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Abstract This paper explores and quantifies the importance of parent brand state
dependence to forward looking pricing outcomes in the area of umbrella brand-
ing and multi-product firms. We show through numerical simulations that loyalty
(inertia) to the parent brand can decrease prices and reduce profits, as well as mit-
igate or even reverse the benefits of joint profit maximization relative to sub-brand
profit maximization. These effects are mediated by brand asymmetries and the rela-
tive magnitude of sub-brand state dependence effects. Empirically, we focus on the
Yogurt category, where we consider parent brands with several sub-brands. Using
household level scanner data, we estimate the parameters that characterize consumer
demand while flexibly accounting for consumer heterogeneity. We also estimate
unobserved product costs based on a forward looking price setting game. Through
counterfactual analysis, we study the overall effect of parent brand state dependence
on prices and profits, as well as the empirical impact of joint profit maximization and
changes in firms’ beliefs regarding consumer inertia. Our findings have implications
for markets where demand is likely characterized by parent brand dynamics.
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1 Introduction

Consumer packaged goods are frequently marketed under a brand name that encom-
passes a wide variety of both physical (size, package type) and taste attributes (low
fat, enriched with fruit, etc.). The practice of umbrella branding is observed across
many consumer products including durables (e.g. automobiles, electronics, comput-
ers) and services (e.g. TV shows, hotels). The usual interpretation of a brand name
is one of product identity: brands are identifiable in consumers’ minds and they are
associated with unique images that are both comparable and subject to preference
rankings. Past exposure to a brand’s performance should guide a consumer’s purchase
decision the next time they shop in a given product category.

Several studies have established that a consumer’s most recent experience with a
brand is an important factor in their next purchase decision (Seetharaman et al. 1999;
Seetharaman 2004; Anand and Shachar 2004; Horsky and Pavlidis 2011). This type
of persistence in demand (often described as state dependence or switching costs) has
unique and complex implications for the pricing behavior of firms. While demand-
side state dependence has been studied in academic research extensively over the last
two decades, the pricing side of the problem has received considerably less attention.
In general, state dependence in the demand for frequently purchased goods has been
found to create two countervailing forces on the equilibrium prices that forward look-
ing firms may charge (Farrell and Klemperer 2007; Dubé et al. 2009). On one hand, it
places an upward pressure on prices because consumers’ past choices partially “lock
them in”, making them less likely to switch. On the other hand, this “lock-in” also
creates a threat of lost future sales should today’s prices be set too high, yielding a
downward force.

The goal of this paper is to study the effect of state dependence on a multiproduct
firm’s forward looking pricing problem and its impact on profitability. In particular,
we focus on the implications of parent brand state dependence under umbrella brand-
ing. Given that the existence of switching costs is often motivated by brand loyalty
(e.g. Klemperer 1995), this is an important question that has not been fully addressed
in the extant literature. There are two issues to address in distinguishing the forward
looking pricing behavior of single versus multiproduct firms. First, it is important to
identify whether current demand for a specific product depends on past experience
with that product alone or if it also depends on past experience with other products
offered by the same firm, effectively rendering them dynamic complements. This is
a measurement issue. Second, when there is state dependence to the parent firm, the
two countervailing forces described above become more complex, since a firm that
maximizes the joint profits of a portfolio of products must account for the impact
of each product’s price on the future demand of its full set of offerings. This is a
structural question.

It is well known that optimal, myopic, multi-product pricing increases market
power by allowing the firm to internalize contemporaneous cross-cannibalization
within its product set, thereby better leveraging its “local” monopoly power. The
existence of firm state dependence has non-trivial implications for the magnitude of
the benefit that joint pricing provides because, for a forward looking multiproduct
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firm, two additional countervailing forces come into play. In addition to the “harvest-
invest” dilemma that single product price managers face, there is also a cross-product
“harvest-invest” dilemma. Consider the simple case of two product offerings, under
the same brand name, where the relevant pricing manager maximizes joint profits and
consumer demand is state dependent at both the sub- and parent-brand level. Decid-
ing on the price of each sub-brand, a forward looking manager must carefully weigh
two options: 1) charge a little more for each sub-brand since part of the lost demand
will inter-temporally accrue to the other sub-brand through state dependence to the
parent brand, or 2) lower the price of each sub-brand since this will create greater
future demand for the other sub-brand as well (the dynamic complement effect).
The total impact of any parent brand loyalty that past experiences create is naturally
determined by the balance of these two countervailing forces.

To illustrate this important tension, we first develop a set of theoretical results
to explore the impact of parent brand state dependence on firm prices and profits.
Our approach draws heavily on the framework developed by Dubé, Hitsch and Rossi
(DHR 2009), which we extend here to the case of multiproduct firms with multiple
layers of state dependence. Analyzing the demand for parent brands of yogurt that
offer a portfolio of sub-brands, we model state dependence (inertia) that applies both
to the overall parent brand (PBSD) and to all constituent sub-brands (SBSD), as well
as to the product type. Solving our computational model under a variety of conditions,
we first show that PBSD can lead to both lower prices and profits in equilibrium, so
long as the levels of state dependence are relatively moderate. For these moderate
levels of PBSD, the incentive to invest outweighs the incentive to harvest, leaving
prices lower and firms worse off in equilibrium (than a setting in which PBSD effects
are absent).

However, the presence of both PBSD and SBSD also make the firm’s multi-
product pricing problem more complex. In particular, we find that for certain regions
of the parameter space, a forward looking firm can be actually better off operating its
sub-brands as independent profit centers, as this allocation of decision rights breaks
some of the connections between current actions and future profits, thereby softening
the dynamic competition that state dependence fosters. We then further demonstrate
that this countervailing force is mitigated by greater levels of SBSD (which does not
exhibit this tension), rendering the overall effect an empirical question. To heighten
the connection to real-world settings, we introduce brand asymmetries to the the-
oretical model, demonstrating that the equilibrium impact of PBSD also depends
on the brand’s relative strength in the product market. In particular, we find that
PBSD makes the strongest firm stronger, at the expense of its weaker rival. These
asymmetries are critical to understanding the patterns revealed in our empirical
application.

Turning to this application, we study the empirical role of firm state dependence
on dynamic multiproduct pricing in the CPG yogurt category. We first establish the
empirical significance of PBSD (in addition to SBSD) by estimating a structural
model of individual-level demand using household level scanner data. Following
DHR (2009), we employ a rich distribution of consumer heterogeneity to account
for possible confounds between state dependence and unobserved tastes. We also use
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this demand system to recover estimates of product-level costs, employing the for-
ward simulation approach developed by Bajari et al. (2007). With these cost estimates
in hand, we then present a suite of counterfactuals that evaluate and build upon the
insights provided by our theoretical analysis.

We first show that, as suggested by the theoretical model and consistent with DHR,
higher levels of PBSD do generally lead to lower prices. However, the impact on
individual firms depends on their relative position in the market. In particular, the U-
shaped pattern of pricing applies only to the dominant brand - the prices of the smaller
brands decrease uniformly as PBSD increases. Interestingly, we also find that, while
the dominant firm sets prices that are lower than if PBSD were eliminated, increas-
ing the level of PBSD from its estimated value would lead it to increase its price and
earn even higher profits, at the expense of its weaker rivals. As the effect of PBSD
becomes stronger, the market leader is able to capitalize on the dynamic complemen-
tarities of its strong sub-brands even though the market as a whole becomes more
competitive. We also show that the leading parent brand would earn lower profits if, at
the estimated levels of PBSD, it lost its dynamic complementarities through market-
ing one or more of its sub-brands separately and not under a common umbrella brand.
In this case, the market leader would increase its price, but earn lower profits (due to
more intense competition with its now relatively strengthened rivals who, in this exer-
cise, would still enjoy their dynamic complementarities). Turning next to the question
of multiproduct pricing, we show that, in our empirical setting, joint profit maximiza-
tion actually yields higher prices and profits for all firms, as the standard intuition
would suggest. We conclude that, in the context studied here, the sub-brand effects
outweigh those of the parent brand with regards to the tension between dynamic
competition and the harvest incentive. Finally, we ask whether forward looking firms
would actually be better off if they were unaware of the existence of either sub-brand
or parent brand state dependence, and priced accordingly. We find that they in fact
would be, as this would serve to soften price competition. However, all firms would
need to be equally naive in their beliefs for this to occur. If only one firm followed
this limited information behavior, it would be at a disadvantage compared to its more
sophisticated rivals.

This paper makes several contributions to the literature. First, we establish the
empirical relevance of parent brand state dependence by estimating a corresponding
structural model of state dependent demand.We also provide a method for using these
estimates to recover inherently unobserved product level costs. Second, we provide
new theoretical insights into the impact of PBSD on firm pricing behavior, high-
lighting new implications regarding multiproduct pricing, the moderating influence
of SBSD, and the role of brand asymmetries. Third, we explore the practical impact
of PBSD on firms in the yogurt market, providing additional support for some of our
theoretical insights and identifying the limits of others.

The structure of the paper is as follows. In Section 2 we discuss the related liter-
ature. Section 3 presents our model of state dependent demand and forward looking
prices, as well as our theoretical simulations. In Section 4, we provide an overview of
the empirical setting and describe the data used in our application. Section 5 contains
the results of estimation, along with the full set of counterfactual exercises. Section 6
concludes.
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2 Related literature

2.1 State dependence and pricing implications

The implications of state dependence for firm behavior, market structure, and con-
sumer welfare have been analyzed extensively in both the economics and marketing
literatures. Farrell and Klemperer (2007) provide a comprehensive survey, cover-
ing both empirical and theoretical results. Of particular relevance to our study is
the impact on product market competition. Klemperer (1995) expresses the tradi-
tional view that switching costs make markets less competitive, as the lock-in effect
is likely to dominate the incentive to harvest. Viard (2007) empirically tests the
impact of portability switching costs on prices for toll-free services and finds a pos-
itive impact - prices decreased after the introduction of portability, which reduced
customer switching costs.

DHR (2009) challenged the conventional wisdom, showing that switching costs
can result in pricing equilibria which are more competitive - characterized by both
lower manufacturer prices and profits. The main intuition behind this result is that
if switching costs arising from state dependence are relatively low, the strategic
effect of attracting and retaining customers in a competitive market can outweigh the
harvest incentive. They demonstrate that switching costs for the categories of refrig-
erated orange juice and margarine, estimated using consumer transaction data, are
well within the range that increases competition. In related work, Dubé et al. (2008)
establish a similar result for category managers setting a portfolio of prices in a prod-
uct category: the prices of higher quality products decline relative to lower quality
substitutes in the presence of greater loyalty. Cabral (2008, 2016) showed that the
theoretical results of DHR (2009) generalize to a much broader class of models.

These new empirical findings have sparked additional theoretical research exam-
ining the impact of switching costs on equilibrium pricing. Arie and Grieco (2014)
demonstrate theoretically the existence of an additional “compensating” effect that
pushes prices downwards when switching costs increase from zero to moderate lev-
els. Based on this effect, single product firms may reduce prices to compensate
marginal consumers who are loyal to rivals. In their setting, the investing effect of
attracting future loyal customers decreases prices when switching costs increase,
provided that no “very” dominant firm is present in the market. Similar theoretical
results, with prices decreasing in the presence of relatively “low” switching costs,
are reported by Doganoglou (2010), who further proves the existence of an MPE that
supports switching in equilibrium.

2.2 Multiproduct firms / umbrella branding

In the context of multiproduct firms, Erdem (1998) shows the existence of cross-
category brand spillover effects. Consumers’ choices in the categories of toothpaste
and toothbrush reveal behavior consistent with the predictions of signaling theory. A
positive experience with a brand in one category reduces the perceived uncertainty of
the brand’s quality in a different but related category. Erdem and Sun (2002) extend
the above framework to include advertising. For the same product categories, they
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show that advertising, as well as experience, reduce uncertainty about quality and
also affect preferences. Under umbrella branding firms enjoy marketing mix syner-
gies that go beyond advertising. Draganska and Jain (2005) examine empirically the
category of yogurt and find that consumers perceive product lines to be different,
that they are willing to pay for quality, but that they consider flavors belonging to the
same product line to be of comparable quality. Miklos-Thal (2012) shows that for-
ward looking firms have incentives to employ umbrella branding for new products
only if their existing products are of high quality. Anand and Shachar (2004) test and
confirm that consumer loyalty to multiproduct firms is also driven by information-
related benefits. Anderson and De Palma (2006) outline how firms tend to restrict
their product ranges in order to relax price competition but that in turn generates
relatively high profits which attract more entrants to the market.

3 Model setting

3.1 Demand utility function

We model demand using a discrete choice framework. We assume consumers are in
the market for yogurt every week they visit a grocery store or supermarket, denoting
the purchase choice set by J and reserving the subscript 0 for the outside option of
not buying yogurt. An individual consumer h’s conditional indirect utility from con-
suming product j is composed of a linear index, U , and an additive Type I Extreme
Value demand shock, ε, yielding the well known logit probabilities for purchase of
each sub-brand.

uhjt = βhj − βhpPhjt + βhPBPBLhjt + βhSBSBLhjt + βhT T Lhjt + εhjt

= Uhjt + εhjt , j ∈ {1, ..., J } (1)

uh0t = εh0t (2)

Pr(Chjt = 1) = Pr
(
uhjt > uhkt ∀k ∈ J, k �= j, & max uhkt > uh0t , ∀k ∈ J

)

(3)

Pr(Chjt = 1) = eUhjt

1 + ∑
k∈J eUhkt

(4)

In the utility functions (1), βhj denotes the intrinsic preference for each choice
alternative j, while Phjt represents the alternative’s net price at week t. The choice
set is defined over sub-brands of popular parent brands that may cover one or more
different alternatives. The different levels of state dependence, for the Parent Brand
and/or the specific Sub-brand, are captured with the variables PBLhjt and SBLhjt

respectively. These are both indicator variables, the former taking the value one if
the household’s last purchase was for the parent brand of the choice alternative j
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and the latter being equal to one if last purchase was of the same sub-brand.1 For
a given alternative j there are three possibilities with respect to the brand related
loyalty variables: a) both PBLhjt and SBLhjt could be equal to one if the same
product line was bought last time, b) both PBLhjt and SBLhjt could be zero if an
alternative of a different brand than j was bought or c) PBLhjt could be equal to one
and SBLhjt could be equal to zero if another product line of the same parent brand
was last chosen by the consumer. Coefficients βhPB and βhSB thus capture the effect
of the previously purchased brand on the current period’s choice. Significant positive
values for both would imply the existence of demand state dependence associated
with both the specific sub-brand as well as the parent brand. If consumers tend to
repeat their choices only with respect to specific alternatives, but there is no purchase
reinforcement from the parent brand, then βhPB should not be statistically different
from zero.

In addition to brand related state dependence, we further allow for state depen-
dence with respect to the type of yogurt. The indicator variable T Lhjt takes the value
one for sub-brands that are of the same type (i.e. light or regular) as the last sub-brand
purchased by consumer h. By including this additional state variable in the utility
function, we ensure that the brand related variables do not confound sub-brand/brand
state dependence with state dependence to yogurt type. Finally, we note that con-
cerns regarding the potential endogeneity of price are mitigated by the inclusion of
brand intercepts. As is the case in many scanner data settings, the bulk of the varia-
tion in prices occurs across brands, presumably due to highly persistent differences
in ingredient quality or brand capital (both unobserved to the researcher), which will
be absorbed by these intercepts.

Dubé et al. (2010) highlight an important confound between state dependence
and unobserved preference heterogeneity: absent a rich representation of consumer
preferences, measured state dependence could simply be an artifact of unobserved
taste variation. To address this concern, we follow their approach, which controls for
heterogeneity by approximating the distribution of household coefficients across the
population with a flexible mixture of Normal distributions (Rossi et al. 2005).

βh ∼ N(β̄lh , �lh) (5)

lh ∼ multinomial (π) (6)

Including this flexible heterogeneity distribution should account for any persistence
in choice that is driven by consumer tastes. To further address any possible con-
founds, we also provide robustness tests assessing possible misspecification of the
heterogeneity distribution or the presence of consumer learning.

1In our empirical application, a small number of household Yogurt trips (roughly 3.4%) involve the
purchase of more than one sub-brand. For our empirical analysis, we treat these outcomes as separate
(contemporaneous) purchases, effectively allowing these consumers to be loyal to more than one product
(or brand).
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3.2 Demand estimation

Following Dubé et al. (2010), we estimate the demand model using a Bayesian
MCMC framework. Given diffuse standard priors for the parameters, we take draws
through a mixed Gibbs sampler with a Metropolis-Hastings step. To assess the con-
vergence of the posterior parameters, we visually inspect the series of draws and
experiment with adding more draws to ensure that the estimates are stable. We
compare different model specifications based on the Decision Information Criterion
(DIC).2

DIC(y|M) = 2 × D̂Avg(y|M) − D(y, θ̂ |M) (7)

where D(y, θ̂ |M) = −2 × log
[
l(θ̂ |M)

]
and D̂Avg(y|M) = 1

R

∑R
r=1 D(y, θr |M).

Lower values of DIC indicate a preferred model.

3.3 Total demand & evolution of states

While we use a very flexible heterogeneity distribution for demand estimation, we
use a single consumer type to approximate total demand and the evolution of states
that lead to future discounted profits. While it is straightforward in theory to add
more than one consumer type, the large number of choice alternatives considered
here quickly renders the pricing game intractable in practice.3 To mitigate this dimen-
sionality problem we restrict attention to a single consumer type for purposes of the
pricing model.4 Note that this does have implications for the firms’ incentives to price
discriminate, which could be lessened with fewer types.

Returning to the demand setup, at any period t, a fraction skt of all consumers
will have chosen a particular alternative k for their last purchase. The fraction of
consumers loyal to each sub-brand is the key state variable driving the firm’s dynamic

2DIC (defined in Eq. 7) is based on the Deviance of the model (D(y, θ̂ |M) = −2 × log[l(θ̂ |M)]) which
reflects discrepancy between the model and data. DIC is a more complete model selection metric compared
to the simple Deviance because it reflects coefficient uncertainty and penalizes model complexity (Gelman
et al. 2004; Gamerman and Lopes 2006).
3For example, in a market of one type and twelve sub-brands belonging to less than twelve parent brands,
the state space has dimension of eleven ((12-1)x1). If one wants to add a consumer type, the dimensionality
increases to twenty-two ((12-1)x2). Additional details regarding the overall size of the state space (and
dimensions of the associated grid) and the clear trade-off between consumer types and included brands
are provided in the Appendix.
4In a previous version of the paper, we instead allowed for two consumer types, but a smaller set of
sub-brands. While the main implications were qualitatively similar (results available upon request), the
smaller set of products is insufficient to highlight the strategic impact of multi-product pricing. A potential
advantage of specifying the pricing game with a single consumer type is that it makes it easier for firms to
track the current state when applying our methodology in practice. It is significantly more costly to track
the loyalty of different consumer types in conjunction with each type’s preference and price sensitivity
parameters.
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pricing problem. The probability of observing choice j conditional on k having been
chosen last is denoted by Pr(Cjt = 1|k). Since each product is associated with one
parent brand only, tracking past sub-brand choices is sufficient to characterize the
vector of state variables at both the brand and sub-brand level. That is, both PBLhjt

and SBLhjt are uniquely defined by the last product line chosen. Total demand for
product j is then given by

Djt =
J∑

k=1

skt × Pr(Cjt = 1|k) (8)

where
∑J

k=1 skt = 1. The state vector st = (s
,
1t ..., sJ t )

′ evolves deterministically
over time based on the choices made by consumers the previous period, following a
Markovian transition matrix Q. The element in the jth row and kth column of this
transition matrix is denoted by Qjk , and is equal to the conditional probability that a
consumer chooses sub-brand j, given that he or she is loyal to sub-brand k.

st+1 = g(Pt , st ) = Q(Pt ) × st (9)

Qjk(Pt ) =
{

Pr(Cjt = 1|k) + Pr(C0t = 1|k) if j = k

P r(Cjt = 1|k) if j �= k
(10)

The transition matrix is naturally a function of the demand parameters and prices
of all sub-brands. Given the choice probabilities (4) and the transition function (9),
the share at time t of a specific alternative j belonging to brand B depends on its share
at t-1 and also on the share at t-1 of the other alternatives that belong to parent B.
The dependence is operationalized through i) the state vector at t which determines
the distribution of loyalty values across consumers for the particular period, and ii)
the three state dependence variables, PBLhjt , SBLhjt , T Lhjt , and their associated
coefficients in the utility function.

3.4 Pricing behavior

We now specify a model of forward looking pricing based on the demand system
described above. There are K firms in the market, each of whom may carry several
sub-brands j ∈ f, j = 1, .., Jf , f = 1, ...K . Time is discrete and the profits of
each firm f in any period t are a function of the state vector and all market prices:
πf t (st , Pt ) = ∑

j∈f Djt × M × (Pjt − cj ) where st is the complete state vector, cj

is the marginal cost of sub-brand j, M is the total market size, and D and P denote
demand and prices respectively. Having the state vector enter the profit function
directly is equivalent to assuming that firms are fully aware of the state dependence
dynamics and observe the fractions of the market loyal to each sub-brand, setting
prices accordingly. The wide availability of rich scanner data makes this assumption
plausible, especially for established brand manufacturers with long presence in their
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respective markets, as is the case in our application. In equilibrium, firms have best
response pricing strategies that maximize their current and future profits conditional
on the payoff relevant information captured in the state vector. Focusing on pure strat-
egy Markov Perfect Equilibria, the associated Markov strategies are then functions
mapping the current state into the continuum of possible prices, σf : S → R.

3.4.1 Firm-level profit maximization

Firms maximize discounted total profits for all their products over an infinite horizon.
The current and future payoffs of each firm at any point in the state space (e.g.,
a specific allocation of consumer loyalties across sub-brands) are described by the
Bellman equation

Vf (s) = maxpj ≥0, j∈f

{
πf (s, P ) + βVf [g(P, s)]

} ∀s ∈ S (11)

in which g(·) is the transition kernel in Eq. 9. The value function Vf in Eq. 11
captures all payoffs, given a specific strategy profile for firm f, σf . We use the
notion of Markov Perfect Equilibrium to compute equilibrium prices in the form of
pure strategies. At equilibrium each firm has an optimal strategy that prescribes the
best response to all rivals, at all possible states. Denoting the strategy profiles of
competitors by σ−f , the optimal strategy for f, σ ∗

f , satisfies the following Bellman
equation

Vf (s) = maxpj ≥0, j∈f

{
πf

[
s, P, σ ∗−f (s)

]
+βVf

[
g(P, s, σ ∗−f (s))

]}
∀s ∈ S, ∀f ∈ K

(12)

3.4.2 Sub-brand profit maximization

With minor adjustments, the game and solution algorithm can be adapted to a set-
ting in which prices are set to optimize product level profits, rather than firm level
profits. In particular, our conception of this alternative pricing regime involves firms
treating their sub-brands as isolated profit centers, so that pricing decisions for sub-
brand j , for example, would not take into account the impact of product j ’s price on
the profits accruing to any other sub-brand k �= j owned by that same firm. How-
ever, we also assume that these pricing decisions are made with full knowledge of
the true impact of both parent- and sub-brand state dependence (i.e., the true demand
system). The idea is that by treating the sub-brands as profit centers, the sub-brand
managers would face no incentive to either 1) avoid cannibalizing the sales of other
sub-brands, or 2) account for possible increases in their sales due to dynamic comple-
mentarities. It is the latter effect that can lead to higher overall profits (by softening
competition), as we will demonstrate below. By comparing the optimal prices in
two different scenarios, one where firms maximize sub-brand profits jointly and one
where each sub-brand is its own separate profit center, we can evaluate the impact of
full firm-level profit maximization on profitability.
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3.4.3 Pricing equilibrium

Establishing the existence and uniqueness of a Bertrand Nash equilibrium between
multiproduct firms under logit demand is a challenging theoretical problem, even
in the simple static case where firms compete by maximizing current period prof-
its. While there are existence results for a variety of special cases, they are limited
to either static pricing assuming standard logit demand (without heterogeneity)
or dynamic pricing by single-product firms.5 We follow DHR (2009) in using a
numerical approach to computing pure strategy equilibrium for this fully dynamic,
multi-product game. Since the game may admit more than one equilibrium, we are
effectively assuming that our algorithm finds the correct one. While we do employ a
variety of different starting values for the algorithm, there are no known methods for
finding all equilibrium and thus no guarantee that we will find the correct one.

3.5 Equilibrium computation

To study the implications of parent brand state dependence for firm pricing decisions,
we solve for equilibrium steady state prices under different counterfactual assump-
tions regarding the role of parent brand state dependence or the underlying game
structure.6 Before obtaining steady state prices, we compute the optimal competitive
policies for each firm for each unique point in the state space. Given the formulation
of the game, the optimal price for each firm (or sub-brand, depending on the sce-
nario) depends on the state of the market, namely how many consumers are loyal to
the sub-brands of the respective firm at each point in time. The policy functions are
infinite-dimensional functions. The value function in Eq. 11 is also of infinite dimen-
sion since it is defined uniquely for each point in the state space. To circumvent the
intractable problem of solving for infinite-dimensional functions, we approximate
the solution to the dynamic game specified by Eqs. 11 and 12 by discretizing the
state space and interpolating the values for points outside this discrete grid. This gen-
eral approach is described in Judd (1998) and has been implemented successfully by

5Morrow and Skerlos (2010) prove and characterize the existence of Bertrand Nash equilibrium between
multi-product firms for a very general logit based demand system. Their framework imposes relatively
week restrictions on the specification of utility functions and price effects. To overcome the problem that
the logit-based profit functions of multi-product firms are not quasi-concave, they base their approach on
fixed-point equations. Although they generalize their numerical fixed-point approach for equilibrium price
computations to the Mixed logit context, they do not prove existence there. In forward looking settings,
there are proofs for existence of equilibrium between single product firms under standard logit demand.
A relatively common approach is to prove the quasi-concavity of the profit function (i.e. current period
profits plus the value function for a given state vector) which in turn guarantees the existence of a unique
profit maximizing price. Besanko et al. (2010), and DHR (2009) for a special case of their model, prove the
existence of equilibrium through quasi-concavity. Unfortunately, the same approach cannot be followed in
the case of multi-product firms as the profit function is no longer quasi-concave.
6Computing optimal prices requires knowing each firm’s costs. We first assume (for purposes of con-
ducting a variety of theoretical exercises) that costs are known to the researcher. We will later describe a
method for recovering cost estimates that are subsequently used in the counterfactual exercises provided
post-estimation.
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DHR (2009) and others. Details regarding our implementation of the algorithm can
be found in the Appendix.

3.6 Theoretical implications of PBSD

3.6.1 Symmetric brands

In this sub-section, we use numerical simulations to explore the theoretical impact
of parent brand state dependence on equilibrium prices and profits. Our results are
based on a simplified model that will help trace out these implications for a range of
state dependence parameter values. In our streamlined model, there are just two firms
and a single consumer. The first firm carries sub-brands 1 and 2, while the second
firm carries sub-brands 3 and 4. The utility function is a simplified version of the one
presented in Section 3.1, with the following symmetric parameter values: sub-brand
intercepts βj = 1 ∀j , price coefficient βp = −1 and costs cj = 0.5 ∀j ∈ 1, .., 4. The
parameters for parent brand (βPB ) and sub-brand (βSB ) state dependence vary across
different simulation scenarios. Following DHR (2009) we adjust βj as we increase
the state dependence parameters so that the size of the outside good remains constant
(note that increasing the level of state dependence reduces the share of the outside
good, thereby complicating the relevant comparative static). This allows us to isolate
the effect of the state dependence magnitude from market size expansion and provide
a ceteris paribus accounting of its impact on prices and profits.

Returning to the setup, brands (or sub-brands depending on the scenario) com-
pete each period for the consumer’s purchase while maximizing their discounted net
future profits. State dependence at time t is based on the consumer’s choice in the
previous period (e.g. state 1 refers to sub-brand 1 being chosen the previous period)
and it induces imperfect lock-in as the consumer always has positive probability of
switching and choosing any of the remaining sub-brands.

In each of Tables 1, 2 and 3 we report the average transaction price (p =
∑J

j=1
σj (s=1)×Pr(j |s=1)

∑J
k=1 Pr(k|s=1)

) of the pricing game for state s=1. This is the average price

that the consumer is expected to pay if, in the previous period, she chose sub-brand
1. Due to symmetry, the average transaction price is the same across all states. We
also report the optimal pricing policy and the value function of sub-brand 1 for each
possible state. Since sub-brands are symmetric in our numerical analysis, the policies
and value functions of all sub-brands are identical up to the value of the state variable.
Table 1 reports results for various values of parent brand state dependence (βPB ),
but no sub-brand state dependence (βSB = 0) (Case 1). Tables 2 and 3 then report
results for positive values of sub-brand state dependence (Case 2 for βSB = 0.5 and
Case 3 for βSB = 1 respectively). All three tables include two sets of results, one
corresponding to firms maximizing joint profits over their sub-brands and one for
sub-brand profit maximization. We note that the value function in both cases includes
the profit flow from both sub-brands (i.e., we report profits for firm 1, who owns
sub-brands 1 and 2).

The first conclusion we draw from this numerical analysis is that equilibrium pric-
ing policies have a U-shaped relationship to parent brand state dependence in the fully
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Table 1 Theoretical implications of PBSD - case 1: SBSD = 0

Joint profit maximization Sub-brand profit maximization

Average transaction price (p) and equilibrium policies (σ1)

PBSD p σ1(s = 1) σ1(s = 2) σ1(s = 3) σ1(s = 4) p σ1(s = 1) σ1(s = 2) σ1 (s = 3) σ1(s = 4)

0.0 1.94 1.94 1.94 1.94 1.94 1.70 1.70 1.70 1.70 1.70

0.5 1.77 1.91 1.91 1.61 1.61 1.62 1.69 1.69 1.53 1.53

1.0 1.62 1.88 1.88 1.25 1.25 1.56 1.68 1.68 1.33 1.33

1.5 1.49 1.84 1.84 0.88 0.88 1.51 1.68 1.68 1.09 1.09

2.0 1.37 1.81 1.81 0.50 0.50 1.47 1.67 1.67 0.83 0.83

2.5 1.27 1.78 1.78 0.11 0.11 1.44 1.67 1.67 0.53 0.53

3.0 1.39 1.81 1.81 0 0 1.32 1.67 1.67 0 0

4.0 1.68 1.89 1.89 0 0 1.53 1.68 1.68 0 0

5.0 1.85 1.93 1.93 0 0 1.64 1.70 1.70 0 0

Net discounted profits (value function)

PBSD V1(s = 1) V1(s = 2) V1(s = 3) V1(s = 4) V1(s = 1) V1(s = 2) V1(s = 3) V1(s = 4)

0.0 219.4 219.4 219.4 219.4 199.5 199.5 199.5 199.5

0.5 205.9 205.9 205.6 205.6 191.7 191.7 191.4 191.4

1.0 188.9 188.9 188.3 188.3 184.1 184.1 183.4 183.4

1.5 171.2 171.2 170.3 170.3 177.2 177.2 176.0 176.0

2.0 153.7 153.7 152.4 152.4 171.1 171.1 169.4 169.4

2.5 138.0 138.0 136.3 136.3 166.0 166.0 163.8 163.8

3.0 153.9 153.9 151.5 151.5 147.3 147.3 144.8 144.8

4.0 193.7 193.7 187.8 187.8 179.7 179.7 173.5 173.5

5.0 216.6 216.6 201.4 201.4 199.2 199.2 183.3 183.3

dynamic pricing model. Prices initially decrease with the magnitude of PBSD, reach
a minimum, and then start increasing thereafter. This result holds for all three val-
ues of SBSD considered, and matches the findings of DHR (2009) (for product-level
state dependence). The intuition is that, for moderate levels of PBSD, firms price
more aggressively to compete for future business across their portfolio of sub-brands.
As shown in Fig. 1, the U-shaped pattern of equilibrium pricing policies is driven
by dynamic incentives to invest in future sales, as it does not occur in the equiva-
lent myopic game. Figure 2 depicts the corresponding difference in profits between
the forward looking and myopic case. Similar to prices, profits also decrease for
moderate levels of PBSD, due to the enhanced dynamic competition. In the forward
looking case, as the magnitude of PBSD increases brands either charge relatively
higher prices to a loyal consumer (e.g. the policy at state 1 in the top left panel of
Table 1) or offer deep discounts to attract a non-loyal consumer (e.g. the policy at
states 3 or 4). For high values of PBSD, the loyal consumer is quite unlikely to switch
away and the firm must price very aggressively to attract their business. While these
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Table 2 Theoretical implications of PBSD - case 2: SBSD = 0.5

Joint profit maximization Sub-brand profit maximization

Average transaction price (p) and equilibrium policies (σ1)

PBSD p σ1(s = 1) σ1(s = 2) σ1(s = 3) σ1(s = 4) p σ1(s = 1) σ1(s = 2) σ1 (s = 3) σ1(s = 4)

0.0 1.85 1.92 1.92 1.76 1.76 1.58 1.69 1.53 1.53 1.53

0.5 1.69 1.89 1.89 1.41 1.41 1.50 1.68 1.50 1.34 1.34

1.0 1.55 1.86 1.86 1.05 1.05 1.44 1.67 1.47 1.12 1.12

1.5 1.42 1.82 1.82 0.67 0.67 1.39 1.66 1.45 0.87 0.87

2.0 1.32 1.79 1.79 0.28 0.28 1.35 1.66 1.43 0.59 0.59

2.5 1.30 1.78 1.78 0 0 1.32 1.65 1.42 0.29 0.29

3.0 1.49 1.84 1.84 0 0 1.31 1.65 1.41 0 0

4.0 1.74 1.90 1.90 0 0 1.46 1.67 1.41 0 0

5.0 1.88 1.94 1.94 0 0 1.53 1.69 1.41 0 0

Net discounted profits (value function)

PBSD V1(s = 1) V1(s = 2) V1(s = 3) V1(s = 4) V1(s = 1) V1(s = 2) V1(s = 3) V1(s = 4)

0.0 212.4 212.4 212.2 212.2 186.3 186.3 186.1 186.1

0.5 196.7 196.7 196.3 196.3 176.9 176.9 176.4 176.4

1.0 179.1 179.1 178.3 178.3 168.5 168.5 167.6 167.6

1.5 161.3 161.3 160.2 160.2 161.2 161.2 159.8 159.8

2.0 144.7 144.7 143.2 143.2 155.3 155.3 153.4 153.4

2.5 141.9 141.9 139.9 139.9 150.5 150.5 148.0 148.0

3.0 167.5 167.5 164.4 164.4 148.3 148.3 145.1 145.1

4.0 201.2 201.2 193.5 193.5 173.1 173.1 165.0 165.0

5.0 221.9 221.9 202.2 202.2 189.4 189.4 168.6 168.6

implications closely mirror the results of DHR (2009), there are additional (novel)
implications regarding the impact of multi-product pricing and firm asymmetries that
we turn to next.

The second robust pattern that emerges from this theoretical analysis is that PBSD
can actually decrease, and in some cases reverse, the benefit of centralized pricing.
Starting with Table 1 we see that, in most cases, the value function for state 1 (V1(s
= 1)) is greater under joint profit maximization, as would generally be expected.
However, at moderate levels of PBSD, the opposite is true. Figure 3 summarizes
the difference in net discounted profits under joint and sub-brand profit maximiza-
tion for the whole range of parameters we analyze. Note that there is a sizable range
of values for the PBSD parameter where forward-looking profits under joint profit
maximization are actually lower than forward looking profits under sub-brand profit
maximization. This is a striking result in which centralized pricing leads to lower
profits than de-centralized pricing. Our interpretation of this outcome is that, for this
range of parameter values, the future benefit of locking in consumers outweighs the
harvest incentive (under joint profit maximization) and leads firms to compete harder
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Table 3 Theoretical implications of PBSD - case 3: SBSD = 1

Joint profit maximization Sub-brand profit maximization

Average transaction price (p) and equilibrium policies (σ1)

PBSD p σ1(s = 1) σ1(s = 2) σ1(s = 3) σ1(s = 4) p σ1(s = 1) σ1(s = 2) σ1 (s = 3) σ1(s = 4)

0.0 1.74 1.90 1.90 1.52 1.52 1.45 1.67 1.32 1.32 1.32

0.5 1.59 1.87 1.87 1.17 1.17 1.38 1.66 1.26 1.11 1.11

1.0 1.46 1.83 1.83 0.79 0.79 1.33 1.65 1.22 0.87 0.87

1.5 1.35 1.80 1.80 0.41 0.41 1.28 1.65 1.19 0.61 0.61

2.0 1.25 1.77 1.77 0.02 0.02 1.25 1.64 1.16 0.33 0.33

2.5 1.43 1.82 1.82 0 0 1.21 1.64 1.14 0 0

3.0 1.59 1.86 1.86 0 0 1.29 1.65 1.12 0 0

4.0 1.80 1.92 1.92 0 0 1.38 1.66 1.10 0 0

5.0 1.91 1.96 1.96 0 0 1.42 1.68 1.10 0 0

Net discounted profits (value function)

PBSD V1(s = 1) V1(s = 2) V1(s = 3) V1(s = 4) V1(s = 1) V1(s = 2) V1(s = 3) V1(s = 4)

0.0 202.1 202.1 201.7 201.7 170.7 170.7 170.3 170.3

0.5 184.9 184.9 184.2 184.2 160.4 160.4 159.7 159.7

1.0 166.9 166.9 165.9 165.9 151.7 151.7 150.6 150.6

1.5 149.9 149.9 148.5 148.5 144.7 144.7 143 143

2.0 134.4 134.4 132.7 132.7 139.1 139.1 136.9 136.9

2.5 160.0 160.0 157.3 157.3 133.4 133.4 130.7 130.7

3.0 181.3 181.3 177.1 177.1 146.8 146.8 142.6 142.6

4.0 209.0 209.0 198.4 198.4 164.0 164.0 153.2 153.2

5.0 228.5 228.5 201.6 201.6 178.6 178.6 151.2 151.2

for the consumer’s business today. Notice that, as we show in Fig. 4, joint profit
maximization always generates higher profits when firms are not forward looking.
However, with dynamic incentives, the increased probability of future profit streams
across the sub-brand portfolio leads firms to lower prices today to invest in their clien-
tele tomorrow. By muting these dynamic incentives, firms can actually earn higher
profits by operating their sub-brands as separate profits centers, even after accounting
for the increased cannibalization of contemporaneous sales. It is important to note
that this is an equilibrium effect. When only one of the two firms employs sub-brand
profit maximization (while the other maximizes joint profits), that firm earns a lower
PDV over the whole range of parameter values.7 Thus, it is competition between
sub-brand portfolios that produces lower prices and profits. Note that the levels of
PBSD where we observe this behavior corresponds to the range where the average
transaction price is lowest overall. We see a similar result in Table 2 where, at PBSD

7These results are available from the authors upon request.
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Fig. 1 Equilibrium policy: forward looking vs myopic

= 2.5, the value function for state 1 under joint profit maximization is 144.7, while
under sub-brand profit maximization it is 155.3. The difference in profits between
sub-brand profit maximization and joint profit maximization is smaller in this case
but still positive; centralized pricing leads to stronger competition and lower profits
due to parent brand state dependence.

Fig. 2 Equilibrium profits: forward looking vs myopic
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Fig. 3 Benefit from joint profit maximization - forward looking

Interestingly, the negative effect of PBSD on the benefits of joint profit maxi-
mization is mitigated by greater values of sub-brand state dependence, for which
these countervailing pricing effects do not exist. As Fig. 3 shows, when SBSD is
higher, joint profit maximization yields higher profits for a wider range of PBSD val-
ues. In other words, when sub-brand state dependence is high, the incentive to avoid
cannibalizing the other sub-brands overwhelms the increased competitive pressure

Fig. 4 Benefit from joint profit maximization - myopic
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between firms that PBSD induces. This is reflected more clearly in the equilibrium
policies of sub-brand 1 when the consumer is loyal to sub-brand 2 (which belongs
to the same parent), σ1(s = 2). The difference in these policies between joint profit
maximization and sub-brand profit maximization, shown in Fig. 5, tends to increase
with SBSD. As SBSD increases, sub-brand 1 prices more and more aggressively to
win back the consumer and maximize its own profits. Centralized pricing internal-
izes this effect, leading to higher benefits compared to de-centralized pricing. In light
of this intuitive tension, we conclude that it is important to measure existing levels of
both PBSD and SBSD when evaluating centralized pricing.

The numerical analysis of the simplified model also yields insights into the relative
pricing of sub-brands and how this is affected by PBSD and centralized pricing.
Starting with Table 1, we see that under both joint and sub-brand profit maximization,
the pricing policy of sub-brand 1 prescribes a very similar price for states 1 and
2. With only parent brand state dependence and under joint profit maximization,
firm 1 views loyalty to sub-brand 1 or 2 as inter-changeable, and sets prices that
mitigate within-brand competition. Optimal prices of sub-brand 1 for states 1 and
2 are also very similar under sub-brand profit maximization. Since we assume that
firms have full information on the state variable and the demand system, the manager
pricing sub-brand 1 knows that, in this game, state 1 is as good as state 2 and prices
accordingly. However, when sub-brand state dependence is introduced in addition to
PBSD, we see a different picture (Tables 2 and 3). Under joint profit maximization,
firms still price their sub-brands quite similarly when the consumer is loyal to one of
their products. For example, firm 1 sets almost exactly the same price in states 1 and
2, reflecting the internalizing of cross-product cannibalization effects. It also prices
similarly when the consumer is loyal to the rival firm, irrespective of which rival

Fig. 5 Difference in σ1(s = 2) between joint profit maximization and sub-brand profit maximization



Implications of parent brand inertia for multiproduct pricing

sub-brand the consumer purchased last. To be clear, this result is partly driven by
symmetry, but nevertheless contrasts in an informative way with the corresponding
pricing policies under sub-brand profit maximization. The same symmetrical sub-
brands have markedly different pricing policies depending on which one is favored
by the consumer’s state. Under state 2, where the consumer is loyal to sub-brand
2, sub-brand 1 charges a lower price compared to state 1 albeit still higher than the
rival firm’s sub-brands which do not benefit from PBSD. In this sense, we see that
PBSDmay lead firms more to price more uniformly compared to SBSD, to the extent
this is supported by sufficient symmetry in sub-brand preferences. Intuitively, when
consumers tend to repeat their choices within the brand portfolio and there is no
state dependence to the sub-brand, even self-interested sub-brand managers will not
compete with sub-brands of the same parent but only with the rival parent brand.
From a forward looking perspective, consumers in this case would be equally likely
to buy sub-brand 1 next time irrespective of whether they chose sub-brand 1 or 2
before. What is important therefore is a good understanding of the loyalty dynamics
across sub-brands, even if each sub-brand maximizes its own profits.

3.6.2 Asymmetric brands

To expand the applicability of our simplified model to more realistic scenarios, we
also consider a setting where the sub-brands of one firm have stronger preferences
than those of its rival. We keep most parameter values the same as in the symmet-
ric case, changing only the sub-brand intercepts, which are now set at βj = 1.25
for the “strong preferences” sub-brands of firm 1 and as βj = 0.75 for the “weak
preferences” sub-brands of firm 2. This configuration allows us to explore how the
results change when tastes differ. Figure 6 shows equilibrium net discounted profits
(i.e. value functions) for the two firms at different values of PBSD. For this particular
example, we set the SBSD coefficient to 0.5 and compute the profits for state 1 (with-
out loss of generality, since the pattern looks very similar for the other states as well).
Interestingly, while the combined PDVs of the two firms decrease as the magnitude
of PBSD increases, the profits of the strong brand actually increase at the expense of
the weak brand; PBSD leads to increasing dominance. Intuitively, when brands have
asymmetric preferences, they continue to compete more aggressively to win future
sales as PBSD increases, but the stronger brand benefits while the weaker brand is
hurt, a result that extends across most moderate levels of PBSD. Figure 7, which
shows the share of profits earned by each firm, reveals that, for most of the range of
PBSD coefficient values, the strong brand commands a larger share of total profits as
PBSD increases. These additional results regarding asymmetric brands paint a more
complete picture of the dynamics behind PBSD and its impact on forward looking
profits.8 On the one hand, they suggest that forward looking market leaders may have
incentives to foster a certain level of parent brand loyalty, even if that would make the

8With regards to the effect of PBSD on the benefits of joint profit maximization, we found that brand
asymmetry did not add any new insights to the findings reported above, so we do not repeat a similar
discussion here.
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Fig. 6 Forward looking equilibrium profits for asymmetric brands

overall market more competitive, as they stand to benefit relative to their rivals. On
the other hand, it indicates that the full impact of state dependence depends on subtle
features of the market environment, rendering the observed implications an empirical
question, which we turn to next.

Fig. 7 Forward looking equilibrium profit shares for asymmetric brands
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3.7 Cost estimation

Solving the equilibrium pricing game for the full empirical model (so as to conduct
counterfactual analyses regarding changes in the underlying environment) requires
knowing product level marginal costs. Since we do not observe costs (or even whole-
sale prices), we instead rely on the pricing policy implied by our framework (together
with the estimated demand system) to infer their values. Our estimation approach is
based on the method developed by Bajari et al. (2007) (BBL), adapted to the dynamic
pricing model outlined in Section 3.4. Specifically, we recover costs that rational-
ize the prices observed in the data, assuming that firms are behaving optimally.
Since joint profit maximization is a priori expected to generate superior profitabil-
ity, we assume that this is how they actually behave (i.e. maximizing profits across
all sub-brands, while taking into account both sub-brand and parent brand state
dependence). The implied costs are then used to evaluate alternative (counterfac-
tual) pricing strategies, such as decentralized pricing, by re-solving the full dynamic
pricing game.

The BBL approach involves two steps. In the first step, we recover the firms’
policy functions directly from the their observed actions and use these policies to
forward simulate value functions for each firm (as a function of the unknown cost
parameters). Along with the value functions corresponding to the firms’ observed
policies, we also compute parallel value functions corresponding to “counterfactual”
or perturbed policies. In the second step, we use a minimum distance estimator to
recover the structural parameters that rationalize the observed “optimal” behavior,
by requiring that the observed policies outperform the perturbed ones. Neither step
involves solving for equilibria, but does rely on a maintained assumption that the
same equilibrium is played throughout the data frame. Details regarding the full
estimation procedure are provided in the Appendix.

4 Empirical application

4.1 Data

Our empirical model of the Yogurt category uses scanner data drawn from the widely
available IRI Marketing Dataset (Bronnenberg et al. 2008). The sample used for anal-
ysis includes household level shopping trips for groceries, purchases of well known
yogurt products of the most popular size in the category (6 oz), and the respective
prices for each sub-brand. The time period covered includes years 2002 and 2003 for
a total length of 104 weeks. Additional purchase histories from year 2001 are used to
construct the initial conditions of brand and product loyalty for each household. To
ensure proper tracking of choices over time, we exclude households who do not sat-
isfy the IRI criteria for regular reporting of information. The choice set used for the
estimation covers five parent brands with twelve sub-brand lines in total, as shown
below.

Sub-brands of the same brand name in this category are moderately differentiated
in packaging, labelling, shelf space and ingredients. In all cases, the parent brand



P. Pavlidis, P. B. Ellickson

Table 4 Marketplace descriptive statistics

Parent brand Sub-brand Total New Price/lb Share

Flavors Flavors Average Std Dev.

Dannon Dannon creamy fruit blends 6 6 1.581 0.18 0.01

Dannon Dannon fruit on the bottom 9 9 1.712 0.32 0.04

Dannon Dannon light n fit 12 12 1.790 0.24 0.07

Dannon Dannon light n fit creamy 6 6 1.674 0.10 0.03

Kemps Kemps classic 9 0 1.261 0.12 0.04

Kemps Kemps free 11 0 1.361 0.20 0.05

Old Home Old home 8 1 1.383 0.19 0.01

Old Home Old home 100 calories 9 1 1.341 0.18 0.04

Wells BB Wells blue bunny lite 85 16 2 1.403 0.11 0.14

Yoplait Yoplait light 15 1 1.671 0.16 0.23

Yoplait Yoplait original 24 1 1.671 0.14 0.24

Yoplait Yoplait thick and creamy 15 2 1.676 0.13 0.09

Total 140 40 1.551 0.24 1

name is prominent and clearly visible on the package of each sub-brand. Hence, con-
sumers are able to identify or recall both the parent brand and the specific sub-brand
name when shopping. In some cases the product lines of the same brand have very
similar prices, like Yoplait Light and Yoplait Original. On the other hand, some brands
use price as a differentiator between their various sub-brands; for example Kemps
Classic is priced 10 cents lower than Kemps Free per pound. Table 4 reports the
number of different flavor varieties per sub-brand, average price, standard deviation
of price and category market share. Yoplait and Wells Blue Bunny carry the great-
est number of flavors, consistent with their share leadership positions, which ensure
ample shelf space and a large pool of loyal customers. Prices vary across brands,
sub-brands and weeks/stores within any given sub-brand. Kemps is the lowest priced
brand of the sample and carries the fewest flavors while Dannon has the two most
expensive sub-brands with a moderate number of flavors but the largest number of
sub-brands. The product category we are modeling is mature and relatively stable.9

Table 5 reports quartile, median and mean statistics for several metrics across
households. The average number of shopping trips in our sample is 88.3, while the
average number of trips with Yogurt purchases is 23.1. Only about 3.4 of those trips
involve the purchase of multiple sub-brands during a single trip, mitigating somewhat

9Excluding Dannon, the rest of the brands collectively only had eight new flavor introductions over the
two years covered by our sample. While Dannon did introduce several new varieties at this time (to build
its position with new SKUs and refresh existing labels), it is important to note that Dannon enjoyed wide
distribution in the US for many years prior to our sample period and is a well-established brand. Moreover,
the new varieties mainly involved a re-positioning of 0.5 pound SKUs to match the 0.375 pound size of
the market leader Yoplait.
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Table 5 Choice summary statistics

1st quartile Median Mean 3rd quartile

Shopping trips 82 91 88.3 97

Trips with purchase 13 20 23.1 29

Trips with multiple sub-brand purchase 1 2 3.4 4

Number of brands bought 2 3 3.2 4

Number of sub-brands bought 3 5 5.2 7

Switches within brand 3 6 7.9 11

Switches to other brand 1 4 6 9

concerns regarding variety seeking. To simplify estimation, we treat these multiple
sub-brand purchases as separate observations, a practice typical in the scanner data
literature. In particular, when a household is observed to buy more than one sub-
brand on a given week, we track the household’s state dependence to all purchased
sub-brands (e.g., loyal to Yoplait Original and toDannon Light N Fit). Rows four and
five of the table report the number of different variants and different parent brands
bought by each household in the sample; the average number of sub-brands a house-
hold purchased is 5.2 while the average number of brands is 3.2. This is evidence that
there is switching observed in the data, which is clearly needed to identify switch-
ing costs. Rows three and four show a more specific pattern, namely that the number
of sub-brand switches to a variant of the same parent name (Switches within brand)
is higher than the number of switches to a variant of a different parent brand name
(Switches to other brand). This pattern holds across the range of the household distri-
bution (i.e. 1st quartile, median, 3rd quartile) with the respective averages being 7.9
versus 6.

5 Results & discussion

5.1 Demand estimation

We begin the discussion of our empirical results by reporting DIC values for model
selection. In the first three rows of Table 6, we evaluate the importance of including
state dependence to both the sub-brand and parent brand. Based on the fit measures,
adding sub-brand and type state dependence improves the fit of the demand model to
the data. This is evident by the DIC values decreasing from the first row of Table 6
to the second. Moreover, parent brand state dependence adds even more explanatory
power, as DIC values decrease further in the third row of the table. Together, this is
evidence that: i) consumers do tend to repeat their sub-brand (or type) choices over
time (controlling for price effects and intrinsic preferences) and ii) they also tend to
become loyal to parent brand names in cases where they switch their product line
choice. In the next few rows of Table 6, we report results from model specifications
where consumer heterogeneity is a mixture of Normal components. The preferred
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Table 6 Model selection results
Mixtures State dependence DIC

1 component None 68117.6

1 component No brand SD (only sub-brand and type) 67215.4

1 component Full state dependence 67114.3

2 components Full state dependence 67157.9

3 components No SD at all 67954.3

3 components No brand SD (only sub-brand) 67201.4

3 components Full state dependence 67113.7

4 components Full state dependence 67150.0

heterogeneity specification, based on DIC, includes three Normal components
(bolded in table). Furthermore, in the case of three components, incorporating sub-
brand, type and parent brand state dependence improves the fit of the model. In the
last row we explore whether adding more components to the heterogeneity mixture
provides an even better fit, which it does not. Based on these results, we use average
posterior mean household estimates from the three component mixture specification
to estimate costs and compute market equilibrium and counterfactual scenarios.

The demand estimates used for the cost and the pricing model are reported in
Table 7, which presents mean posterior estimates across the households in the esti-
mation sample. The sub-brand specific preferences reflect the popularity of each

Table 7 Demand results
Sub-Brand Posterior Estimates

Mean [5, 95] pctl

Dannon creamy fruit blends −2.896 [−7.99, 2.98]

Dannon fruit on the bottom −2.690 [−8.17, 3.86]

Dannon light n fit −1.083 [−6.42, 4.86]

Dannon light n fit creamy −2.126 [−7.29, 3.26]

Kemps classic −3.460 [−8.33, 2.03]

Kemps free −2.860 [−7.82, 2.51]

Old home −4.255 [−9.05, 1.01]

Old home 100 calories −2.790 [−7.86, 2.47]

Wells blue bunny lite 85 −1.781 [−6.10, 2.88]

Yoplait light −0.685 [−5.90, 4.19]

Yoplait original −0.628 [−6.04, 4.52]

Yoplait thick and creamy −2.077 [−7.33, 3.26]

Price coefficient −2.186 [−5.20, 0.41]

State dependence

Parent brand 0.286 [−0.56, 1.15]

Product line 0.729 [−0.27, 1.85]

Reg./ light type 0.313 [−0.45, 1.09]
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Table 8 Identification testing
on shuffled sample Mixtures State dependence DIC

3 components No SD at all 68039.6

3 components No PBSD (only sub-brand and type) 68269.2

3 components Only PBSD (no sub-brand and type) 68193.8

3 components Full state dependence 68293.6

alternative. Yoplait Original and Yoplait Light are the market share leaders in this
category and have the least negative taste coefficients.10 The estimates of state depen-
dence reveal that the effect of lagged purchase on utility due to purchasing the same
sub-brand is a little over two and a half times that of the parent brand; the correspond-
ing estimates are 0.729 and 0.286 respectively. State dependence based on fat content
has comparable size to PBSD. The economic importance of these state dependence
parameters is described below.

5.1.1 Robustness to confounds

As noted earlier, due to its inherently residual nature, structural state dependence
is vulnerable to a potential confound with unobserved heterogeneity, hence the use
of the mixture of Normals in estimating the demand system. To assess robustness
to a misspecified heterogeneity distribution, we ran empirical tests similar to those
of Dubé et al. (2010), which are based on the idea that structural state dependence
depends on the actual sequence of purchases (i.e. what you actually purchased last),
while unobserved heterogeneity should be more persistent (i.e. what you tend to pur-
chase a lot). In particular, we randomly shuffled the order of observations within
each household in our sample and then estimated versions of our model without state
dependence, with only sub-brand state dependence and finally including parent-brand
state dependence as well. The various model specifications are compared based on
DIC values.

If our estimated measures of inertia were spurious and only captured unobserved
heterogeneity, when we add them to the model and estimate on the shuffled obser-
vation data set, we should still find that they add predictive power to the model (e.g.
DIC decreases). In contrast, we find that adding sub-brand state dependence to the
model when observations are shuffled does not add significant information. Simi-
larly, parent-brand state dependence also does not improve the fit when the purchase
order is shuffled. As shown in Table 8, the preferred model in this series of tests is
the one without any state dependence at all (bolded in table). This is strong evidence
that what we estimate in our model with the correct order of purchases is structural
inertia and not masked heterogeneity.

10Preference estimates are negative because they are estimated against the normalized outside option,
which has the greatest share in the sample since most consumers do not purchase yogurt every time they
go to a grocery store.
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Table 9 Alternative explanation test - model selection

Mixtures Test specification DIC

3 components Add brand experience only 66508.8

3 components Add brand experience and interaction with state dependence 66568.0

A second potential confound, also noted and addressed in Dubé et al. (2010), con-
cerns the role of consumer learning. In particular, if consumers are initially unsure
about the match value of products (and engage in learning behaviors to identify their
best match), then their choice histories might exhibit inertia patterns that are sim-
ilar to state dependence. We note first that the category considered here has well
established brands and does not involve large purchase quantities (or highly storable
products). This makes it less likely that consumers are either learning about match
values or are otherwise forward looking in their everyday decision-making process.

However, to further test whether our model captures state dependence as opposed
to learning, we use a second test developed by Dubé et al. (2010). In particular, we
re-estimate our model controlling for consumers’ experience and how it interacts
with state dependence. If our estimates reflect learning rather that structural state
dependence, we should find that the interaction of cumulative brand purchases with
sub-brand state dependence adds information to the model (increases explanatory
power). In particular, as consumers gain more experience with the sub-brands they
are buying, their state dependence should decrease to zero. The results, presented in
Table 9, reveal that adding the interaction of brand experience with state dependence
does not add meaningful information to the model. The DIC value of the model with
the interaction (M2) is much higher than the one for the model without the interaction
(M1).11 This shows that inertia exists even controlling for consumers’ cumulative
experience, providing additional justification for our focus on state dependence.

5.2 Pricing implications

5.2.1 Cost estimates

Before turning to our counterfactual exercises, we first report the results from the
cost estimation procedure laid out in Section 3.7. The results from this exercise
are reported in the right side columns of Table 10. For comparison, we also report
cost estimates from a simpler, static pricing-based procedure that instead implements
a single period Bertrand pricing game evaluated at the average sub-brand prices

11We note that, similar to the approach used by Dubé et al. (2010), we only test for the interaction term by
comparing to a model specification which includes brand experience but not the interaction. Comparing
to our full base model would not be appropriate since the models evaluated for this sub-section contain
additional information.
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Table 10 Cost estimates
Sub-Brand Static Game Dynamic Game

Est. Est. 90% CI

Dannon creamy fruit blends 1.117 1.175 [1.157, 1.204]

Dannon fruit on the bottom 1.256 1.243 [1.217, 1.267]

Dannon light n fit 1.325 1.338 [1.322, 1.385]

Dannon light n fit creamy 1.210 1.322 [1.292, 1.347]

Kemps classic 0.797 0.942 [0.879, 0.962]

Kemps free 0.904 1.052 [1.022, 1.083]

Old home 0.933 0.953 [0.924, 0.986]

Old home 100 calories 0.884 0.853 [0.839, 0.876]

Wells blue bunny lite 85 0.937 0.995 [0.982, 1.022]

Yoplait light 1.190 1.296 [1.275, 1.310]

Yoplait original 1.186 1.274 [1.228, 1.293]

Yoplait thick and creamy 1.194 1.281 [1.235, 1.330]

observed in the data (and the respective steady state that corresponds to them).12 We
note first that the cost estimates exhibit sensible patterns: the pricier and higher qual-
ity brands have higher production costs. Moreover, for 10 out of 12 sub-brands, the
cost estimates from the dynamic game are higher than those of the static version, the
only two exceptions being Dannon Fruit on the Bottom and Old Home 100 Calo-
ries.13 Apart from these two exceptions, the dynamic cost estimates are higher than
those implied by a static model. The difference is largest for Kemps (more than 15%)
and Yoplait (more than 7%). We note that this result already suggests that, in our
empirical application, the ‘invest’ motive outweighs the ‘harvest’ motive. This stems
from the duality in the problems of obtaining costs given prices or obtaining prices
given costs. If forward looking prices under state dependent demand are lower con-
ditional on costs, it follows that costs from the same model will be higher conditional
on prices. For the rest of the analysis we use the cost estimates corresponding to the
dynamic game, in accordance with the forward looking view we take for the pricing
problem.

12Note that, given our state dependent model, we always need to condition the firm’s profit function to a
state vector. While the forward looking costs are estimated based on a random sample of observed states,
the myopic costs are only calibrated based on one state.
13The myopic cost estimate of Dannon Fruit on the Bottom is not statistically different from the forward
looking one. The case of Old Home 100 Calories is different and we attribute its relatively low dynamic
cost estimate to its strong preference coefficient in the demand model. For example, if we look at the
average price of Old Home 100 Calories, it is only a little lower from that of Old Home (1.34 vs 1.38)
while it’s mean posterior preference parameter is much higher (−2.8 vs −4.3). The cost model infers that,
sinceOld Home 100 Calories is priced comparably toOld Home despite having tastes so much in its favor,
it must have a much lower cost. Note that, while the myopic estimate for the 100 Calories sub-brand is
also lower, the difference is more pronounced in the forward looking case.
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5.2.2 The impact of PBSD levels

Turning to our counterfactual exercises, we first examine the equilibrium impact on
prices and profits of changing the levels of PBSD in the now real-world context of
our application. In particular, Table 11 contains steady state prices and per period
profits for all the firms in the sample, evaluated at various levels of PBSD, ranging
from zero to five times the estimated level. The importance of brand asymmetries is
clear. For every brand but Yoplait (the dominant player), steady state prices steadily
decrease as PBSD increases. For Yoplait, on the other hand, prices follow the U-
shaped pattern documented earlier, though it is most pronounced for their smallest,
and most horizontally differentiated sub-brand, Thick and Creamy. The other two
sub-brands exhibit only moderate price changes. Turning next to per period profits,
these are also uniformly decreasing for all brands but Yoplait, but steadily increas-
ing for Yoplait, especially for the highest levels of PBSD. Clearly, increased PBSD
amplifies the strength of the strongest brand. Our interpretation is in line with the the-
oretical exercises presented earlier. A strong investment incentive leads firms to lower
prices to attract consumers and retain loyals. However, for the dominant brand, the
harvest incentive eventually dominates and the retention effect is muted. Moreover,

Table 11 Effect of PBSD magnitude on prices and profits

PBSD scale factor 0 0.5 1 2 3 4

Steady state prices

Dannon creamy fruit blends 1.648 1.635 1.622 1.595 1.565 1.535

Dannon fruit on the bottom 1.715 1.703 1.69 1.664 1.636 1.609

Dannon light n fit 1.760 1.747 1.733 1.705 1.669 1.625

Dannon light n fit creamy 1.775 1.763 1.751 1.727 1.70 1.674

Kemps classic 1.396 1.388 1.38 1.365 1.353 1.341

Kemps free 1.500 1.491 1.483 1.468 1.454 1.442

Old home 1.421 1.412 1.403 1.387 1.372 1.355

Old home 100 Calorie 1.289 1.28 1.271 1.253 1.236 1.219

Wells blue bunny lite 85 1.407 1.396 1.386 1.362 1.329 1.27

Yoplait light 1.727 1.719 1.713 1.71 1.713 1.718

Yoplait original 1.686 1.677 1.671 1.668 1.672 1.676

Yoplait thick and creamy 1.760 1.756 1.754 1.763 1.795 1.85

Steady state per period profits

Dannon 799.7 779.9 754.1 683 586.4 473.5

Kemps 246.8 220.4 192.3 134.2 81.7 43.6

Old home 295.9 266.6 235.1 168.8 106.8 59.5

Wells blue bunny 494.6 477.9 456.5 397.7 318.5 228.4

Yoplait 1675.2 1776.8 1895 2181.3 2510.2 2823.8



Implications of parent brand inertia for multiproduct pricing

at all levels of PBSD considered here, the dominant firm continues to benefit from
increasing levels of PBSD.

5.2.3 The role of umbrella branding

For the next set of counterfactuals, we dig deeper into the benefits and costs of
umbrella branding. In particular, we perform two experiments aimed at identifying
the impact of PBSD on a individual firm’s pricing strategy. Given the results of the
previous experiments, we focus on the market leader, Yoplait, paying particular atten-
tion to the role of it’s Thick and Creamy (T&C) sub-brand. In the first experiment,
we eliminate the dynamic effects from Yoplait Thick and Creamy to Yoplait Original
and Yoplait Light, and vice versa. This scenario is equivalent to a situation in which
the T&C sub-brand is not co-branded under the Yoplait umbrella, but rather under a
different name. Equivalently, it represents a setting in which consumers do not per-
ceive such a connection, and exhibit no loyalty to the parent company. Equilibrium
prices and per period profits in this counterfactual scenario (C2) are compared with
prices and profits in a baseline scenario (C1) where the branding structure of Yoplait,
alongside every other firm, does not change. The difference between the two scenar-
ios is that, in the counterfactual, demand for T&C does not increase with loyalty to
the other Yoplait sub-brands, and vice versa.

The results of these branding counterfactuals are reported in Table 12. The reader
should focus attention on the bottom three rows, as the equilibrium impact on rival
firms is negligible here. We draw two basic conclusions from this first set of results:

Table 12 The effect of yoplait PBSD on prices and profits

Base case (C1) Yoplait T&C Yoplait all

PBSD = 0 (C2) PBSD = 0 (C3)

Brand Sub-brand Prices Profit Prices Profit Prices Profit

Dannon Creamy fruit blends 1.622 1.622 1.622

Dannon Fruit on the bottom 1.690 1.690 1.690

Dannon Light n fit 1.733 1.733 1.733

Dannon Light n fit creamy 1.751 754.1 1.751 755.6 1.751 757.4

Kemps Classic 1.380 1.380 1.379

Kemps Free 1.483 192.3 1.483 192.5 1.483 193

Old home Classic 1.403 1.403 1.403

Old home 100 Calories 1.271 235.1 1.271 235.5 1.270 236

Wells B.B. Lite 85 1.386 456.5 1.386 457.6 1.385 458.8

Yoplait Light 1.713 1.712 1.717

Yoplait Original 1.671 1.671 1.674

Yoplait Thick and creamy 1.754 1895 1.797 1859.1 1.785 1791.9

Prices and per period profits are reported for forward simulated steady state in each scenario (C1, C2, C3)
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1) the per pound price of T&C is about 4 cents higher when the PBSD effects are
removed (while the prices of the two remaining Yoplait sub-brands remain essentially
unchanged), and 2) Yoplait loses about 1.9% of its per period profits as a result of
this change. Together, these results suggest that PBSD associated with the T&C sub-
brand alone leads to a significantly lower price for T&C, but that this lower price also
yields higher profits, due to substitution from rival firms and (more importantly) the
outside good. In the presence of full PBSD effects, loyal T&C consumers enjoy the
lower prices that Yoplait is using to attract new consumers to this product.

Results from a second counterfactual are also reported in Table 12. In this case, for
the alternative (scenario C3), we eliminate the parent brand state dependence effects
for all three Yoplait sub-brands. This is equivalent to all three being marketed under
different, unrelated names, without the common Yoplait banner. Similar to the first
counterfactual, the own state dependence effects remain the same and only cross-sub-
brand effects are eliminated. The comparison of this counterfactual with the baseline
scenario (C1) reveals a price increase for all three Yoplait sub-brands, that is negli-
gible for all but T&C. However, per period profits drop by 5.4% (much larger than
the previous example), as Yoplait loses share to it’s rivals and the outside good. This
impact was muted in the previous counterfactual by their own-PBSD effects. Consis-
tent with the intuition built earlier in the paper, we conclude that Yoplait can continue
to profit from introducing additional layers of PBSD through successful sub-brands,
even at the levels of PBSD estimated here (i.e. without increasing its coefficient).

5.2.4 The impact of firm-level profit maximization

For our third set of counterfactual exercises, we turn to the impact of firm-level profit
maximization in this real-world context. Recall that, in our numerical analysis, we
showed that under certain PBSD parameter values, firms could actually earn more
profit by operating sub-brands as independent profit centers rather than maximiz-
ing profits jointly. This is a potential strategic effect that stems from shielding the
sub-brands from the increased competition associated with high levels of PBSD. To
evaluate whether this carries over to the empirical setting, we compute new optimal
prices and profits when firms maximize sub-brand profits and compare them to the
baseline scenario in which profits are maximized jointly. Any differences in prices
and per period profits across the two scenarios can then be attributed to the centraliza-
tion of the pricing decision alone. In particular, this experiment allows us to quantify
the benefit that yogurt parent brands can derive by unifying the profit objective func-
tions of all their sub-brands to account for both respective externalities (cross-product
cannibalization and dynamic complementarity).

Table 13 contains steady state prices and per period profits for the base case
(C1) (joint profit maximization) versus a counterfactual (C4) where all sub-brands
instead maximize sub-brand profits. With respect to prices, we see that full multi-
product pricing leads to higher prices across the board for all sub-brands. At the
same time, profits for all parent brands are also higher in the joint profit maxi-
mization cases, reflecting an increase in market power. The benefits from avoiding
cross-cannibalization clearly outweigh the effects of dynamic complementarity in
the Yogurt category. However, the impact of the increased market power on profits
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Table 13 Sub-brand profit maximization - effect on profits

Base Case JPM (C1) Sub-brand PM (C4)

Brand Sub-brand Prices Profit Prices Profit(%� from JPM)

Dannon Creamy fruit blends 1.622 1.612

Dannon Fruit on the bottom 1.690 1.679

Dannon Light n fit 1.733 1.735

Dannon Light n fit creamy 1.751 754.1 1.753 747.0 (−0.9%)

Kemps Classic 1.380 1.379

Kemps Free 1.483 192.3 1.484 191.2 (−0.6%)

Old home Classic 1.403 1.401

Old home 100 Calories 1.271 235.1 1.271 233.3 (−0.8%)

Wells B.B. Lite 85 1.386 456.5 1.386 451.4 (−1.1%)

Yoplait Light 1.713 1.682

Yoplait Original 1.671 1.649

Yoplait Thick and creamy 1.754 1895 1.708 1891.0 (−0.2%)

Prices and per period profits are reported for forward simulated steady state for each scenario

is quite modest; per period profits increases range from 0.2% for Yoplait to 1.1%
for Wells Blue Bunny, which is a single sub-brand firm but loses some profits in the
counterfactual because other sub-brands compete more aggressively.

It is clear that, in this particular empirical application, PBSD levels are not suf-
ficiently large as to make sub-brand profit maximization more profitable than joint
profit maximization. In fact, even if we repeat the exercise using higher values of
PBSD, we still find that joint profit maximizing outperforms the alternative in all
cases. The insights from our theoretical simulations suggest that this is likely due to
the mitigating effects of SBSD (recall that the SBSD coefficient was 2.5 times larger
than that of PBSD), which limits the scope of the potential gains from operating as
profit centers instead of jointly.

Finally, the increase in profits we find when comparing the baseline scenario (C1)
to the counterfactual (C4), can also be viewed as the incremental benefit to the firm of
all parent brands fully internalizing the both the dynamic complement effect and the
impact of cross-cannibalization. This quantification could prove useful to managers
in making organizational decisions with respect to price setting. For example, if full
coordination of prices across Yoplait sub-brands is costly (e.g. because of managers’
workloads), and this cost is higher than 0.2% of per period profits, our simulation
suggests that decentralized pricing might be preferable on balance.

5.2.5 The role of information

For our final set of counterfactuals, we turn to how a firm’s knowledge of state depen-
dence, or perhaps more accurately, its degree of sophistication, impacts its pricing
and profits. In particular, we consider two scenarios in which firms are unaware of
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the true impact of state dependence. Our motivation lies in exploring whether firms
could perhaps avoid the subtle aspects of dynamic competition induced by consumer
inertia by simply being unaware that they exist. To address this possibility, we com-
pute two final counterfactual scenarios in which firms set prices as if consumers do
not exhibit particular aspects of state dependence, when they in fact do. This situa-
tion might occur if firms actually used empirical methods, such as those developed
here, to estimate demand and compute optimal (equilibrium) prices, but failed to
fully account for the role of state dependence. Note that this would not be a proper
MPE, since firms would be both ignoring available payoff relevant information and
failing to take advantage of profitable deviations (implying that their beliefs would
not be correct on average, at least with regards to consumer behavior, and would
therefore fail to satisfy rational expectations). To compute these outcomes, we first
re-estimate the model, ignoring each type of state dependence (one at a time), solve
for the “optimal” pricing policies given this new information set, and then compute
profit outcomes based on the true (fully state dependent) demand system and these
new (information restricted) policies.

The results of two such counterfactual experiments are presented in Table 14,
alongside the original baseline results. In the first scenario, firms ignore PBSD (but
account for the other two types of state dependence), while in the second they ignore
SBSD (while accounting for PBSD and type SD). Note that, consistent with avoid-
ing the full investment effect, when firms ignore PBSD in setting prices (C6), they in
fact charge higher steady state prices and earn higher per period profits. For example,
profits increase 0.72% for Yoplait and 0.56% for Dannon. This is a direct conse-
quence of avoiding the increased competition that PBSD creates through its impact
on future demand. It is important to note that this is a strategic effect. If, in the same
scenario, we use a pricing policy that ignores PBSD for only a single deviant firm,

Table 14 Impact of ignoring state dependence in price setting

Base case (C1) Ignore PBSD (C6) Ignore sub-brand SD (C7)

Brand Sub-brand Prices Profit Prices Profit Prices Profit

Dannon Creamy fruit blends 1.622 1.645 1.667

Dannon Fruit on the bottom 1.690 1.712 1.735

Dannon Light n fit 1.733 1.755 1.796

Dannon Light n fit creamy 1.751 754.1 1.775 758.3 1.78 765.1

Kemps Classic 1.380 1.392 1.409

Kemps Free 1.483 192.3 1.497 193.3 1.516 195.1

Old home Classic 1.403 1.416 1.427

Old home 100 calories 1.271 235.1 1.285 236.5 1.313 238.7

Wells B.B. Lite 85 1.386 456.5 1.403 460.6 1.448 463.9

Yoplait Light 1.713 1.73 1.778

Yoplait Original 1.671 1.686 1.736

Yoplait Thick and creamy 1.754 1895 1.785 1908.6 1.743 1915.3
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this deviant firm earns lower per period profits, while its rivals (who price correctly),
make more.14 The second scenario (C7) considers the case where firms ignore sub-
brand state dependence when setting prices (but still account for PBSD and type
SD). Under this scenario, the steady state prices and per period profits also increase,
similar to the effect from ignoring PBSD, but the impact is even greater. This likely
reflects the relative magnitudes of the two types of state dependence (recall that
SBSD was over twice as large). In particular, we find that Yoplait’s per period profits
increase 1.1% while Dannon’s increase by 1.5%. As in the previous example, this is
an outcome of softer competition and represents a strategic effect. Again, if only one
firm ignores sub-brand SD while its rivals price correctly, it is made unambiguously
worse off by its ignorance.

6 Conclusion

There is increasing academic interest in the long term impact of marketing policies
and the perils of myopic behavior on the part of managers and decision makers. In this
work, we take a forward looking perspective on the pricing decision of multiprod-
uct firms and examine the effect of demand choice dynamics that reflect consumers’
tendency to stay loyal to a firm when choosing between multiple sub-brands of a
broader umbrella brand. We examine a product category, refrigerated yogurt, where
consumers’ choices depend not only on past choices of specific product alternatives
but also on past choices of the parent brands. Such cross-sub-brand state dependence,
for repeatedly purchased goods, generates meaningful dynamics with non-trivial
implications for equilibrium prices and profitability.

Our numerical simulations reveal that state dependence to the parent brand can
decrease prices and reduce profits, as well as mitigate or even reverse the benefits
of joint profit maximization relative to sub-brand profit maximization. Our empirical
analysis establishes the real world relevance of parent brand state dependence and
confirms that moderate levels of inertia lead to both lower prices and reduced prof-
its, though these effects are mediated and can be even reversed by asymmetries in
the market positions of brands and the relative importance of sub-brand state depen-
dence. In the yogurt category, joint profit maximization leads to higher prices and
profits, relative to sub-brand profit maximization, but firms could benefit from being
unaware of (or ignoring) consumer inertia as long as they all behaved similarly. If
only one firm deviated towards “unawareness”, it would do so at its peril. Expressed
differently, in a “naive” market, there are profitable deviations to becoming more
sophisticated.

In order to specify a tractable model and explore some of the dynamic implica-
tions we had to abstract from important factors like frequent price discounts and
retailer involvement in the choice of shelf price. Nevertheless, studying equilib-
rium steady state prices in a dynamic game context reveals novel aspects of price

14Results not shown, but available upon request. Note that this situation is not a coherent equilibrium,
since both sets of firms now have inconsistent beliefs regarding the other type’s behavior (i.e. they are
setting prices using policies consistent with different underlying games).
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dynamics for multiproduct firms. A more complex game with the inclusion of
the retailer/manufacturer game and/or the exploration of equilibrium pricing with
frequent discounts is an interesting avenue for future research.

Overall, the findings reported in this work highlight the intricate role of demand
choice dynamics for prices of forward looking multi-product firms and suggest new
dimensions to explore. It seems reasonable to expect that the methodology and
insights of this work are relevant for several other product categories where demand
is likely characterized by parent brand dynamics.

Appendix: Additional details regarding computation and estimation

State space discretization

One of the challenges we had to overcome in order to compute optimal dynamic
price policies was the infinite dimension of the state space. Following the literature
we addressed this issue by approximating the infinite state space with a finite set of
points and interpolating. The approximation begins by discretizing the state space on
a multidimensional grid. Each axis of the grid corresponds to one dimension of the
state space, namely the fraction of a particular consumer type loyal to a specific sub-
brand. We discretize each axis of the grid with a finite number of points g, such that:
0 = gn1

j t < ... < gnL
jt = 1, ∀j, ∀n. The grid is formed by the Cartesian product of

all finite sets of points for each axis, such that
∑J

k=1 gnl
kt ≤ 1, ∀l = 1, ..., L, ∀n.

Intuitively, this condition says that, for any consumer type n, the fraction of the mar-
ket loyal to each sub-brand in the choice set should sum to one across all sub-brands.
The main computational challenge in solving a discretized version of a dynamic pro-
gramming problem with a continuous state space is caused by dimensionality. This
is because the number of grid points at which one must solve for the value and policy
functions increase exponentially with the dimensionality of the state space. For the
game described in Section 3, the state space has dimension equal to G = (J −1)×N ,
which is the number of choice alternatives minus one, times the number of consumer
types. Due to the fact that loyalty states for each type sum to one across sub-brands,
only J-1 loyalty states need to be tracked for each type. For a regular grid with L
points in each axis, the total number of points would be LG. The grid for our prob-
lem is not rectangular, but rather triangular (if we think about it in two dimensions)
due to the requirement that the states of loyalty of a consumer type to all sub-brands
must sum to one. Even though this condition reduces the number of grid points
significantly, as the dimensionality of the state space increases, the computational
requirements of the grid become exorbitant. In practice we are using a grid consisting
of six points in each dimension (0, 0.2, 0.4, 0.6, 0.8, 1). While the complete Carte-
sian product for such a grid would have 362 million points (611), the condition that
the state shares for all brands should sum up to one limits our total number of grid
points to 4368. To see this, consider the case when sub-brand A has a state vector of
1, then the only possible states for the other sub-brands is to have zero state share.
Similarly, when sub-brands A and B have state shares of 0.4 and 0.6 respectively, the
only possible states for the other sub-brands are zero state shares.
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It is relatively easy to see that the dimensionality of the state space increases faster
with the number of brands when the number of consumer types is higher. This is
especially true because adding consumer types is not economizing as much on the
condition that state shares sum up to one (this condition allowed us to work with 4368
grid points instead of 363 million grid points). An additional consumer type would
imply another vector of sub-brand state shares (so another 4368 points to enumerate)
and then the total state space would be the product of the two consumer type grids
(43682). This creates a trade-off between using more consumer types or more choice
alternatives. By settling with one consumer type, we were able to include all twelve
sub-brands of the sample in the pricing model, thereby ensuring internal consistency.

Interpolation

During computation, we use polynomial based interpolation for all cases where we
need to compute the value or policy functions on state space points outside the grid.
Our polynomial approximation function has the general form given below
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It includes all the first, second and third order terms of the state variables, their square
root, and several sets of (two way, three way, four way, etc.) interactions between
states of different brands for the same consumer type. In the implementation of the
algorithm, the correlation between predicted polynomial values and actual values is
about 0.99 while the average percent error of the prediction (MAPE) is at most 0.1%.
This suggests that the approximation works well in practice.

Policy function iteration

The dynamic game analysis proceeds in two steps. In a first phase we compute opti-
mal pricing policies for each point in the state space and in a next step we compute
steady state prices and shares for all sub-brands in the sample. The steps for the policy
function iteration are as follows:

1. Start with initial guesses of value functions and price strategies. For all reported
results we use zero to initiate the value functions and optimal prices for static
period profits to initiate the policy functions, for each point in the state space;

V 0
f (s) = 0 and σ 0

f (s) = maxPj
πf

[
s, P, σ 0−f (s)

]
∀s ∈ S, ∀f . The initial

policies are iterated so that they are best responses for the static case.

• We experiment with different initial guesses, for the value and policy func-
tions, to examine whether the equilibrium policies are the same or change
depending on the starting values; the latter would imply the existence of mul-
tiple equilibria. It is noteworthy that all trials generated the same equilibrium
policies.
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2. For each firm, given V iter−1
f and σ iter−1, compute V iter

f ; here superscripts refer
to iterations of the algorithm. The computation of value functions involves the
purchase probabilities that determine both static and future discounted profits.

(a) Iterate the Bellman equation until convergence,
max|V iter

f −V iter−1
f |

max|V iter
f | ≤

εv, ∀f . Then move to the next step. We set εv = 0.0000001.

3. For each firm, given V iter
f and σ iter−1, compute σ iter . This involves finding

the optimal price for f , for each point on the grid, given the right hand side of
the Bellman equation and the rival’s policy. In practice we iterate across firms,
solving for optimal prices at all points of our state space grid, given rival prices
from the previous iteration. Upon convergence, no firm can get a higher value
function by changing its policy. Policies are then best responses for each state,
conditional on value functions. To speed our price optimization sub-routine and
to avoid local maxima issues we start with a simple global search to identify
the region of the global maximum for prices. That is, we evaluate the right hand
side of the Bellman equation in 20 cent intervals to find the neighborhood of the
solution. We then bound our quasi-Newton optimization algorithm in a 40 cent
neighborhood of the solution identified with the initial search.

(a) If the computed policies converge for each firm ,
max|σ iter

f −σ iter−1
f |

max|σ iter
f | ≤

εσ , ∀f , stop the algorithm. We set εσ = 0.00001.
(b) If not, update the policies and return to step 2.

Doraszelski and Satterthwaite (2010) give the following definition for a Markov-
perfect equilibrium: “An equilibrium involves value and policy functions V and σ

such that i) given σ−f , V solves the Bellman equation for all f and ii) given σ−f (s)

and Vf , σf (s) solves the maximization problem on the right hand side of the Bellman
equation for all s and all f.” Markov-perfect equilibria are by definition sub-game
perfect, meaning that firms follow optimal strategies at each possible state. Upon
convergence, the algorithm described above satisfies these general conditions and
thus computes a Markov-perfect equilibrium.

To ensure that our solution is not a local minimum, but rather a global maxi-
mum, as well as a best response for all profit maximizing firms, we augmented our
algorithm with an additional step that checks our equilibrium policies with a global
optimizer that combines genetic algorithms with derivative based search. Indeed,
when we used this global optimizer for our final policy iteration, equilibrium policies
did not change, evidence that our original approach was suitably robust. Details about
this optimizer can be found in Mebane W. and Sekhon J., 2011, “Genetic Optimiza-
tion Using Derivatives: The rgenoud package for R.”, Journal of Statistical Software,
42(11).

To complete the game specification we also need to make assumptions regarding
parameters that are part of the model but are unobserved, namely the discount factor
and the total size of the market. The parametrization used in the algorithm is: β =
0.998, MS = 100000.
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Steady state computation

To compute the steady state of a pricing game specification, we start from some
initial state vector and, given the best response price policies, we first find the optimal
price of each firm for the given period. Next, we compute the states that prevail in
the market under the prices of the last iteration and use them as the next period’s
state vector. We repeat the process until both the state variables and the prices of
each specific product alternative converge. To verify if the obtained steady state is
unique, we repeat the computations several times starting from different initial states.
Throughout all trials, the algorithm always converged to the same unique steady state.

BBL estimation procedure

Our implementation of the BBL estimator involves the following steps:

1. We estimate policies in a first stage using spline-based regression. Policies for
each sub-brand are estimated as very flexible functions of the loyalty shares of
the various sub-brands (i.e. observed state vectors)

2. We define a set of inequalities H based on deviations from the optimal estimated
policies by varying amounts (e.g. +/− 0.005, +/− 0.01, +/− 0.02) separately
for each sub-brand.

3. Using our first stage policies, we forward simulate “correct” and “perturbed”
value functions for each inequality in H in the following way:

(a) Draw a random state vector s0 and use it as a starting point.
(b) Simulate current period profit flow πf t (st , σ̂ (st , vt )) using the current state

vector and estimated policies. The estimated policies σ̂ (st , vt ) also include
i.i.d. random shocks drawn from the residuals of the first stage estimation.

(c) Calculate next period’s state vector based on choice probabilities that cor-
respond to the demand model, the policies and the state vector from
the previous step. This is specified explicitly in our pricing game and is
described in Section 3.3 and Eq. 9, sn

t+1 = g(Pt , s
n
t ) = Qn(Pt ) × sn

t .
(d) Continue forward simulation until discounted period profit flows are

negligible.15

(e) Repeat for R different starting state vectors and average the results. This
step averages out both different starting state vectors and the random shocks
of the policies.

V̂f (s; σ ; θ) = 1

R

R∑

r=1

[
T∑

t=0

βtπf t (st , σ̂ (st , vt ); θ)

]

(14)

4. We use the approach described above to obtain “correct” and “perturbed” value
functions for a set of inequalities that constitute the equilibrium conditions of

15We use 48 years or 2500 weeks - we have also tested a horizon of 3000 and 3500 weeks and results do
not change substantially, evidence that any simulation error is already too small when using 2500 weeks.
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our model. The final step of our approach recovers cost parameters through a
minimum distance estimator that penalizes violations of the equilibrium condi-
tions. Denoting the correct and perturbed value functions by Vf (s; σj , σ−j ; θ)

and Vf (s; σ ′
j , σ−j ; θ) respectively, the second stage estimator minimizes the

following objective function.

Q(θ) = 1

H

H∑

h=1

(
min

{
Vf (s; σf , σ−f ; θ) − Vf

(
s; σ ′

f , σ−f ; θ
)

, 0
})2

(15)

Applying the methodology is facilitated by the fact that the value functions for
the pricing model of this study can be written as a linear function of the structural
parameters which, in this case, are costs. This allows for significant computational
economies in that the forward simulation need only be done once, before the esti-
mation, and not for every trial parameter vector of the estimation routine. For
demonstration purposes, we describe the linear form of the model below.

Vf (s; σ ; θ) =
∑∞

t=0
βt

[∑

j∈f
(Pjt − cj ) × Djt × M

]

=
∑∞

t=0
βt

[∑

j∈f
Pjt ×Djt ×M

]
−

∑

j∈f

[∑∞
t=0

βt (Djt ×M)
]
×cj

(16)

The linearity of the value function allows us to construct empirical analogs of both
the “true” and perturbed value functions using forward simulated estimates of Djt ,
pricing policies, market sizes and any trial values for the cost parameter vector.

The demand parameters we use when solving for the cost parameters are Bayesian
posterior estimates that correspond to the average household. We note that consistent
estimation of the dynamic parameters requires consistent estimates of the demand
parameters as inputs. Our Bayesian estimates are asymptotically equivalent to MLE
estimates and therefore satisfy this requirement, so long as the demand model is
correctly specified.
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