3) experimental results validating
the performance of our method and benchmarks in predictive performance and
space complexity.

The remainder of this paper is organized as follows. In Sect. 2, we discuss
relevant work in multi-label classification and stream classification. Section 3
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presents the n preliminaries about the problem. Section 4, describes the pro-
posed framework in details, and the experimental results are presented in Sect. 5.
Finally, Sect. 6 concludes the paper.

2 Related Work

Our work is related to multi-label classification and stream classification tech-
niques. We will briefly review the existing work on both of them.

Multi-label classification is the problem to deal with such instances that may
belong to multiple different classes simultaneously and focuses on offline settings
[16,19]. Multi-label classification methods can be grouped into two categories,
namely, problem transformation and algorithm adaptation [21]. Problem trans-
formation methods transform the multi-label problem into multiple single-label
problems. Problem transformation methods transform the multi-label problem
into multiple single-label problems including Label Power-set (LP), Binary Rel-
evance (BR) and Ranking by Pairwise Comparison (RPC [12]). Algorithm adap-
tation methods extend the traditional learning techniques to multi-label context,
such as decision trees [5], neural networks [30], maximal margin methods [10],
maximum entropy methods [25], and ensemble methods [25], etc. One well-known
such approach is ML-KNN [31], which is derived from the popular lazy learn-
ing algorithm kNN. It’s the most relevant approach to our model and will be
introduced in the next section.

Many studies have also been done on single-label stream classification. There
are two sets of solutions: single-model based and ensemble based. Single-model
based approaches [1,2,6,9,26,27,32,33] use new data to incrementally update
their model so that the model can scale to a large data volume. Ensemble based
approaches [13,22,28], on the other hand, partition the data stream into equal
sized chunks, and train multiple base models on different chunks of data. Then
all the models are combined for prediction. The ensemble based approaches are
easier to scale and parallelize, tend to achieve better accuracy and can also avoid
over fitting than single classifier methods.

Recently, there are also some studies focusing on multi-label stream classifi-
cation [14,15,17,18,21,29]. Kong et al. [14] builds an ensemble of classifiers on
successive data chunks. It proposes a random-tree based algorithm to improve
it’s efficiency. Work also has been done on adopting the ensemble based strategy
in handling multi-label streams [15,29].

We follow a similar strategy to design our classification model with ML-KNN-
based ensemble methods. Our model builds streaming classifiers by extending
MLkNN, which is just designed for multi-label static data classification.

3 Preliminaries

We first introduce the notations that will be used throughout this paper, and
then briefly describe the techniques ML-KNN [31] to make this paper self-
contained.
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Consider a multi-label stream S with a label set L = {1, 2, · · · , q},
S ⊆ R

d. Stream S consists of infinite data chunks, {D1, · · · Dn, · · · }, where
labeled chunk Di is denoted by DL and unlabeled chunk denoted by DU .
Each instance x ∈ S has a label subset Y = {y1, y2, · · · , yq} ∈ {−1, 1}q,
where Y [j] =

{
1 if yj ∈ Y

−1 if yj /∈ Y
, (xi, Yi) is an instance in the multi-label data

stream. The task of multi-label stream classification based on ensemble solu-
tion is to train a classification model on the historical examples F (·), F (·) =
g (f1 (·) , f2 (·) , · · · , fL (·)), where fi(·) is the sub-classifier, g (·) is the combina-
tion function that combines the outputs of all f (·), L is the number of classifiers.
Then it uses F (·) to predict a label set Yi to the incoming data xi.

Table 1. Summary of major mathematical notations

Notations Mathematical meanings

S Multi-label data stream with d-dimensional space R
d

D data chunk with size N

DL Labeled data chunk

DU Unlabeled data chunk

x d-dimensional feature vector (x1, x2, · · · xd)
�(x ∈ S)

L label space with q possible class labels {1, 2, · · · , q}
Y label subset associated with x (Y ⊆ L)

3.1 ML-KNN [31]

We briefly describe our model’s basic approach ML-KNN, which is derived
from the traditional k-Nearest Neighbor (kNN) algorithm and classify
the traditional static multi-label data in a lazy learning way. There
are three main steps in this approach. For convenience, several nota-
tions are summarized in Table 1. In addition, given a training set T =
{(x1, Y1) , (x2, Y2) , · · · , (xn, Yn)} (

xi ∈ R
d, Yi ∈ L)

, t is the test instance, s is the
smoothing parameter with a default value 1.
Step 1: Computing the prior probabilities P

(
H l

b

)
according to Eqs. 1 and 2.

Where l ∈ Y is the l-th label, and b ∈ {0,1}, H l
1 represents the event the

instance has label l. Conversely, H l
0 means the instance does not have label l.

P
(
H l

1

)
=

(
s +

n∑
i=1

Lt (l)

)
/ (s × 2 + n) (1)

P
(
H l

0

)
= 1 − P

(
H l

1

)
(2)

Step 2: Computing the posterior probabilities P
(
El

j | H l
b

)
according to Eqs. 3

and 4. Where El
j (j ∈ {0, 1, · · · , k}) denotes the event that, among the k nearest
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neighbors of t, there are exactly j instances which have label l. c[j] counts the
number of training instances with label l whose k nearest neighbors contain
exactly j instances with label l. Correspondingly, c

′
[j] counts the number of

training instances without label l whose k nearest neighbors contain exactly j
instances with label l.

P
(
El

m | H l
1

)
= (s + c [j]) /

(
s × (k + 1) +

k∑
p=0

c [p]

)
(3)

P
(
El

m | H l
0

)
=

(
s + c

′
[j]

)
/

(
s × (k + 1) +

k∑
p=0

c
′
[p]

)
(4)

Step 3: Computing the output yt (label subset) and rt of t, where rt is a real-
valued vector calculated to rank labels in L, according to Eqs. 5 and 6.

→
yi (l) = arg max

b∈{0,1}
P

(
H l

b

)
P

(
El

Ct(t)
| H l

b

)
(5)

→
ri (l) = P

(
H l

1 | El
Ct(l)

)
=

(
P

(
H l

1

)
P

(
El

Ct(l)
| H l

1

))
/P

(
El

Ct(l)

)
(6)

The detailed architecture of ML-KNN was given in [31].

4 Weighted Ensemble Classification

In this section we first give the main idea of our weighted ensemble classification
approach, then we introduce the process of the ensemble classifiers’ training and
updating and the adjustment of their weights, finally we give the description of
our algorithm.

4.1 Basic Idea

The data stream S is divided into a fixed number of chunks and each classification
model in the ensemble is trained from a different chunk. Each classifier in the
ensemble has it’s own weight. The new arriving unlabeled data chunk is classified
by the ensemble while the corresponding weight will be changed. According to
the weights, the latest classified data chunk will be decided if to be trained to
generate a new model and replace one of the existing models in the ensemble. In
this way the ensemble can be maintained at a fixed size and kept up-to-date. The
problems of data stream’s infinite length and concept-drift can correspondingly
be well addressed.

4.2 Classifier Training and Updating

The ML-KNN based multi-label ensemble classifier is built at the beginning
of the data stream and timely updated over the data stream as follow: when
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a training data chunk in the data stream is arriving at time t, we build
h clusters with the labeled data points by the application of XMeans tech-
nique. After the building of these clusters, we save each cluster’s centroid
O = {o1, o2, · · · , oh}, oi ∈ R

d, i ∈ {1, 2, · · · , h}, and compute each centroid’s
label subset in the same way as ML-KNN. After that, all centroids and their
label subset C =< (o1, y1, r1) , (o2, y2, r2) , · · · , (oh, yh, rh) >, yj ∈ Y , yi,rj are
respectively the label subset and the a real-valued vector calculated by ML-KNN,
will be saved as a summary. At the same time, the current summary’s arriving
time t will also be recorded. Each summary’s weight w then can be calculated
according to o,

→
r and t, and set to be 1 at beginning. After the process of L

chunks, the ensemble classifier C =< (C1, w1) , (C2, w2) , · · · , (CL, wL) > (each
model Ci is a collection of h summaries and the number of h is unfixed, wi is the
weight of model Ci) will be built. When an unlabeled data chunk DU is arriving,
for each instance xi ∈ DU , we find the mi = ((oj , yj) , wi) ∈ Ci, j ∈ [1, 2, · · · h]
whose centroid oj is nearest from xi. The corresponding weight wi will then
be determined by the distance between oj and xi,

→
ri and ti. Then the xi will

be labeled according to the summaries {m1,m2, · · · ,mL}. Each unlabeled data
chunk will be classified as above. After a chunk DU has been handled by the
ensemble C, If the lowest wlowest ∈ w falls below a threshold value ε, the corre-
sponding model Cj will be replaced by the new model that trained by DU . This
ensures that the ensemble will be updated with the passing of data chunk and
the number of models in the ensemble remains constant.

4.3 Ensemble Weighting

In this paper, inspired by [8], we propose a combination function g (·) including
three components (

→
αi, βi and γi) to combine classifiers in the ensemble. They

are: (1) label confidence, which is a vector measuring the confidence in the sub-
classifier outputting each label; (2) time difference; (3) distance difference, both
(2) and (3) describe how confident a sub-classifier is when making a classification
decision.

We estimate
→
αi from the ensemble model C by Eq. 7:

→
αi =

→
ri∑L
i=1

→
ri

(7)

where βi, γi describe how confident a sub-classifier is when making a classification
decision. βi is estimated by the time difference between arriving new data chunk
DU and the sub-classifier Ci. �ti = tDU

− tCi
, where tDU

,tCi
are the arriving

times of data chunk DU and Di respectively. The longer the chunks are apart,
the lower the β is.

βi =
e−�ti∑L
i=1 e−�ti

; 0 < βi < 1,

L∑
i=1

βi = 1 (8)
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γi is estimated by the distance difference between xi which is the instance
from the arriving new data chunk DU and it’s nearest center oj in sub-
classifier Ci.

γi =
e−di∑L
i=1 e−di

; 0 < γi < 1;
L∑

i=1

γi = 1 (9)

where di = distance (xi, oj), the closer the distance between xi and oj the more
confident the sub-classifier.

Finally, we combine
→
αi, βi and γi to decide the weight wi =

→
αi × βi × γi.

Consequently:

g (·) =
L∑

i=1

(
fi (xi) × →

αi × βi × γi

)
(10)

The output Y = {y1, y2, · · · , yq} ∈ {−1, 1}q,
Y [j] =

{
1 if g (·) [j] =

∑L
i (fi (·) [j] × αi × βi × γi) > 0

−1 if g (·) [j] =
∑L

i (fi (·) [j] × αi × βi × γi) < 0
.

4.4 The Classification Algorithm

The pseudo code of our method for classifying multi-label data streams using
the ML-KNN-based ensemble method is given in Algorithm 1.

Algorithm 1. KNN-based ensemble classification for multi-label data streams
Input: Data Stream S =< D1, D2, · · · , Dn, · · · >;

Initial ensemble classifiers:
C =< (C1, w1) , (C2, w2) , · · · , (CL, wL) >;
Empty buf ;
Latest chunk of unlabeled instances DU ;
Latest r labeled data chunks Dr;

Output: Classification Result.
(1) while true do
(2) for all xi ∈ DU do
(3) Classification(C, xi) = DL → buf
(4) end for
(5) Evaluation&Adjust(C, DU )
(6) if the lowest wlowest ∈ (w1, w2, · · · , wL) < threshold ε then
(7) buf replaces the corresponding data chunk in Dr

(8) Update(C, Dr)
(9) end if

(10) new chunk of unlabeled data → DU

(11) end while
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5 Experiments

In this section, we show the results of several experiments performed to evaluate
the effectiveness of our proposed SWMEC for classification in real-world multi-
label data streams TMC2007 [24] (see Table 2 in detail). All the experiments are
conducted on a PC with Intel(R) Core(TM) i3-3220 3.30 GHz CPU and 4 GB
RAM. We have implemented SWMEC in python2.7. Most importantly, in order
to get more precise classification results, we firstly preprocess the data set. We
remove the infrequent words that occur in less than 11% of the documents as
[14] did.

Table 2. Summary of dataset TMC2007

Data set Properties

N d q Avg|Y | IDens Domain

TMC2007 28,596 204 22 2.158 0.098 Text

A. Classification quality comparison with ML-KNN
We compare the performance of our approach SWMEC against ML-KNN [31]
as the base-line of our model. In order to apply this one of the state-of-the-
art methods in offline context to the stream classification, we train a ML-KNN
classifier on the latest chunk of data, and use it to classify the next chunk of data,
which is similar to sliding window approaches. Since the data chunk size is the
most important factors in the classification and training process, here we change
the chunk sizes (sliding window sizes) to test the performance of basic ML-
KNN. The Parameters are set as follows: SWMEC: L (the size of the ensemble
classifier model) = 4, k (the number of nearest neighbors in ML-KNN) = 4,
ε (the threshold about weight’s adjustment) = 0.001. ML-KNN (w = 100): w
(the size of the window) = 100. ML-KNN (w = 200): w (the size of the window)
= 200. ML-KNN (w = 400): w (the size of the window) = 400.

Multi-label classification problems has many different metrics for evaluation.
Such as Hamming-loss, F-measure, Log-Loss, Ranking-Loss [17]. Here we adopt
two metrics to evaluate multi-label classification performance in a data stream.
First, Micro F1: considers both micro average of Precision and Recall with equal
importance, evaluates a classifier’s label set prediction performance. The higher
the value, the better the performance.

MicroF1 (fi,DL) =
2 × ∑|DL|

i=1 |fi (x) ∩ Yi|∑|DL|
i=1 |fi (x) | +

∑|DL|
i=1 |Yi|

where |D| is the number of instances in a multi-label data stream D, which
contains (xi, Yi), where Yi ⊆ L(i = 1, · · ·, |D|), f(xi) ⊆ L denotes a multi-
label classifier’s predicted label set for xi and f(xi, k) denotes the classifier’s
probability outputs for xi on the k-th label (lk).

Second, Ranking Loss [7]: compute the average number of label pairs that are
incorrectly ordered given Yi weighted by the size of the label set and the number
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of labels not in the label set. Evaluates the performance of classifier’s probability
outputs or real-value outputs f(xi, k). The best performance is achieved with a
ranking loss of zero.

RankLoss(f,D) =
1

|D|
|D|∑
i=1

1
|Yi||Ȳi| loss (f, xi, Yi)

loss(f, xi, Yi) =
∑
k∈Yi

∑
k′∈Ȳi

I
(
f (xi, k) ≤ f

(
xi, k

′))

where the Ȳi denotes the complementary set of Yi in L.

(a) Micro F1↑ (b) Ranking Loss↓

Fig. 1. SWMEC against ML-KNN on TMC2007 dataset.

Figure 1(a) shows the Micro F1 for the four algorithm throughout the stream
in TMC2007 data-set. We report the average performance on every |D|/10
instances. For example, at X axis = 5, the Y values show the average Micro
F1 of four classification models from the |D| ∗ 4/10th instance of the stream to
the |D| ∗ 5/10th instance. At this point, the Micro F1 of SWMEC is 0.3729, the
Y values in ML-KNN (w = 100), ML-KNN (w = 200) and ML-KNN (w = 400)
are all below SWMEC.

We also calculate the Ranking loss of four classification models. Figure 1(b)
show the Ranking loss of the four algorithms throughout the stream in TMC2007
data-set. For example, at X axis = 6, the ranking loss of SWMEC is 0.1571, the
Y values in ML-KNN (w = 100), ML-KNN (w = 200) and ML-KNN (w = 400)
are all higher than SWEMC.
B. Classification quality comparison with SMART [14]
We also compare the performance of our approach SWMEC against SMART
[14], which also adopt the strategy of ensemble and gives us a great inspiration
in this paper. As Fig. 2(a) and (b) shows, Our method SWMEC is slightly better
than SMART in Micro F1 and Ranking Loss. Especially noteworthy is that
SMART has a much bigger space overhead than SWMEC, because SMART
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needs to maintain several tree structures while SWMEC only needs to store
small amount of central points. In the future, we would like to combine both of
these two methods’ advantages to address the multi-label classification problem
in data streams.

(a) Micro F1↑ (b) Ranking Loss↓

Fig. 2. SWMEC against SMART on TMC2007 dataset.

6 Conclusion

This paper presents an efficient algorithm for multi-label data stream classifica-
tion based on ML-KNN. As the properties of data stream and multiple labels
assigned to each instances. It becomes more challenging than the traditional
static multi-label data classification problems and single-label data stream clas-
sification problems. To address these challenges, we propose an ensemble multil-
abel data stream classification approach, manly Streaming Weighting ML-KNN
based Ensemble Classifier (SWMEC), to efficiently update the model with the
multi-label data stream flows. Then our model can effectively and efficiently pre-
dict multiple labels for future data points. The experimental results on the real
world validate that our multi-label data stream classification approach is very
effective and efficient for multi-label stream classification.
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