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Abstract—Dynamic spalling tests have been run on two batches of 30KhN4M steel samples. Experimental
data have been processed with the classical technique based on solution of the elastic wave equation. Three
samples have been revealed that demonstrated the failure-delay effect under testing. The incubation-time cri-
terion has been used to show the conditions of emergence of failure delay with the example of triangular load-
ing pulses. A rate strength curve has been constructed for the other samples. It has been shown that the lim-
iting strengths under dynamic loads considerably differ for samples from different batches despite the same

chemical composition and static strength.
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INTRODUCTION

Spalling failure is one of the main techniques for
studying processes that occur in solids in dynamic ten-
sion [1—5]. Consideration of wave processes that are
typical of the spalling problem makes it possible to
determine a stress momentum that leads to failure [1, 2].
As a rule, the so-called acoustic approximation, in
which only elastic stresses that act in the spalling zone
are taken into account, is used to estimate the spalling
momentum parameters.

Sample failure may occur sometime after the max-
imum of tensile stress has been reached in the spalling
section. This implies that the failure moment falls onto
the descending or constant segment of effective local
stress. This phenomenon was coined as “failure
delay,” and pulses that correspond to this failure type
are, as a rule, close to threshold ones. Threshold
pulses are understood to be pulses of given duration
and shape that have the minimum failure-producing
amplitude. Failure delay has been registered in some
spalling experiments, for example, in [6, 7]. However,
any detailed discussion of this phenomenon is practi-
cally absent from the literature. In a situation like this,
strength is often linked, purely formally, to the period
of action of tensile stresses in the spalling section [6].

In this article, spalling failure delay is explained
using the criterion of an incubation time. The notion
of the structural—temporal criterion is based on the
following two material characteristics: quasistatic
material strength and failure incubation time. These
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quantities are strength-related parameters of a mate-
rial; they are independent of experimental conditions
and can be applied to different types of loading. This
approach proved its effectiveness when determining
conditions of emergence of various transients such as
brittle fracture [8, 9], electrical breakdown [10], and
cavitation in fluids [11].

ONE-DIMENSIONAL WAVE PROBLEM

Spalling failure occurs as follows. A shock pulse
creates a compression wave in a sample. The wave
propagates along the sample axis until it reaches a free
surface. Upon reflection from the surface, the com-
pression wave reverses sign and propagates backwards
as a tensile wave. Since the tensile strength of a mate-
rial is usually considerably lower than its compressive
strength, a failure may occur in a certain sample sec-
tion. Under threshold loads, the failure may reveal
itself as microcrack nucleation. With more intense
actions, the fraction of the material is completely sep-
arated from the sample in the form of the so-called
spalling plate.

Solving the one-dimensional spalling problem in
its elastic formulation shows that the time profile of
the wave of compressive stresses coincides, bar a mul-
tiplier, with V(¢), the velocity of motion of particles on
the free surface. Thus, the time dependence of stresses
in the spalling section with a coordinate x can be rep-
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Fig. 1. Dependence of free-surface speed on time.

resented by the sum of compressive and tensile
waves as

o(x.1)=6" +G‘Cf=lpaV(t—5)—lpaV(Hz),(l)
2 a2 a

where p is the material density and a is the propagation
speed of a longitudinal stress wave. It should be noted
that the temporal profiles of the compressive and ten-
sile waves coincide completely, with the tensile wave
lagged behind by A= 2x/a, which is the doubled travel
time of the elastic wave through the spalling section.

With the substitution # — ¢ — x/a, the time depen-
dence in the cross section x* can be written in the form

o(x*,z'):lpa[V(t')—V(f—Eﬂ
2 a
| |
= Loaw —vy =Loanv.
2pa( I 2) 2pa

In other words, the stress history in the spalling
cross section prior to the failure can be represented as
a quantity proportional to the difference between the
function of the free-surface speed profile and the same
profile shifted by the doubled travel time of the wave
across the thickness of the spalling layer [1].

As a rule, the speed V(f) of the sample free surface
is measured by interferometry. The coordinate x of the
spalling section can be calculated from the spalling
pulse duration that coincides with the time Af (Fig. 1)
or simply by measuring the thickness of the spalling
plate. At the time moment #,, the signal about a failure
that occurred in the sample reaches the free surface.
Accordingly, the time of the very moment of failure
equals r* =, — At/2.

Table 1.
sarrlr(l)ple Vo, m/s |Gpax, MPa| 6*, MPa | T, ns
19 350 3886 3700 100
22 365 4433 4204 40
25 365 3398 3340 41
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Fig. 2. Time dependences of free-surface speed (top) and
stress in the spalling section (bottom) for threshold load-
ings.

ANALYZING THE RESULTS
OF PROCESSING EXPERIMENTAL DATA:
FAILURE-DELAY EFFECT

The experiments on spalling failure were carried
out under the conditions of the so-called uniaxial
deformation, in which the only nonzero component of
the deformation tensor is the component that coin-
cides with the direction of wave propagation. Two
batches of the 30KhN4M steel samples manufactured
under different conditions of thermomechanical treat-
ment were tested. An analysis of the data was per-
formed according to the above solution of the wave
problem (1) in which the stress profile in the spalling
section is constructed with a shift by the time Az#/2.

In the case of threshold loads, failure may occur
with a delay sometime after the maximum stresses
have been reached in the spalling section (Fig. 2). In
our experiments, the failure-delay effect was observed
for sample nos. 19, 22, and 25 (Table 1). Given the
striker speed of 350 m/s and the sample thickness of
1.831 mm, the maximum tensile-stress value could be
as high as 3886 MPa. However, it follows from the
experimental data that the sample fails under a stress
of 3700 MPa, with the failure delay time comprising a
value of 100 ns.

INCUBATION-TIME CRITERION

Application of the incubation-time criterion makes
it possible to describe many effects that are observed
under dynamic testing [8—15]. For example, the phe-
nomenon of failure delay is in close accordance with
the main idea of the spatial-temporal approach,
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according to which the onset of a failure at a given
scale level is necessarily preceded by a preparatory
process in which flaws develop with certain character-
istic times in the material structure. Therefore, the
failure in the spalling section is determined not by the
instantaneous values of tensile stresses but by a combi-
nation of amplitude and temporal characteristics of
the local field of force. For materials free of macro-
scopic defects, the incubation-time criterion has the
form (see, e.g., [14])

t
I o(s, x)ds < 67T, 2)
-1

where G(s, x) is the stress history in the section x and
O, is the static material strength while 7 is the incuba-
tion (structural) time of failure. Thus, for a failure to
occur in a given cross section, a momentum of no less
than ¢,T needs to be accumulated. The parameters G,
and T are material specific and do not depend on the
geometry of the test sample or on the shape or dura-
tion of action. Thus, we can say that the static strength
o, and the incubation time T form a system of param-
eters that govern the failure process.

Experimental time dependences of the free-surface
speed allow one to reconstruct completely the stress
profile in the spalling section up to the failure moment 7*.
The incubation time value T in every particular test can
be determined by the immediate substitution of calcu-
lated stresses into the criterion in Eq. (2). Calculation
results are compiled in Table 2.

Processing post-threshold testing data showed that
stresses at the stage of sample tension can be approxi-
mately described by the linear dependence

o(t) = 6tH(1). (3)

After substituting a load of the linear form in
Eq. (3) into the criterion in Eq. (2) and subsequent
integration, we can derive the following simple expres-
sion for calculating the incubation time:

‘c:2(t*—$j. @)

9

The calculation of the incubation time by the for-
mula in Eq. (4) produced results comparable to the
earlier calculations, thereby confirming the assump-
tion about linear growth of tensile stresses in the tests.
Therefore, in order to determine some average integral
failure incubation-time value, strength curves G(&)
that correspond to different T were constructed. Then,
the method of least squares was used to determine the
curve that most closely matches the experimental
points, with the value of T for this curve being taken as
the failure incubation time for the test material. As a
result, two values of the incubation time were obtained
for each batch of'steel, i.e., T, = 204 ns and T, = 442 ns
(Fig. 3). It turned out that the samples from one of the

TECHNICAL PHYSICS  Vol. 62

No.4 2017

549
Table 2.
First batch of samples Second batch of samples
(t; =204 ns) (T, =442 ns)

T, ns Gl\j;l’]f/]z’ c*, MPa| 7,ns Gl\j;P]e?/]:’ c*, MPa
232 1.95 3355 598 0.778 3710
301 1.62 3432 195 2.580 3630
401 1.19 3322 566 1.200 4470
188 2.83 3563 477 1.320 4507
174 3.18 3555 561 0.958 3926
169 3.55 3791 508 0.963 3734
169 2.73 3397 567 1.140 4336

597 1.160 4541
576 0.924 3463
406 1.320 3650

batches have a greater dynamic strength with the same
static strength of 6, = 1300 MPa.

WAVE RE-REFLECTION PHENOMENON.
REALIZATION OF THE FAILURE-DELAY
EFFECT

Using the structural—temporal approach makes it
possible to determine conditions under which failure
occurs with a delay. According to the incubation-time
criterion, increase of the amplitude and duration of
the threshold pulse leads to a failure. This makes the
process of the dynamic failure radically different from
a slow quasistatic one where the material cannot be
loaded above its static strength G,. Therefore, when
dealing with shock loading, it seems reasonable to

Stress, MPa
5000 F —=71; =204 ns
— 1, =442 ns
s S
4000 S,
3000
2000

10° 10 10° 10® 107 10% 10° 10 10U
Stress rate, MPa/s

Fig. 3. Rate dependence of limiting stresses obtained for
Ty = 204 ns and T, = 442 ns and dependence 6(&) for the
experimental points. The static strength 6, = 1300 MPa.
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determine the threshold loads in the form of pulses of
a certain shape with fixed amplitude and duration.
This entails running a whole series of tests in which the
minimum amplitude required for a failure is deter-
mined for a given load duration and shape. These
experiments were carried out in [15], where the
deferred onset of macroscopic-crack formation was
observed on the descending branch of the local field of
force, i.e., the failure moment was sometime after the
intensity coefficient had passed its maximum value.

The most visual way to demonstrate the emergence
of the failure-delay effect is to consider triangular
loading pulses. Let P be the amplitude of a load pulse
and T = T, + T, be its duration, where T, and T, are
the durations of the pulse ascending and descending
parts, accordingly. If it is a threshold pulse, failure
always occurs on the descending segment of the load
pulse, that is, a failure delay is observed. It follows
from the criterion in Eq. (2) that the amplitude of this
pulse

26,1 T <1
T b bl
Pth =
20T , T >t
2T — 1

The following expression holds true for the failure
delay time 7

T, T<r,

Ty=1Tn T>1

Increasing the amplitude of a pulse with fixed rise
and fall durations 7| and 7, makes the pulse post-
threshold. The ratio of the amplitude of a post-thresh-
old pulse to that of the minimum destructive one char-
acterizes the degree of overload. For post-threshold
pulses with durations shorter than the incubation time 7,
amplitude increase reduces the delay time. If the seg-
ment of the load rise is shorter than the fall segment, a
failure delay will be observed for any overload. Other-
wise, the delay time will decrease to zero, and the
amplitude when it becomes zero is determined by the
expression P = 26,1 /(T, — T,). Further amplitude
increase leads to a situation where the failure condi-
tion is simultaneously fulfilled in two sections. One
section corresponds to the load rise segment, while in
the other section, the stress is decreasing at the failure
time moment. The magnitudes of stresses in both sec-
tions are the same.

Two scenarios are possible for pulses with durations
that exceed the incubation time T or for pulses with
load rise segments shorter that the fall segments, 7' <
T,. In the first scenario, similar to the action of short
pulses, failure occurs on the load decay segment. In
the second scenario, the failure moment is preceded
by a period when the stresses do not change. Such a
situation was observed experimentally in [1]. The
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duration of the stress-constancy period can also be
treated as a failure delay, as the stresses remain
unchanged and one cannot speak of a rate dependence
of strength. Finally, if the loading segment is longer
than the load decay segment, 7 > T,, and the overload
is small, failure occurs with a delay, i.e., within the
load decay segment. When the overload grows, failure
takes place during the rise in the stress level and no
failure delay is observed.

Figure 4 presents the normalized stresses in the
spalling section depending on the normalized time in
different situations, viz., (a) T<7t, T, < T5; (b) T < 1,
T,>T,;(c)T>1, T, < T,;(d) T>r, T, > T,. There are
two failure sections in Fig. 4b (dashed line with the
larger coordinate), while in Fig. 4c, the dashed-dot,
dashed, and solid lines show the incident, reflected,
and total stresses. The circle indicates the failure
moment.

Thus, no failure delay only occurs when loading
with pulses in which the load rise segment is longer
than the load fall segment or under big overloads. With
arbitrary loading actions, the overall picture that is
similar to the one observed with the above pulses in
the ideal shape persists. There is a minimum threshold
amplitude at which a failure delay occurs for any arbi-
trarily shaped pulse. Increasing the pulse amplitude
will shorten the delay time. Hence, the moment of
failure counted from the beginning of the applied
pulse takes place sooner. If the applied pulse is non-
monotonic, the moment of failure may move further
as the amplitude increases. The emergence of condi-
tions under which the failure condition is simultane-
ously fulfilled in several sections is also possible.

An analysis of the results shows that the condition
for the realization of the failure-delay effect depends
not only on the amplitude of a shock pulse, but also on
its duration. The wave re-reflection phenomenon can
emerge in thin samples loaded with prolonged actions.
The leading edge of the tensile wave reflects from the
surface being loaded and returns to the spalling section
to subject it this time to compressive stresses. Then,
this wave will again be reflected upon reaching the free
surface. Thus, the stress at a point with the coordinate
x will have the form

o(x,1) = lpa[—V(t +5) + V(t —5)
2 a a

—V(t+§—2)+V(t—§—2—l)—...:|.

a a a a

Here, / is the sample length and 7, = 2//a is the
time in which the wave returns to its initial position in
the sample. When the argument of the next subse-
quent term in the sum becomes less than zero, the
series can be truncated, since no load is applied at the
time moment # = 0. The summation of the elastic
stresses of unlike signs reduces the intensity of tensile
action on the sample. Thus, the overall tensile pulse
will not bring about a sample failure. Further increas-
TECHNICAL PHYSICS  Vol. 62
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Fig. 4. Stresses in spalling section for different ratios between durations of load rise and fall segments.

ing the striker speed without thickening the sample
will lead to post-threshold loads for which the failure-
delay effect is not feasible. Therefore, one must pre-
cisely balance the duration of action and the sample
thickness so as to avoid the re-reflection of the tensile
wave.

CONCLUSIONS

An analysis of the experimental data on spalling
failure has allowed us to reveal several tests in which
the failure delay phenomenon was observed. This
effect can be explained by the structural-temporal
criterion that also makes it possible to calculate
threshold stresses for different loading rates. The
strength parameters of the tested material have been
determined using the incubation-time criterion. It has
been shown that the method of treatment of steel may
significantly affect its dynamic strength. The study has
enabled us to draw a conclusion that, in order to
observe the failure-delay effect, all experimental con-
ditions must be precisely controlled and certain bal-
ance must be kept between parameters like the dura-
tion and amplitude of action and the sample thickness.

Based on the above results, the following can be
concluded. In order to study the strength properties of
a material, it should preferably be subjected not only to
high-rate overloaded pulses with a high density of sup-
plied energy, but also to threshold actions. In this case,
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temporal effects that are only typical of the dynamic
failure mode can be observed. If loading is performed
by high-intensity post-threshold actions, the material
will have no time to manifest certain characteristic
structural—temporal failure effects due to the high rate
of load growth.
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