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Abstract
Purpose – Faults in the actual outdoor performance of Building Integrated Photovoltaic (BIPV) systems can
go unnoticed for several months since the energy productions are subject to significant variations that could
mask faulty behaviors. Even large BIPV energy deficits could be hard to detect. The purpose of this paper is
to develop a cost-effective approach to automatically detect faults in the energy productions of BIPV systems
using historical BIPV energy productions as the only source of information that is typically collected in all
BIPV systems.
Design/methodology/approach – Energy productions of BIPV systems are time series in nature.
Therefore, time series methods are used to automatically detect two categories of faults (outliers and
structure changes) in the monthly energy productions of BIPV systems. The research methodology consists
of the automatic detection of outliers in energy productions, and automatic detection of structure changes
in energy productions.
Findings – The proposed approach is applied to detect faults in the monthly energy productions of 89 BIPV
systems. The results confirm that outliers and structure changes can be automatically detected in the monthly
energy productions of BIPV systems using time series methods in presence of short-term variations, monthly
seasonality, and long-term degradation in performance.
Originality/value – Unlike existing methods, the proposed approach does not require performance ratio
calculation, operating condition data, such as solar irradiation, or the output of neighboring BIPV systems.
It only uses the historical information about the BIPV energy productions to distinguish between faults and
other time series properties including seasonality, short-term variations, and degradation trends.
Keywords Renewable energy, Time series analysis, Automatic fault detection, Energy performance,
Operations and production management, Performance monitoring
Paper type Research paper

Introduction
Faults in the actual outdoor performance of Building Integrated Photovoltaic (BIPV)
systems can go unnoticed for several months since the energy productions are subject to
significant variations that could mask faulty behaviors (Leloux et al., 2014). Even large
BIPV energy deficits can be hard to detect (Drews et al., 2007). BIPV systems could be
manufactured in a wide range of sizes and installed in the most remote locations. In addition,
the energy output of these systems is typically the only accurate information about them
(Leloux et al., 2014). These characteristics of BIPV systems make cost-effective and
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automatic fault detection of BIPV systems challenging (Leloux et al., 2014). These faults
could lead to safety issues and fire hazards (Zhao et al., 2015). This study assesses the
feasibility of using the historical energy productions of BIPV systems as the only source
of information to detect faults.

This research introduces a new fault detection method that only uses the historical
information about the BIPV energy productions. The new approach is cost-effective as the
proposed method is capable of detecting the BIPV faults using only one source of
information, the time series of historical energy productions. This innovative approach
makes the automatic fault detection applicable to all sizes of photovoltaic systems
integrated with any buildings, even those that are in most remote areas. The hypothesis of
this research is that the rich information contained in the history of BIPV energy production
provides invaluable information to detect these faults. The real-world performances of the
PV systems contain valuable information that has not been fully utilized to evaluate
the faulty PV systems (Leloux et al., 2015). This research capitalizes on this opportunity by
providing a cost-effective approach for fault detection that works with minimal information
that is typically available.

Haeberlin and Beutler (1995) were probably among the first researchers that pointed
out the possibility of online error detection if PV power and losses are normalized.
Since 1995, several approaches have been proposed for the PV fault detection using
normalized performance indicators. Existing approaches for fault detection are typically
based on the calculation of a normalized performance indicator, such as performance
ratio (PR), and operating condition data, such as solar irradiation (Woyte et al., 2013;
Drews et al., 2007; Stettler et al., 2006). For example, Drews et al. (2007) developed a fault
detection approach working based on the difference between the simulated and actual
energy yields. This approach uses the satellite-derived irradiance and a PV simulation
model. Chouder and Silvestre (2010) also developed an automatic fault detection procedure
for PV systems based on the comparison of the simulated and measured energy yields.
It takes into account the environmental irradiance and module temperature evolution.
This fault detection procedure was further extended by Silvestre et al. (2013) for grid
connected PV systems. Firth et al. (2010) used performance data of 27 PV systems over a
one- or two-year period to construct simple empirical models of the performance of PV
systems during normal operation. This performance during normal condition was used as
a baseline to identify faults. Bonsignore et al. (2014) developed a neuro-fuzzy fault
detection method that identifies faulty behavior by comparing the value of six parameters
along with the I-V curves in normal and faulty conditions. Hachana et al. (2015) developed
a PV emulator for both normal and abnormal operating conditions. The amount of power
losses along with the information extracted from this emulator was used to detect defects.
Platon et al. (2015) developed a fault detection method based on the comparison between
the measured and modeled AC power productions. The model predicts the AC power
production using solar irradiance and PV panel temperature. Ghasempourabadi et al.
(2016) combined real-time shading simulations with BIPV performance monitoring to
detect faults. Dhimish et al. (2017) created a fault detection algorithm based on the analysis
of the theoretical curves that describe the behavior of an existing PV system considering a
given set of working conditions.

Recently, Leloux et al. (2014) proposed an automatic fault detection method for BIPV
systems that did not require solar irradiation data. They created a performance to peers
indicator and used the temporal and spatial correlation between energy productions of
neighboring BIPV systems to detect faults. They confirmed that it is possible to carry out
automatic fault detection without solar irradiation data. Although Leloux et al. (2014) did not
require solar irradiation data, their proposed fault detection method needs information
about the performance of peer BIPV systems that do not necessarily exist.
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In addition to the methods that detect faults at the PV system level, there are methods
detecting faults in photovoltaic system components such as arrays (Takashima et al., 2008;
Vergura et al., 2009; Kang et al., 2012; Hu et al., 2013; Zhao et al., 2013; Jazayeri et al., 2017;
Kuo et al., 2017). For example, Takashima et al. (2008) used the time domain reflectometry to
detect faults in PV module strings. Hu et al. (2013) created a photovoltaic module fault
detection using a parameter-based model that is coupled with an electrical model and
energy balance equation. The key parameters in this model include the total effective solar
energy, total heat exchange coefficient, and ambient temperature. Zhao et al. (2013) studied
three fault detection rules (3-Sigma rule, Hampel identifier, and Boxplot rule) for solar
photovoltaic arrays. They recommended Hampel identifier and Boxplot rule for PV array
fault detection. Although these methods are capable of detecting faults in PV system
components, they are not designed for automatic fault detection at the system level.
Jazayeri et al. (2017) created an artificial neural network-based power estimation approach
enabling fault detection in photovoltaic modules. Kuo et al. (2017) created a photovoltaic
energy conversion system fault detection using fractional-order color relation classifier.

The proposed automatic fault detection approach for BIPV systems using time series
methods departs from the findings of the literature survey. The proposed system-level
approach does not require PR calculation, operating condition data, such as
solar irradiation, and the outputs of neighboring BIPV systems. It uses historical
information in the energy production time series of a BIPV system to detect outliers and
structure changes. The objective of this research is to develop an approach to
automatically detect two categories of faults (outliers and structure changes) in the energy
productions of BIPV systems using time series methods. Net energy output is used to
represent energy productions.

Methodology
Energy productions of BIPV systems are time series in nature. Therefore, time series
methods are used to automatically detect faults (outliers and structure changes) in the
monthly energy productions of BIPV systems. The research methodology consists of
the following steps:

• automatic detection of outliers in energy productions; and

• automatic detection of structure changes in energy productions.

Figure 1 summarizes the methodology explained in the following sections. Figure 1 shows
the components of two major steps (outlier detection and structure change detection) in the
methodology and the inputs and outputs of each component.

Automatic detection of energy production outliers
An outlier is a BIPV energy production observation that is not consistent with the
remainder of energy production observations. The outliers of BIPV energy productions
could be related to momentary BIPV system faults, energy measurement errors, and file
preprocessing errors. The outliers should be identified before detecting structure changes
because they can cause significant bias in the analysis of BIPV energy productions
(Tolvi, 2000; Chen and Liu, 1993). Since energy productions are dependent time series
observations, statistical time series tests should be used to identify and characterize
outliers (Tolvi, 2000). There are two types of outliers: additive and innovative outliers
(Chang et al., 1988). An additive outlier just affects a single observation whereas an
innovative outlier also affects subsequent observations. The methods proposed by
Chang et al. (1988) are used as the basis for identifying and characterizing additive
and innovative outliers in the BIPV energy productions. The effect of an additive outlier
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Methodology
flowchart
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at time t¼T, with magnitude of ω, on a BIPV energy production time series {Et} can be
described using the following equation:

Et ¼ XtþoI ðTÞ
t (1)

where ITt ¼ 1 for t¼T and ITt ¼ 0 for t≠T, and {Xt} represents the BIPV energy production
time series that follows autoregressive integrated moving average (ARIMA) model. ARIMA
model is used to represent BIPV energy productions in Equation (1) because Jordan et al.
(2010) recommended it for analyzing the outdoor performance of BIPV systems over time.
A maximum likelihood test estimator is used to find additive outliers for a time series with
unknown parameters based on the following hypothesis (Chang et al., 1988):

H 0 vs H 1 : lT ¼ ~oI=sa (2)

where H0 denotes the null hypothesis that ω¼ 0 and H1 denotes the alternative hypothesis
thatω≠0. In order to test the hypothesis, we utilized the maximum likelihood estimate method
to find the unknown model parameters as if it contains no outliers. ŝ2a ¼ ð1=nÞPn

t¼1 ê
2
t is the

estimated noise variance and ôI ¼ êT , where êt for t¼ 1, 2,…, n are the residuals computed
from the estimated model. These estimates can be used to compute the test statistic
l̂T ¼ ôI=ŝa. We scan through the sequence of l̂1;t for t¼ 1, 2,…, n to detect the additive
outliers at unknown locations.

Similarly, a maximum likelihood test estimator is used to find innovative outliers for a
BIPV energy production time series with unknown parameters based on the following
hypothesis (Chang et al., 1988):

H 0 vs H 1 : lT ¼ ~oI=sa 1þp21þ . . .þp2n
� ��1=2

(3)

where πi (i¼ 1,…, n) are the parameters of the autoregressive process.

Automatic detection of energy production structure changes
Structure changes in the energy productions of BIPV systems are the result of changes in the
structure of time series, such as variance changes and level shifts. Tsay (1988) provided excellent
general discussions about structure changes in time series. In particular, the structure changes in
BIPV energy productions could be related to system failure or maintenance. The timing of these
failures and maintenance activities are not necessarily known and easy-to-identify. The change
point model framework introduced by Hawkins et al. (2003) and Hawkins and Zamba (2005)
and extended by Hawkins and Deng (2010), Ross et al. (2011) and Ross and Adams (2012) for
non-parametric change detection (with no knowledge requirement about the distributional form
of the data) are used in this study for identifying and characterizing various structure changes in
the time series of energy productions.

The basic idea is to test whether each energy production time series follow multiple
distributions. The test hypothesis involves evaluating a sequence of n energy production
observations e1, e2, ..., en with a structure change after some time τ and comparing the
distribution f0 prior to the change point, and distribution f1 afterwards. The hypothesis that
should be tested is provided in the following equation:

H 0 : Eief 0 e; y0ð Þ; i ¼ 1; 2; :::; n (4)

H 1 : Eie f 0 e; y0ð Þ; i ¼ 1; 2; :::; t
n

f 1 e; y1ð Þ; i ¼ tþ1; tþ2; :::; n

where θi is the potentially unknown parameter of each distribution.

Automatic
fault detection

for BIPV
systems

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 (

A
U

S)
 A

t 0
7:

14
 1

7 
A

pr
il 

20
18

 (
PT

)



Since the change point is not known in advance, a two-sample test has to be applied
at every possible split point τ for 1oτon. Mann-Whitney statistic is selected as the
two-sample test statistic (Dn) in this study. The test statistic is presented here:

Dn ¼ max
t

Dt;n�mDt;n

sDt;n

j 1oton
���� (5)

where Dτ,n is the two-sample test statistic for different values of τ, mDt;n
is the mean and sDt;n

is the standard deviation of two-sample test statistics, and Dn is the maximum standardized
statistic. The null hypothesis of no structure change is rejected if DnWhn for a predefined
threshold hn.

This approach for detecting a change point is extended to detect multiple change points.
Whenever a change point is detected, the above approach needs to be restarted from the
following observation in the sequence and the data before the identified change point should
be ignored (Ross, 2012). This extended approach is used in this study to detect multiple
structure changes in the BIPV energy production time series.

Results
Data set description
The monthly energy production data of 89 BIPV systems are used in this study. The data are
collected from Florida Solar Energy Center. Most of BIPV energy production time series
(76 percent of energy production time series) have a length more than one year and less than
five years. The average length of BIPV energy production time series is 39 months. Figure 2
shows the histogram of the lengths of the BIPV energy production time series in the database.

Long-term trend in the data set. The time series of energy productions of these 89 BIPV
systems are subject to long-term trends. Linear regression is used to characterize long-term
trend in the longitudinal energy productions. Linear regression is consistent with the literature
for characterizing long-term trend. It is found that the average of degradation in the BIPV
systems is 1.36 percent (where degradation exists and the slope of linear regression is negative).

Seasonality in the data set. The time series of energy productions of these 89 BIPV systems
are also subject to seasonality. Seasonality is the periodic behavior in BIPV energy productions
over time. BIPV energy production seasonality is highly correlated with external factors, such
as weather. Autocorrelation function (ACF) (Box and Jenkins, 1976) is used to evaluate the
cyclical behaviors of energy production time series. ACF of the energy productions are plotted
to assess the lag-dependent cyclical behaviors. Figure 3 shows the seasonality behavior of
energy production of a BIPV system and Figure 4 shows the corresponding ACF plot
of the energy production recorded for this BIPV system. The apparent seasonality and the
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Figure 2.
The histogram of the
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energy production
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lag-dependent cyclical behavior of the energy productions are evident from the ACF plot.
Similar seasonality behaviors were evident in the time series of energy productions of all BIPV
systems studied in this research. The seasonality makes the fault detection challenging.

Automatic detection of energy production outliers
The outlier detection method is implemented to identify outliers in the data set. It is found
that the energy productions collected from 59 systems (out of 89) include at least one outlier.
The average number of outliers per system is 1.5. This result shows the importance
of outliers. Therefore, these outliers cannot be ignored in fault detection. Figure 5 shows an
outlier in energy productions of a BIPV system. This outlier could be easily identified by
looking at the energy production time series. However, outliers are not always easy to
detect, since they could be masked by short-term variations, seasonality, and trend. Figure 6
shows an example of a hard-to-detect outlier that is successfully detected using the time
series approach proposed in this study.

Automatic detection of energy production structure changes
The energy production time series collected from 55 systems (out of 89) include at least one
structure change. The average number of structure changes per BIPV system is 1.1.
Figure 7 shows an example of a structure change in the energy productions of a BIPV
system. As it can be seen, there is an obvious structure change happened in early 2004.
However, similar to outliers, structure changes are not always easy to detect since they
could be masked by short-term variations, seasonality, and trend. Figure 7 shows an
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example of a hard-to-detect structure change happened in early 2006. This structure change
is successfully detected using the time series approach.

Figure 8 shows the frequency of observed structure changes in the BIPV energy
production systems in the data set. These results represent the significance of structure
changes and importance of detecting these faults in the BIPV systems.
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Conclusions
The results of this study show that time series methods can take advantage of historical
information in PV energy production time series to distinguish between faults and the other
time series properties including seasonality, short-term variations, and degradation trends.
In other words, it verifies the hypothesis that the rich energy production history provides
invaluable information to detect faulty behaviors. Development of the proposed
cost-effective approach to detect faults using the historical energy production could make
the automatic fault detection applicable to all sizes of BIPV systems integrated with any
buildings, even those that are in most remote areas. In the future, cost-effective prototype
equipment should be developed to automatically detect faults using the proposed
methodology detailed in this manuscript.
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