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a b s t r a c t 

Clustering analysis has been applied in all aspects of data mining. Density-based and grid-based cluster- 

ing algorithms are used to form clusters from the core points or dense grids to extend to the boundary

of the clusters. However, deficiencies are still existed. To find out the right boundary and improve the

precision of the cluster, this paper has proposed a new clustering algorithm (named C-USB) based on

the skew characteristic of the data distribution in the cluster margin region. The boundary degree calcu- 

lated by skew degree and the local density are used to distinguish whether a data is an internal point

or non-internal point. And the connected matrix is constructed by removing the neighbor relationships

of non-internal points from the relationships of all points, then the clusters can be formed by searching

from the connected matrix towards internal of the clusters. Experimental results on synthetic and real

data sets show that the C-USB has higher accuracy than that of similar algorithms.

© 2017 Published by Elsevier B.V.
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. Introduction

Clustering refers to a process to discover the internal struc-

ures of data or the potential data models in a dataset [1–3] by

ata partitioning. Thanks to the outstanding capability of discover

lusters of different shapes and sizes along with outliers, density-

ased [4–6] and grid-based [7] clustering technology are widely

pplied to the fields of health care [8] , information security [9] ,

nternet [10] and etc [11–15] . 

Data points are divided into core points, boundary points and

oise points by the DBSCAN algorithm [16] , and a cluster is formed

hen the data is expanding from the core points outwards the

lustering boundary. As those methods are susceptible to param-

ter changes, different parameters may lead to different data di-

iding and clustering results. IS-DBSCAN [17] , ISB-DBSCAN [18] and

thers [19–21] are proposed by making use of the nearest neighbor

elationship instead of the neighborhood density, which effectively

educe the influence of the parameters on the algorithm. However,

or the multi-density datasets, the clustering results are not always

avorable because neighbor relationships can misjudge the bound-

ry points. 

Grid clustering technique divide grids into high-density ones

nd low-density ones with compressing expression and clusters

re formed when high-density grids are connected. Grid-based

lustering technologies, such as CLIQUE [22] , MGM-GA [23] and

tc [24,25] , are efficient because grid clustering is formed with the
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xtension of grid cells. Such an approach can be efficient, how-

ver, in the clusters forming process, if a dense grid is adjacent to

 sparse grid (we called boundary grid), which probably contains

oises, the algorithm is of low clustering accuracy. 

Boundary points not only play a significant role in expansion-

ased clustering algorithms, but also in other fields of data min-

ng. The PAC-Bayes boundary theory, a theoretical framework, com-

ines Bayes theory [26–28] with minimum structural analysis prin-

iple of random classifier, obtaining the most generalized risk

oundary. The algorithms derived from PAC-Bayes boundary are

ctually the “average” of Hypothesis Space, thus achieving a bet-

er classification performance [29–31] . Support Vector Machine

SVM) [32–34] also uses boundary points to improve performance.

urthermore, on the occasion of supervised, Compression Nearest

eighbor (CNN) [35] can extract the neighboring data boundary

oints from different classes, and it can also used to reduce the

umber of support vectors in the SVM algorithm, which is helpful

o reduce training costs [36–39] . Besides, the study on boundary

s also contributing to discover interesting models in data [40–42] .

or instance, in the medical field, the clustering boundary may rep-

esent a group of people, who carry virus but not affected. With

egard to handwriting recognition, the clustering boundary may

tand for handwriting images which are easily misjudged to be

ther characters. 

. Motivation

From the standpoint of density-based clustering technology,

lusters refer to the dense regions separated by sparse regions. For
 skewness-based boundary detection, Neurocomputing (2017), 
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Fig. 1. Point x 1 , x 2 and distribution of points after mapping on coordinate axis.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Boundary degree testing model. (a) Points x 1 − x 4 and Positions t 1 − t 13 (b) 

3-dim view of boundary degree.
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grid-based clustering technology, clusters are formed by the con-

nected high-density grid units. Both of the technologies are adopt-

ing the expansion-based method to form clusters from core points

(dense grids) to boundary points (boundary grids). And the sim-

ilar clustering pattern makes it possible for the combination of

them to solve cluster problems [43–45] . Boundary points, as the

terminal condition of expansion, are of great importance to both

technologies. In density-based clustering algorithm, the boundary

points are identified by density only. However, in real datasets,

margin density is probably equal to or larger than that of the inter-

nal region. Grid-based clustering algorithm determines boundaries

by statistics of points within a single grid, which always causes the

internal points or noise points which located nearby the boundary

grid to be misjudged as boundary points. 

Based on huge data analysis, internal points are founded to

be surrounded by their neighboring points, while the neighboring

points of boundary point are always located in one side of it. Fig. 1

shows that, x 1 and x 2 are taken as reference points respectively,

and the points around them are mapped into X and Y axis. After

the mapping of central x 1 , other points can be found to symmetri-

cally spread on the two sides of x 1 in different axis after mapping.

However, when x 2 is regarded as the reference point, other points

are located in just one side of x 2 in X or Y axis only after map-

ping; thus, the mappings of point x 2 lie in a skew pattern. Based

on the above features, this paper proposes a new skewness-based

measurement method to separate boundary objects from a dataset.

Unlike the density-based or grid-based method, boundary points in

this method are determined by the distribution of their neighbors,

which can effectively avoid the effects of density and neighboring

radius. 

3. Algorithm

3.1. Skewness and boundary degree 

Suppose a dataset X = { x i | x i ∈ R m ∗n ; i = 1 , 2 , ..., n ; m, n ∈ N} .
Definition 1 ( Skewness S c ( x p )) . Skewness S c ( x p ) is used to measure

the data skew distribution, defined as follows: 

S c (x p ) = 

∑ m 

j=1 

∑ k 
i =1 (x i j − x p j ) 

2

k 
x i j ∈ N k −dist (x p ) . (1)

Among which N k −dist (x p ) [46] refers to k nearest neighbor of x p ,

x p ∈ X . 

Skewness has been widely utilized in the field of data statis-

tics and analysis [47–49] . This paper aims to study whether the
Please cite this article as: X. Li et al., A clustering algorithm usin
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istribution of neighboring points of x p are skew or not. There-

ore, x p itself is taken as the reference point. Left skewness or right

kewness has no impact on the study, so the definition of S c ( x p ) is

hanged to a non-directional value. 

efinition 2 (Local density D local ( x p )) . The local density refers to the

ompactedness of point x p and its neighboring points. Local density

s the reciprocal of summing up standard deviations drawn from

ifferent dimensions of x p and its neighboring points. The defini-

ion is as follow: 

 local (x p ) = 

1 

∑ m
j=1

√ 

1
k

∑ k
i =1 (x i j − x ) 2 

x i j ∈ N k −dist (x p ) . (2)

x refers to the average value of x p and its k nearest neighbors.

n the sparse areas, the value of D local ( x p ) is relatively small. In the

ense areas, the value of D local ( x p ) is relatively large. 

efinition 3 (Boundary Degree) . Boundary degree refers to the de-

ree of boundary of data points. The boundary degree of x p is calcu-

ated by skewness Sc ( x p ) multiplying local density D local ( x p ). The def-

nition is as follow: 

ound ary d egree = S c (x p ) D local (x p ) = 

∑ m
j=1 

∑ k
i =1 (x i j − x p j ) 

2 

k 
∑ m

j=1

√ 

1
k

∑ k
i =1 (x i j − x ) 2 

.

(3)

Where, x refers to the average value of x p and its k nearest

eighbors. The smaller the boundary degree of data point x p is, the

loser x p gets to the central position of a cluster. But when the

oundary degree gets larger, x p will get closer to or be on the clus-

er margin position of a cluster. 

.2. Discussions on boundary degree 

To clearly and quantitatively study the changes of boundary de-

ree, this paper has examined the features of boundary degree

ith modeling. Suppose that x 1 , x 2 , x 3 , x 4 are the neighboring

oints of point p and point p is movable. Fig. 2 (a) shows that, t 1 
s located in the central position of x 1 , x 2 , x 3 , x 4 . Expand t 1 to get

hree groups of positions, including ( t 2 , t 3 , t 4 , t 5 ), ( t 6 , t 7 , t 8 , t 9 ) and

 t 10 , t 11 , t 12 , t 13 ). The circumradius of the three groups is apart with

 distance unit from one to another. ( t 10 , t 11 , t 12 , t 13 ) are located on

he margin position of a circumcircle formed by x 1 , x 2 , x 3 , x 4 . In ac-

ordance with the skewness definition, the value of boundary de-

ree should increase from t 1 to t 13 . Upon calculation, the boundary

egree value at relevant positions is shown in Table 1 , while the

-dimensional graph of boundary degree is shown in Fig. 2 (b). 

From Table 1 , the value of boundary degree of t 1 is the small-

st. Based on the position of t , t − t move outwards with a
1 2 5 

g skewness-based boundary detection, Neurocomputing (2017), 
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Table 1

Boundary degree of t 1 − t 13 . 

i ti S c ( t i 1 ) S c ( t i 2 ) S c ( t i ) D local ( t i ) Degree ( t i )

1 (3,3) 16 16 8 0.25 2.00

2 (2,3) 20 16 9 0.25 2.25

3 (3,4) 16 20 9 0.25 2.25

4 (4,3) 20 16 9 0.25 2.25

5 (3,2) 16 20 9 0.25 2.25

6 (1,3) 32 16 12 0.25 3.00

7 (3,5) 16 32 12 0.25 3.00

8 (5,3) 32 16 12 0.25 3.00

9 (3,1) 16 32 12 0.25 3.00

10 (0,3) 52 16 17 0.25 4.25

11 (3,6) 16 52 17 0.25 4.25

12 (6,3) 52 16 17 0.25 4.25

13 (3,0) 16 52 17 0.25 4.25
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Fig. 3. Differences between Conn and SubConn. (a) Conn (b) SubConn.

Fig. 4. Examples of Syn1. (a) data set (b) boundary degree ordering (c), (d), (e)

corresponding points of the three ranges (f) clustering results (g) boundary points

(h) noise points.
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istance unit, the boundary degree values is 2.25, with an increase

f 0.25, rising by 12.5%; t 6 − t 9 move outwards with a distance unit

rom t 2 − t 5 , the boundary degree values is 3, with an increase

f 0.75, rising by 33.33%; whereas t 10 − t 13 move outwards from

 6 − t 9 with a distance unit, boundary degree values of them are

.25, with an increase of 1.25, rise 41.67%. In regard to the same

eighboring points, boundary degrees increase quickly along with

 2 − t 5 , t 6 − t 9 , t 10 − t 13 , which is consistent with the conclusion

n the Fig. 2 (b) that the boundary degrees increase and change

apidly from the central position towards the outside. 

.3. Connection matrix 

efinition 4 (threshold α) . Threshold α divides points into internal

oints and non-internal points, functioning as a percentile after the

rder descending of boundary degree. 

efinition 5 (Connection matrix Conn ( i, j )) . Conn ( i, j ) shows the re-

ationship of point x i and point x j . Which is defined as follows: 

onn (i, j) = 

{
1 x i ∈ N k −dist (x j ) 
0 x i / ∈ N k −dist (x j ) 

. (4)

If point x i is the k nearest neighbor point of x j , the value of

onn ( i, j ) will be 1 ; otherwise, Conn ( i, j ) will be 0. So Conn is a

 × n matrix. 

efinition 6 (Connection matrix SubConn ( i, j )) . SubConn ( i, j ) shows

he relationship of point x i and point x j . SubConn ( i, j ) will be ob-

ained when removing the neighbor relationships of non-internal

oints from Conn ( i, j ). That is: 

ubConn (i, j) = 

{
Conn (i, j) x i is internal, x i ∈ N k −dist (x j )
0 x i is not internal, x i ∈ X 

.

(5) 

In the paper, Fig. 3 directly represents the differences between

he two matrixes. Fig. 3 (a) shows Conn and each point in Fig. 3 (a)

as 5 nearest neighbors. As indicated in the picture, there are

hree target clusters, which are actually connected by shared sides

inked by certain points. SubConn is shown in Fig. 3 (b). After re-

oving neighborhood relations of non-internal points (red points

n the picture), the three clusters are separated from each another,

hich is consistent with the actual conditions. Moreover, boundary

oints are situated on cluster margins, while noise points still exist

ndividually. 

Dataset Syn1 [50] ( Fig. 4 (a)), contains 6 target clusters and a

arge amount of noise points and interfering lines. Boundary de-

rees after ordering are displayed in Fig. 4 (b), while the corre-

ponding data points of three intervals are shown in Fig. 4 (c)(d)(e).
Please cite this article as: X. Li et al., A clustering algorithm using
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s shown in the three pictures, boundary degrees are able to dis-

inguish noise points and interfering lines from data set. We can

ell the outline of the clusters in Fig. 4 (d), but there are still some

oises in it. Therefore, it is not proper to identify cluster bound-

ries by this mean. 

The difference between boundary points and noise points is

hat: boundary points are within the range of clusters, while noise

oints drift away from clusters. Supposed α = 37 . 94% , we build

ubConn and conduct graph search, and display the subgraph in

hich the number of its object is bigger than k = 20 in Fig. 4 (f).

on-internal points within Fig. 4 (f) are presented in Fig.4(g). And

he points not in Fig. 4 (f) are shown in Fig. 4 (h). In compari-

on with Fig. 4 (d), Fig. 4 (g) removes misjudged noise points from

oundary points. 

.4. Algorithm description 

The algorithm first calculates the boundary degree of all points,

nd structure SubConn with threshold α, and at last perform sub-

raph searches to get clustering results. 

Algorithm: C-USB 

Input: dataset, the number of neighbors k , threshold α
 skewness-based boundary detection, Neurocomputing (2017), 

https://doi.org/10.1016/j.neucom.2017.09.023
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Fig. 5. The comparison of DBSCAN and C-USB on XOR. (a) Density (b) Boundary degree (c) Result of DBSCAN (d) Result of C-USB. 
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Output: clustering results, common boundary, singular bound-

ary, noises 

Steps: 

1. Calculate k nearest neighbors of point p and its boundary de-

gree, as shown in Definition 3 . 

2. Divide data into internal points and non-internal points with

threshold α, as shown in Definition 4 . 

3. Structure SubConn and conduct sub-graph searches, to obtain

clustering results, as shown in Definition 6 . The intersections of

non-internal point gathering and point sets in all clusters are

common boundary, whose intersection with a cluster is singu-

lar boundary. The points in the non-clusters are noise points. 

4. Experiments and analysis 

4.1. Experimental design and environment 

As the mainline of the experiment, datasets are selected from

low to high dimensions to test the performance of the algorithm

on different dimensions. The experiment is conducted on a MAT-

LAB 2012 computer equipped with Intel Core 2.93GHZ CPU, 4G

RAM, and Window 7 operation system. 

4.2. XOR dataset 

As the two-dimensional dataset generated by MATLAB, XOR

consists of four clusters of normal distribution with 10,0 0 0 points

(10 0 0, 20 0 0, 30 0 0, 40 0 0, respectively). The target cluster sizes and

densities of the target clusters are different from each other, and

the points scattering in the edge area are intertwined, as shown

Fig. 5 (a). This paper compares C-USB with DBSCAN to elaborate on

their differences. The experimental results are shown in Fig. 5 . 

Refer to Fig. 5 (a) and (b) for corresponding density and bound-

ary degree of data points. Fig. 5 (a) is in a cone shape, that means,

density on cluster edges reports the smaller value with mild

changes, while registering the bigger value at the core with rigor-

ous changes. This will lead to select a great number of data points

on the edge with the same density value, which is negative to se-

lect threshold to separate boundary and internal points. The val-

ues of boundary degree display to be an upside-down drop. In the

internal areas, there is little impact of multi-density on boundary

values, which change slightly. In the fringe area, significant changes

are detected in boundary degree, favorable for choosing threshold.

The cluster results drawn from the two algorithms are shown as
Please cite this article as: X. Li et al., A clustering algorithm usin
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ig. 5 (c) and (d), where gray points are internal, red is boundary

oint, and blue is noise point. The internal and boundary points

ncluded in clusters are marked with different colors for the sake

f visual comparison. As shown in Fig. 5 , the boundary points of

-USB are reported to be 456, with a reduction of 56.49%, to 592,

ess than DBSCAN algorithm. In this paper, the C-USB algorithm

tilizes fewer points to outline the boundary, as ways to reflect

he actual margin of clusters. Density-based clustering technology

onsiders that clustering is able to separate the high-density ar-

as in the low-density regions. Meanwhile, Support Vector Ma-

hine (SVM) believes that clusters can be divided by hyperplane.

ow density areas and hyperplane correspond to boundary points

f clusters, for instance, the support vector could converged by

oundary points. On the occasion of unsupervised, the algorithm

-USB is able to detect boundary points of clustering and effec-

ively reduce their number. When establishing a hyperplane with

oundary points rather than all points, the algorithm can remark-

bly decrease the number of support vector to reduce training hy-

erplane costs. 

.3. Dataset Syn2 

Dataset Syn2 consists of 5 clusters in different densities, a little

mount of noises, and a short bridge, which cases clustering algo-

ithm not to discover the correct cluster numbers. 

IS-DBSCAN is a typical algorithm to identify density by neigh-

or relationship, which determines non-internal points if IS k is

maller than the value of 2 k /3. This reduces its parameters, but

annot always obtain the best solutions, particularly, when pro-

essing datasets with noises and interference, it cannot effectively

djust the threshold for internal and non-internal points, causing

t not to correctly identify the number of clusters. Fig. 6 shows the

xperimental results of IS-DBSCAN and C-USB. 

Refer to IS k and boundary degree of points in Fig. 6 (a) and (b).

he value of IS k is finite integer. The narrow value range make

ome boundary and internal points select same values, which is

ot good for the selection of threshold. Boundary degree on the

on-edge of clusters are out of reach of the impact of cluster sizes

nd density, and changes greatly on the edge areas. This shows

hat the boundary degree is sensitive to boundary points, while

nsensitive to internal points. From Fig. 6 (c) and (d), boundary

oints of IS-DBSCAN cannot correctly report the outlines of clus-

er margin, causing many cluster internal points to be misjudged

o be boundary points. IS-DBSCAN cannot correctly identify short

ridges, giving rise to only 4 clusters being found (two clusters on
g skewness-based boundary detection, Neurocomputing (2017), 
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Fig. 6. Comparison of IS-DBSCAN and C-USB on Syn2. (a) IS k (b) Boundary degree (c) Results of IS-DBSCAN (d) Results of C-USB. 

Table 2 

Information of image datasets. 

Dataset Form No . Clusters 

Data1 28 × 28 1135,1028 Num. 1,7 

Data2 28 × 28 892,6265 Num. 5,7 

Data3 30 × 30 16,16,16,16,33 Acer:Palmatum,Pictum,tanoids,ubrum,noise 

Data4 90 × 80 33,34,72,58,23,16 S084,S086,S088,S135,S134,S089 
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Fig. 7. The Results of C-USB on Data1. 

 

a  

a  

s  

t

he right are misclassified to be the same one). However, bound-

ry points in the algorithm of the article are able to accurately de-

cribe the cluster outlines and effectively prevent short bridges, to

iscover 5 clusters in total. 

.4. Image dataset 

The analysis on high-dimensional data has been the bottle-

eck in data mining [51,52] . Although its impalpable to understand

igh-dimensional data, human is able to distinguish the differences

mong images. In this paper, each pixel point is deemed to be one-

imensional data, while translated images as high-dimensional

ata [53,54] . Some image datasets are organized to test the clus-

ering performance of the algorithm in high-dimensional data. 

The image datasets in the paper are from UCI standard-

zed dataset. MNIST dataset, Leaves plant species dataset, and

ohn_kanade dataset include many sub-datasets, which are se-

ected and translated into fixed format to build datasets, which is

hown in Table 2 . 

The algorithm results on data1 are shown in Fig. 7 , which con-

ains of digital 1 cluster, digital 7 cluster, and a small amount of

oises. The cluster boundary presents on the outermost of clusters.

For the purposes of convenient uses and easy understanding,

he writing of figures keeps to be simple, convenient, neatly, and

ognizable. The dataset combined with randomly-selected figures

hould be in normal distribution. That means, neat writing should

ccount for the majority of the dataset, the minority of untidy

ut cognizable writing, and even less indistinguishable. The results

rawn out from the algorithm is consistent with the distribution

rinciple. Internal points (standardized writing samples) contribute

o 92.46% of the dataset, boundary points (untidy but cognizable

amples) are of 4.3%, and noise points (indistinguishable writing

amples) only take 3.24%. It can be seen that, when writing in the

aily life, figures written in the pattern of boundary points in the

icture, will be recognized to be other digital numbers. 
Please cite this article as: X. Li et al., A clustering algorithm using
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Data3 dataset consists of four target clusters (16 points of each)

nd noise points (33). Different algorithms will process boundary

nd noise in different ways. See Fig. 8 for the experimental re-

ults of K-means++, IS-DBSCAN, ISB-DBSCAN, and C-USB, respec-

ively (noise points are shown in corresponding corners). 
 skewness-based boundary detection, Neurocomputing (2017), 
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Fig. 8. Results comparison of different algorithms on data4. 

Table 3 

Algorithm results comparison on Data1-4. 

Dataset Algorithm Accuracy (%) F-measure (%) Entropy Purity 

Data1 K-means ++ 95.61 97.76 0.2333 0.9561 

IS-DBSCAN 99.90 96.31 0.0103 0.9990 

ISB-DBSCAN 99.95 92.93 0.0062 0.9995 

C-USB 99.95 92.64 0.0059 0.9995 

Data2 K-means ++ 55.06 71.02 0.5242 0.8752 

IS-DBSCAN 99.86 95.22 0.0121 0.9986 

ISB-DBSCAN 99.76 89.05 0.0201 0.9976 

C-USB 99.92 94.53 0.0053 0.9995 

Data3 K-means ++ 56.70 72.37 1.0866 0.6495 

IS-DBSCAN 57.14 68.85 1.0469 0.6071 

ISB-DBSCAN 73.33 67.11 0.9626 0.7113 

C-USB 85.07 76.24 0.5727 0.8507 

Data4 K-means ++ 89.62 94.53 0.2362 0.9322 

IS-DBSCAN 100.0 92.24 0 1 

ISB-DBSCAN 80.38 81.27 0.5366 0.8038 

C-USB 100.0 96.49 0 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Information of UCI datasets. 

Dataset No . Dim No.ofClusters 

Breast cancer 699 9 458,241 

Seeds 210 7 70,70,70 

Heart statling 270 13 120,150 

Diabetes 768 8 268,500 

Chart time 600 60 100,100,100,100,100,100 
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As shown in Fig. 8 , different algorithms enjoy unique features.

K-means++ algorithm is of low accuracy for incapacity of de-

noising. Although IS-DBSCAN and ISB-DBSCAN have the function

of de-noising, they differ from each other. The former algorithm

identifies only less points to be noises and only find 3 clusters,

while the latter determines more points as noises and discovers

four clusters. The algorithm in the paper is able to accurately find

clusters, and judge the number of noises as accurate as possible. 

The algorithm assessment on Data1-4 refers to Table 3 . 

From Table 3 , C-USB enjoys great advantages in clustering ac-

curacy, entropy evaluation, and purity. In the F-measure evaluation

in Data1 and Data2, the algorithm is not considered to be the best

way, as it is connected with the features of assessment criteria.

The accuracy and recall rate of clustering algorithm are the two

sides of a coin. Better accuracy gives rise to low recall rate, vice

versa. F-measure integrates the two indicators, showing that the

value of F-measure will be larger, only if both accuracy and recall

rate are set with higher values. The C-USB is able to accurately dis-
Please cite this article as: X. Li et al., A clustering algorithm usin
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inguish internal and non-internal points, which relevantly reduces

he recall rate, causing F-measure value probably not to be opti-

al. However, it will improve the purity and accuracy of cluster

esults, which symbolizes the priority for clustering. 

.5. UCI DataSet 

The UCI database, founded by University of California Irvine, is

sed for machine learning and has been frequently-used and stan-

ardized testing dataset in the field. Five high-dimensional datasets

Breast cancer, Seeds, Heart statling, Diabites, Chart time —are se-

ected and shown in Table 4 . 

K-means++, IS-DBSCAN, ISB-DBSCAN and C-USB are processed

n datasets, with results presented in Table 5 . 

From Table 5 , the application of this algorithm can help achieve

etter accuracy, entropy evaluation and purity in different dimen-

ions. With the priority of clustering accuracy, the F-measure value

f the algorithm is not always as good as other algorithms. As a

atter of fact, the clustering accuracy normally outweighs other

spects in real cluster application, thereby, giving priority to clus-

ering accuracy is in line with the actual needs. Based on multiple

valuation criteria, the algorithm prescribed in the paper has been

n par with or outperformed the other latest clustering algorithms

f the same kind. 

.6. Large datasets 

To detect the effect of C-USB on datasets with various scales,

everal synthesized datasets [55] such as Aggregation, Aggrega-

ion+, Flame, Flame+, Sprial, Sprial+ have been selected. The ‘+’

ndicates that the points in the dataset have similar distribution

nd clustering feature with the original dataset. The difference is

hey are of different scales. The experimental results are shown in

able 6 . 

Due to the form of expansion, the clustering result indicates

hat C-USB can process data with various shapes effectively. While

he clustering result on k-means++, which is a partition algo-

ithm, cannot process non-spherical clustering problem. Thus, the

-means++ is not partitioned correctly in flame+, making NMI

ower and entropy evaluation higher than the other two algo-

ithms. Moreover, due to the partition of internal points and non-

nternal points, the C-USB can guarantee the clustering effect by

djusting parameters. For instance, in dataset spiral+, C-USB can

ocate the noise point of the number of clusters correctly by prop-

rly enlarging the proportion of dataset’s non-internal points when

here is a change in the scale of the data; thus, we could re-

uce difficulties in the process of locating the number of clusters.

till, the algorithm can locate the clusters correctly and guarantee

he accuracy. However, the parameters of IS-DBSCAN cannot cope

ith the enlargement in the scale of data effectively or locate the

umber of clusters correctly, making the index of entropy reaching

.6762, which is quite higher than C-USB. 

.7. Analysis on algorithm parameters 

Algorithm C-USB involves parameter k and α. Parameter k

epresents the number of close points in the dataset and α
g skewness-based boundary detection, Neurocomputing (2017), 
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Table 5 

Experimental results and comparison. 

Dataset Algorithm Accuracy (%) F-measure (%) Entropy Purity 

Breast cancer K-means ++ 65.52 79.17 0.9076 0.6552 

IS-DBSCAN 71.14 66.79 0.8644 0.7114 

ISB-DBSCAN 97.49 97.24 0.1476 0.9749 

C-USB 98.65 77.28 0.1032 0.9865 

seeds K-means ++ 89.28 94.34 0.4635 0.8905 

IS-DBSCAN 62.07 75.60 0.8526 0.6355 

ISB-DBSCAN 55.50 68.93 1.1687 0.5550 

C-USB 91.33 86.62 0.4069 0.9133 

Heart statling K-means ++ 55.56 71.43 0.9906 0.5556 

IS-DBSCAN 56.18 71.65 0.9889 0.5618 

ISB-DBSCAN 57.63 69.46 0.9828 0.5763 

C-USB 83.76 85.19 0.6328 0.8376 

Diabetes K-means ++ 65.10 78.86 0.9274 0.6510 

IS-DBSCAN 65.28 78.04 0.9298 0.6528 

ISB-DBSCAN 66.48 76.79 0.9188 0.6648 

C-USB 73.02 72.71 0.8296 0.7302 

Chart time K-means ++ 64.17 78.18 0.8560 0.6417 

IS-DBSCAN 66.67 80.00 0.6661 0.6678 

ISB-DBSCAN 72.18 83.01 0.6118 0.7218 

C-USB 80.55 69.31 0.5143 0.8055 

Table 6 

Compares the algorithm results with different scales. 

Dataset Number Evaluation K-means ++ IS-DBSCAN C-USB 

Aggregation 788 Accuracy 0.7652 0.8233 0.9937 

NMI 0.7820 0.8799 0.9837 

Entropy 0.4220 0.4890 0.0303 

Purity 0.8794 0.8265 0.9962 

Aggregation + 78,400 Accuracy 0.8126 0.9974 1 

NMI 0.8492 0.9959 1 

Entropy 0.2689 0 0 

Purity 0.9130 1 1 

flame 240 Accuracy 0.8375 0.9167 1 

NMI 0.3988 0.7761 0.9188 

Entropy 0.5573 0.0374 0 

Purity 0.8375 0.9957 1 

flame + 23,200 Accuracy 0.8588 1 1 

NMI 0.4765 0.9654 0.9654 

Entropy 0.4760 0 0 

Purity 0.8558 1 1 

spiral 312 Accuracy 0.3590 1 1 

NMI 0.0 0 01 0.9919 1 

Entropy 1.5835 0 0 

Purity 0.3494 1 1 

spiral + 3,120,0 0 0 Accuracy 0.3491 0.6635 1 

NMI 0.0 0 03 0.7282 0.8664 

Entropy 1.5842 0.6762 0.0 0 01 

Purity 0.3427 0.6635 1 
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epresents the proportion of the dataset’s non-internal points.

reast-cancer dataset is applied to the experiment to clearly state

he effect of parameters on algorithms. To facilitate the analysis,

s many parameters as possible will be selected and the 3D im-

ges in Fig. 9 show the related evaluation indexes. To avoid mis-

nderstanding, please notice the changes in starting values of the

xes. 

From Fig. 9 , the algorithm performance changes along with pa-

ameter differences. The value setting of algorithm evaluation de-

elops in the same trend, thereby, values has little to do with

lgorithm results. The effect of the algorithm would be signifi-

antly increased when the value of parameter α is optimum. So,

arameter α can influence the effect of the algorithm to a greater

xtant. 

To quantitatively analyze the effect of parameter changing on

valuation of the experiment, the variation tendencies of indexes
Please cite this article as: X. Li et al., A clustering algorithm using
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valuating the clustering effect of parameter k (160, 200, 240, 280,

20) and α (0.35–0.5) were selected, as shown in Fig. 10 . 

From Fig. 10 , the selection of value of parameter α, which has

 greater influence on the effect of the algorithm, is also regular.

hen the value of parameter α is relatively low, the recall rate

f the algorithm is high while the accuracy is low. This is be-

ause α represents the proportion of the non-internal point and

here might occur the situation where a boundary point is re-

arded as an internal point when the value of α is relatively low;

hus, the noise will be categorized to the cluster and the accu-

acy will decrease. Instead, too many internal points will be re-

arded as boundary points when the value of α is relatively high,

esulting in a low recall rate. With the precondition that there is a

ight number of clusters for the algorithm, the selection of param-

ter α can reflect the different strategies of the users who apply

he algorithm. If the application of the dataset requires relatively

igher accuracy, the value of the dataset should be properly higher.

qually, if the application requires a higher recall rate, the value

f the dataset should be properly lower. As is known, it’s impos-

ible to obtain the best accuracy and the most perfect recall rate

imultaneously. If the comprehensive analysis on data is required,

-measure should be optimal while securing higher recall rate and

ccuracy. The adjustment of parameter α reflects the flexibility of

lgorithm C-USB when confronting different datasets and applica-

ion scenes. 

.8. Analysis on algorithm time 

The time consumption of algorithm can be divided into two

arts. The first part is to calculate the boundary of data points,

ncluding the time O ( kn 2 ) consumed to calculate the local neigh-

or points of data points and the time O ( kmn ) consumed to cal-

ulate the boundary degree. The second part is used to find con-

ected matrix O ( mn ). Therefore, the time complexity is O ( n 2 ). The

aper aims to elaborate on skewness-based measurement meth-

ds and their corresponding clustering algorithms. That’s why no

omplex index structure is adopted to calculate k nearest neigh-

or points. Researchers figure out new way to calculate nearest

eighbor points for all data points [56–58] within O ( nlogn ), which

an be optimized to be algorithm time complexity by these index

tructures. 
 skewness-based boundary detection, Neurocomputing (2017), 
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Fig. 9. Effect of the qualitative analysis of parametric variation on clustering result. (a) Accuracy (b) Recall (c) F-measure. 

Fig. 10. Effect of the quantitative analysis of parametric variation on clustering result. (a) Accuracy (b) Recall (c) F-measure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

Based on the skewed distribution of data points in the bound-

ary area, this paper has proposed a skewness-based measurement

method. This method can effectively measure the boundary degree

of data points and distinguish the boundary points accurately of

the data. The performance of clustering or is on par with the ex-

isting latest algorithms. In addition, the boundary detected by the

algorithm stated in the paper can better represent the actual situa-

tion of clustering boundaries, which playing significant role in data

mining. 
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