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Abstract
Mushrooms are an important food crop for many millions of people worldwide. The most important edible mushroom is the
button mushroom (Agaricus bisporus), an excellent example of sustainable food production which is cultivated on a selective
compost produced from recycled agricultural waste products. A diverse population of bacteria and fungi are involved throughout
the production of Agaricus. A range of successional taxa convert the wheat straw into compost in the thermophilic composting
process. These initially break down readily accessible compounds and release ammonia, and then assimilate cellulose and
hemicellulose into compost microbial biomass that forms the primary source of nutrition for the Agaricus mycelium. This key
process in composting is performed by a microbial consortium consisting of the thermophilic fungusMycothermus thermophilus
(Scytalidium thermophilum) and a range of thermophilic proteobacteria and actinobacteria, many of which have only recently
been identified. Certain bacterial taxa have been shown to promote elongation of the Agaricus hyphae, and bacterial activity is
required to induce production of the mushroom fruiting bodies during cropping. Attempts to isolate mushroom growth-
promoting bacteria for commercial mushroom production have not yet been successful. Compost bacteria and fungi also cause
economically important losses in the cropping process, causing a range of destructive diseases of mushroom hyphae and fruiting
bodies. Recent advances in our understanding of the key bacteria and fungi in mushroom compost provide the potential to
improve productivity of mushroom compost and to reduce the impact of crop disease.
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Introduction

Cultivated mushrooms are an important food source for many
people around the world, with global production estimated at
over 10 million tons per year (Food and Agriculture
Organization of the United Nations 2014). Over two thirds
of the production of edible mushrooms are harvested in main-
land China, where mushrooms form a more traditional role in
food and medicine than they do in many Western countries,

and where they provide a living for over 25million mushroom
farmers (Zhang et al. 2014b). The most important edible
mushroom genus grown commercially is Agaricus (mainly
Agaricus bisporus, the button mushroom), which makes up
about 30% of the global market (Royse 2014). Other impor-
tant edible genera include Pleurotus (5–6 species of oyster
mushrooms that are cultivated commercially), Lentinula (shii-
take), Auricularia (3–4 species of woodear mushrooms),
Flammulina (enoki), and Volvariella (paddy straw). Edible
mushroom production is dominated by a few species where
the technology for large-scale industrial cultivation has been
optimized (Chang and Miles 2004), but in many countries
large numbers of small-scale farms also exist, and there are
increasing attempts to domesticate local wild mushrooms for
production purposes (Mwai and Muchane 2016).

Cultivated mushrooms are saprophytes which grow by
degrading natural lignocellulosic substrates, which are com-
monly available in large volumes as agricultural or industrial
byproducts. The methods for commercial cultivation of
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mushrooms on these substrates can be divided into three broad
groups. The first group includes cultivation of many wood-
degrading mushrooms that were traditionally grown on wood
logs or harvested from trees. Some of these, such as Lentinula,
are now grown on artificial logs of compacted, sterilized saw-
dust, while others, such asFlammulina, Pholiota (nameko), or
Auricularia are cultivated on a partly composted mixture of
sawdust and other components (bran, straw, corncobs), which
is sterilized at high temperature (121 °C) before inoculation
with mycelium (Chang and Miles 2004; Sanchez 2010).
Because of the rigorous sterilization process, these mush-
rooms are essentially grown in axenic culture. The second
group of cultivation methods either uses uncomposted sub-
strates directly, or uses partially composted substrates that
have not been subjected to a rigorous sterilization process.
This includes methods commonly used for Pleurotus and
Volvariella species, thoughPleurotus is also sometimes grown
on sterilized sawdust substrates. These are fast-growing and
adaptable genera capable of rapid bioconversion of a broad
range of substrates (e.g., rice straw, bagasse, cornstalks, waste
cotton, stalks, and leaves of bananas (Chang and Miles 2004;
Thongklang and Luangharn 2016). The substrates are usually
not sterilized before inoculation, though a pasteurization step
may be included in the process, and the mushrooms therefore
grow in competition with other microorganisms on the sub-
strate. Themost industrially complex process is the cultivation
of Agaricus, which is grown on a pasteurized straw-based
compost which requires lengthy preparation, but allows selec-
tive growth of the Agaricus mycelium over competitor
organisms.

For mushrooms grown in fully sterilized substrates, such as
Lentinula, the rate of mycelium growth is dependent on enzy-
matic degradation of lignocellulose by the mushroom itself
and is independent of other microbes. Addition of particular
bacteria or other fungi could potentially stimulate either
growth or fruiting, but this has not been investigated in any
depth. For Pleurotus and Agaricus, by contrast, growth of the
mycelium and production of the commercial fruiting body are
dependent not only on the mushroom itself, but also on bac-
teria and other fungi in the substrate. These bacteria and fungi
play critical roles at several different stages of production
(Fig. 1), including (i) conversion of the lignocellulose feed-
stocks into a selective, nutrient-rich compost for mushroom
growth; (ii) interactions with the fungal mycelium during hy-
phal elongation and proliferation through the substrate; and
(iii) induction of fruiting body formation during cropping. In
addition, several bacterial and fungal taxa act as pathogens of
the mushroom crop, causing either a reduction in yield or
severe loss of quality.

This review will focus primarily on the importance of bac-
teria and fungi in mushroom compost during the production of
Agaricus bisporus and Pleurotus ostreatus. Several excellent
reviews are available that discuss bacterial-fungal interactions

in a range of other environmental, agricultural, and clinical
areas (Frey-Klett et al. 2011; Kobayashi and Crouch 2009;
Scherlach et al. 2013). A number of other studies provide
overviews of the composting of general municipal and agri-
cultural wastes (Chandna et al. 2013; De Gannes et al. 2013a,
b; Hultman et al. 2010; Partanen et al. 2010), and highlight the
influence of feedstocks and process parameters on fungal and
bacterial diversity and succession in the resulting composts
(Neher et al. 2013).

Diversity and succession of bacteria and fungi
in mushroom compost

A. bisporus is commercially grown on a composted substrate
prepared in a thermophilic, microbial process from wheat
straw and/or horse stable bedding, nitrogen-containing addi-
tives, the most common which are poultry manure, seed meal,
or synthetic nitrogen (urea or ammonium nitrate), and gypsum
(Chang and Miles 2004; Royse and Beelman 2016; Straatsma
et al. 2000) (Fig. 1). The wheat straw is usually soaked for 3–
10 days before mixing with the other feedstocks (Noble and
Gaze 1996), and then subjected to a period of aerobic, ther-
mophilic composting (phase I) during which the compost tem-
perature rapidly rises to 80 °C due to microbial activity
(Straatsma et al. 2000; Zhang et al. 2014a). Phase I can take
up to 14 days to complete (Noble et al. 2002) but can be
completed as quickly as 6 days (Weil et al. 2013), and serves
primarily for growth of the microbial population at the ex-
pense of soluble components of the feedstocks, since there is
relatively little decrease in the total content of complex carbo-
hydrates (cellulose, hemicellulose) or lignin (Jurak et al.
2015). In phase II, the compost is held at 58–60 °C for 2 days
in tunnels that are designed to provide uniform temperature
and airflow into the compost (Noble and Gaze 1996), follow-
ed by a Bconditioning^ or Bcuring^ period, in which the com-
post is maintained at 48–51 °C for 2–3 days (Straatsma et al.
2000). This is a period of intense microbial activity, and by the
end of phase II, 50–60% of the cellulose and hemicellulose in
the original feedstocks has been degraded (Jurak et al. 2015).
During the same period, the excess ammonia released during
the thermophilic phase has been assimilated by the microbial
biomass in the compost (Miller et al. 1991; Wiegant et al.
1992). The microbial community present at the end of phase
II represents a climax community, into which A. bisporus is
introduced, usually as grain spawn grown onmillet or rye. The
mycelium of Agaricus takes approximately 16 days to fully
colonize the mature compost (Jurak 2015; Royse and
Beelman 2016), initially utilizing bacterial and fungal biomass
as a key source of nutrition and then progressively breaking
down over 50% of the lignin (Jurak et al. 2015).

Although it is possible to grow A. bisporus mycelium on
non-composted wheat straw, yields are low and the process is
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not used commercially (Mamiro et al. 2007). The composting
process provides specificity for Agaricus cultivation because
it converts the wheat straw into a mixture of microbial bio-
mass and humus-lignin complexes which are not available to
competing fungi, but which Agaricus can access by degrading
living and dead thermophilic fungal and bacterial biomass
(Bilay and Lelley 1997; Fermor et al. 1991; Straatsma et al.
1994b; Vos et al. 2017). The selectivity for Agaricus can be
removed by artificial lysis of phase II compost biomass
(chemical treatment or prolonged high temperatures), which
allows many other contaminant ascomycetes to grow.
However, if the sterilized compost is reconditioned by adding
microbes that bind the released nutrients into fresh microbial
biomass, then the selectivity for Agaricus can be restored
(Ross and Harris 1983a; Straatsma et al. 1989).

The microbes in mushroom compost are introduced with
the feedstocks, though they can also be enriched by the use of
recycled compost leachate (sometimes called Bgoody water^)
in the wetting process (Kertesz and Safianowicz 2015). A
clear succession is seen in the mushroom compost communi-
ty, which has been studied by cultivation-based analysis
(Hayes 1968; Ryckeboer et al. 2003; Singh et al. 2012;

Siyoum et al. 2016) and by a number of cultivation-
independent techniques, including fingerprinting methods
(Wang et al. 2016) coupled to DNA sequencing methods
(Siyoum et al. 2016; Szekely et al. 2009; Vajna et al. 2010,
2012) and, most recently, by metagenomic or amplicon se-
quencing of bacterial and fungal communities (Kertesz et al.
2016; Langarica-Fuentes et al. 2014; McGee et al. 2017;
Souza et al. 2014; Zhang et al. 2014a). Most of these studies
have been done on Agaricus compost, though partially
composted Pleurotus compost has also been examined
(Vajna et al. 2010, 2012). Cultivation-based analysis of phase
I compost has yielded largely actinobacterial and Bacillus iso-
lates [reviewed in (Ryckeboer et al. 2003)], but this method
provides a very limited window on the microbial diversity
present, since many compost bacteria and fungi are not readily
cultivable, Many studies have also focused on single time
points within the composting process, providing a limited
overview. More recent DNA sequencing studies have provid-
ed evidence for the presence of a wealth of other microbes in
compost and their succession, with a broad range of phyla
involved (Fig. 2). The most dramatic changes in microbial
populations in compost occur during the initial wetting period
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and during phase I (Kertesz et al. 2016). This period sees rapid
assimilation of easily accessible nutrients such as free sugars
and amino acids from the compost, and the changes in the
most abundant bacteria probably reflect the rapid succession
of bacteria and fungi that can use these compounds. Initially,
these are mesophilic pioneer organisms such as Solibacillus,
Comamonas , Acine tobac ter , Pseudomonas , and
Sphingomonas (Kertesz et al. 2016; Vajna et al. 2012).

As temperatures begin to increase in phase I, peaks are seen
in populations of thermophilic Bacillus, Paenibacillus, and
uncharacterized Clostridia and Proteobacteria. Themost abun-
dant actinobacteria present are Corynebacterium and
Streptomyces (Zhang et al. 2014a) and, although they make
up only a small fraction of the total bacterial population, anal-
ysis of the cellulase gene diversity reveals that these
actinobacteria are cellulolytic (Zhang et al. 2014a). The taxon
evenness in the compost increases to reach a maximum at the
end of phase I, with an increase in thermophilic taxa. Thermus
thermophilus is a key member of the bacterial population at
this point (Kertesz et al. 2016; Szekely et al. 2009), and
Thermi are relatively important, though they disappear again
later during composting (Fig. 2).

The dynamics of fungal diversity are similar to the bac-
teria changes during phase I. Initial pioneers such as Lewia,
Rhizomucor , and Aspergi l lus are overgrown by
Talaromyces, Thermomyces, Thermus, and unclassified
taxa as temperature and pH rise (Kertesz et al. 2016;
Straatsma et al. 1994b). Most of these organisms are not
cellulolytic although some of them will break down hemi-
cellulose, and cellulose and hemicellulose are indeed only
marginally depleted during phase I (Jurak et al. 2014).
Pioneer fungi grow by utilizing other carbon sources in
the compost, and once these alternative carbon sources are
exhausted, the fungal population is replaced by cellulose
degraders such as Mycothermus thermophilus and
Chaetomium thermophilum, with M. thermophilus being
the climax species in phase II compost (Kertesz et al.
2016; Souza et al. 2014).

Mycothermus (Scytalidium) and other
thermophilic microbes—nutrition for Agaricus

During phase II, the microbial community dynamics change
completely with rapid succession of different genera
appearing in phase I being replaced by a comparatively stable
microbial community during conditioning. The dominant fun-
gal species during the conditioning process isM. thermophilus
[previously Scytalidium thermophilum or Torula thermophila
(Natvig et al. 2015)]. This species is a thermophilic, cellulo-
lytic ascomycete which is a dominant component of many
composting systems and plays an important role in degrada-
tion of polymeric carbohydrates. Isolates of this species from
compost secrete a suite of over 60 different cellulases,
hemicellulases, and other glycosyl hydrolases (Basotra et al.
2016).

The importance of thermophilic bacteria and fungi in
mushroom compost production was recognized very early
(Chanter and Spencer 1974; Eicker 1977; Stanek 1972).
Thermophilic fungi, in particular, grow rapidly during the
conditioning period, removing free nutrients from the com-
post and assimilating the ammonia released by ammonifica-
tion (Ross and Harris 1983b). This physiological activity pro-
vides a selective environment for growth of Agaricus by
immobilizing nutrients in a form unavailable to competitor
molds (Ross and Harris 1983a). Unlike competing ascomy-
cetes, the Agaricus mycelium aggressively decomposes both
living and dead bacterial and fungal biomass to obtain the
nutrients it requires (Fermor and Wood 1991). This has been
shown by growth of Agaricus on [14C]-labeled Bacillus
subtilis cells leading to direct uptake of the isotope into the
fungal mycelium (Fermor et al. 1991). Agaricus also
disintegrated Mycothermus cultures on agar medium even
through a layer of cellophane, causing complete loss of via-
bility in the latter fungus (Op den Camp et al. 1990). In a
cropping setting, the amount of living bacterial biomass in
phase II compost (measured as phospholipid fatty acids) de-
creases by about 75% after addition of Agaricus and the
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Fig. 2 Bacterial phylum
succession in mushroom compost
during composting, spawn run,
and cropping of Agaricus
bisporus. Bacterial communities
were determined by Illumina
Miseq sequencing of the 16S
rRNA gene (Kertesz et al. 2016).
The heat map shows relative se-
quence abundance of the indicat-
ed phyla at different stages of the
process
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abundance of thermophilic fungal biomass also decreases dra-
matically (Vos et al. 2017). The mycelium of Agaricus seems
to be partly selective for Mycothermus and does not degrade
other thermophilic fungi so effectively (Straatsma et al.
1994b), but the reasons for this are not known.

Bacterial diversity in phase II compost has traditionally
been thought to be dominated by cellulolytic actinomycetes
and bacilli (Ryckeboer et al. 2003). Recent cultivation-
independent studies have shown a peak in Actinobacteria at
this stage (Fig. 2) and have identified Thermomonospora,
Thermobispora, Thermopolyspora, Thermobifida, and
Microbispora as key genera (Silva et al. 2009; Szekely et al.
2009; Vajna et al. 2012; Zhang et al. 2014a). However, the
most abundant bacterial taxon in both Agaricus and Pleurotus
compost is Pseudoxanthomonas taiwanensis, together with
Thermus and several bacilli (Bacillus, Geobacillus,
Ureibacillus) (Kertesz et al. 2016; Vajna et al. 2012).

P. taiwanensis is only present in low numbers in phase I,
because although it is thermophilic, its optimum growth is at
50 °C, and it does not grow above 65 °C (Chen et al. 2002).
The population of P. taiwanensis increases as the temperature
falls during compost conditioning and it is the most abundant
bacterial species in mature compost (Kertesz et al. 2016;
Szekely et al. 2009; Vajna et al. 2012). As a heterotrophic
nitrifier, it is able to convert ammonia into N2O (Chen et al.
2002), but how important this activity is in removing the
abundant ammonia in phase II compost is not yet known.
Unexpectedly, P. taiwanensis does not appear to break down
cellulose, though it produces β-glucosidase and can utilize
cellobiose (Chen et al. 2002; Kato et al. 2005). Nevertheless,
it has been detected repeatedly as an essential component of
stable cellulose-degrading consortia isolated from a variety of
sources (Du et al. 2015; Kato et al. 2004, 2005; Wang et al.
2011), and efficient degradation of lignocellulose in
bioethanol production, for example, relied on optimization
of the P. taiwanensis abundance (Du et al. 2015). In one of
these consortia, it seems to play its essential role by interacting
with a cellulolytic species of Clostridium (Kato et al. 2004,
2005), and in mushroom compost, it may well be interacting
in a similar way withMycothermus. This is underlined by the
fact that its abundance in phase II compost appears to increase
in parallel to that of Mycothermus (Kertesz et al. 2016), but
further studies are required to confirm the relevance of this
finding.

Because the presence of thermophilic fungi can promote
the growth rate of Agaricus mycelium up to two fold
(Straatsma et al. 1994a), this fungal group, and in particular
M. thermophilus, has been studied extensively as an inoculum
to promote compost preparation and accelerate Agaricus
growth (Bilay 2000; Sanchez et al. 2008; Sanchez and
Royse 2009; Straatsma et al. 1994a; Wiegant et al. 1992).
AlthoughM. thermophilus has shown the greatest stimulation
of Agaricus growth of a range of fungi tested, in its absence

several other fungal species had similar effects (Straatsma
et al. 1994b). Anecdotal evidence from mushroom farmers
suggests that inoculation with Mycothermus may stimulate
compost productivity on a farm scale, but in general, it is not
necessary to add Mycothermus unless the compost has been
pasteurized at too high a temperature, since naturally occur-
ring strains of the fungus are always present (Ross and Harris
1983b; Straatsma et al. 1994a).

A number of studies have examined the addition of bacte-
rial inocula to increase compost productivity and mushroom
yield (Table 1). Inoculation with Bacillus megaterium or a
thermophilic strain of Staphylococcus has been shown to pro-
mote mushroom production and advance cropping by several
days (Ahlawat and Vijay 2010) and Pseudomonas putida also
promoted hyphal extension of Agaricus in vitro (Rainey
1991). However, in another study, addition of B. subtilis or
B. megaterium to compost along with the Agaricus spawn did
not affect yield (Ekinci and Dursun 2014). A more thorough
search for bacteria that promote compost productivity was
also unsuccessful (Straatsma et al. 1994b). It should be noted,
however, that these were all small-scale screening experi-
ments using compost that was first sterilized at high tempera-
ture to selectively inactivate thermophilic fungi. It seems like-
ly that promotion of Agaricusmay require an interacting con-
sortium of both bacteria and fungi for effective lignocellulose
breakdown.

Bacterial involvement in formation
of mushroom primordia and fruiting bodies

Formation of mushroom fruiting bodies is controlled by a
range of environmental factors. Fruiting body primordia are
initiated in response to a reduction in temperature compared
withmycelial growth conditions and greater aeration to reduce
levels of CO2 (Chang and Miles 2004). The optimum ranges
of these two factors vary for different species of mushrooms
(Stamets and Chilton 1983). Transcriptomic studies of
Agaricus have shown that a reduction in temperature is essen-
tial for further differentiation of primordia, and the level of
CO2 exerts quantitative control on the number of fruiting bod-
ies formed (Eastwood et al. 2013). Many mushroom species
also show a requirement for a change in nutrient availability,
with high levels of nutrition favoring mycelial growth over
primordia formation (Chang andMiles 2004). Nutrient supply
governs outgrowth of the primordia, with the appearance of
mushroom fruiting bodies in separate flushes governed by
depletion of specific nutrients required by the primordia
(Straatsma et al. 2013). Some species also require a change
in pH or light conditions (Chang and Miles 2004).

For commercial cultivation of Agaricus, formation of
fruiting bodies is induced by overlaying the colonized com-
post with a layer of Bcasing,^ usually a mixture of peat and
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lime. This casing layer contains a diverse bacterial population,
and the presence of these bacteria is essential for primordia
formation as fruiting does not occur with sterilized casing
(Eger 1972; Hayes et al. 1969). Initiation of primordia in
autoclaved or fumigated casing can be partially restored by
addition of a bacterial inoculum (Eger 1972) with the best
studied examples being P. putida or a related pseudomonad
(Colauto et al. 2016; Hayes et al. 1969; Rainey et al. 1990).
Alternatively, addition of adsorptive carbon-based materials
such as activated charcoal will also restore fruit body forma-
tion (Noble et al. 2003). These results suggested that the stim-
ulatory role of the bacteria is to remove an inhibitor of
primordia formation. This compound has been identified as
1-octen-3-ol (Noble et al. 2009), which is a volatile compound

produced by the Agaricus mycelium, that controls the early
differentiation of vegetative hyphae to multicellular knots
(Eastwood et al. 2013). A considerable proportion of bacterial
isolates from the casing layer are were found to be tolerant to
high levels of this compound and many of these isolates were
also able to promote mushroom yields by up to 10%
(Zarenejad et al. 2012). 1-Octen-3-ol is also important for
other mushroom species; it is the dominant flavor component
in Pleurotus (Misharina et al. 2009; Venkateshwarlu et al.
1999), and bacteria isolated from Pleurotus growing on
Pangola grass (including Bacillus cereus, B. megaterium,
Enterobacter asburiae, Enterobacter cloacae, Kurthia
gibsonii, Pseudomonas pseudoalcaligenes, and Meyerozyma
guilliermondii), were found to grow on 1-octen-3-ol and both

Table 1 Promotion of mushroom growth by bacterial and fungal inocula

Mushroom
species

Bacteria/fungi used Source of
inoculum

Applied to
casing/
compost

Reported effect Reference

Agaricus
bisporus

Bacillus megaterium,
Staphylococcus sp.

Compost Compost Increased yield, inhibition
of pathogens

(Ahlawat and Vijay
2010)

A. bisporus Scytalidium thermophilum Compost Compost Faster mycelial growth,
increased yield

(Coello-Castillo et al.
2009;
Straatsma et al.
1994a;
Wiegant et al. 1992)

A. bisporus B. subtilis, B. megaterium Compost Compost No effect (Ekinci and Dursun
2014)

A. bisporus Pseudomonas putida Casing Casing Increased primordia
formation

(Fermor et al. 2000)

A. bisporus P. putida Casing Casing Primordium induction
due to ACC deaminase
production

(Chen et al. 2013)

A. bisporus P. putida Soil Casing Yield increase (Zarenejad et al. 2012)

A. bisporus Arthrobacter terregens,
Rhizobium meliloti,
Agrobacterium rhizogenes, B.
megaterium

Casing Casing Increased pinning (Park and Agnihotri
1969)

A. blazei Various Actinomycetales Casing Casing Increased mycelial growth
and yield

(Young et al. 2013)

A. blazei Exiguobacterium sp.,
Microbacterium esteraromaticum,
P. resinovorans

Casing Casing Increased yield (Young et al. 2012)

A. bitorquis B. megaterium, Alcaligenes faecalis,
B. circulans B. thuringiensis

Casing Casing Increased yield (Ahlawat and Rai
2000)

A. bisporus Mycothermus thermophilus n/a Spawn Increased mycelial growth (Bilay 2000)

Pleurotus
ostreatus

Bradyrhizobium japonicum n/a Spawn Increased mycelial growth (Zhu et al. 2013)

Pleurotus
eryngii

Pseudomonas sp. P7014 n/a Bottle
culture

Increased mycelial growth (Kim et al. 2008)

P. ostreatus P. putida Spent mushroom
compost

In vitro Accelerated primordial
development

(Cho et al. 2003)

A. bisporus P. putida Casing In vitro Increased mycelial growth (Rainey 1991)
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promote mycelial growth and induce fruiting of P. ostreatus
in vitro (Torres-Ruiz et al. 2016).

Other bacterial metabolic pathways may also be important
for stimulation of mushroom growth. For example, an ACC
deaminase-producing strain of P. putida stimulated primordia
formation in Agaricus but this property was lost in knockout
mutants in the ACC deaminase gene (Chen et al. 2013). This
suggests that ethylene, which is produced by Agaricus hyphae
(Turner et al. 1975), acts as an inhibitor of mycelial growth
and primordia formation (Zhang et al. 2016), and that
P. putida can encourage Agaricus fruiting by lowering the
levels of ethylene produced by Agaricus.

The bacterial population in casing increases dramatically
after initiation of the first primordia but decreases during later
flushes (Cai et al. 2009; Pardo et al. 2002). The species present
are mostly proteobacteria related to Pseudomonas,
Pedobacter, and Caulobacter (Fermor et al. 2000; Kertesz
et al. 2016; Siyoum et al. 2010). As bacteria are required for
initiation and growth of mushroom fruiting bodies, a number
of investigators have screened compost or casing for
Bmushroom growth-promoting bacteria^ that promote either
mycelial growth or fruiting body formation. Most of the or-
ganisms identified have been applied to casing in an attempt to
stimulate fruiting, and most of the growth-promoting strains
found were Pseudomonas or Bacillus species (Table 1). The
prevalence of these two genera probably reflects the culturing
strategies used, since cultivation-independent methods reveal
a very high diversity of bacteria present, many of which are
uncharacterized (Kertesz et al. 2016; Siyoum et al. 2010).
There has been little systematic study of the mechanisms by
which inocula stimulate mycelial extension or initiation of
primordia, or indeed whether they actively colonize
Agaricus hyphae or are active on the casing itself.

Not unexpectedly, the fungal community found in button
mushroom casing is greater than 90% A. bisporus (McGee
et al. 2017), but over 200 other fungal species have also been
detected, with highest diversity during first flush.
Mycothermus is not detected at all, though other thermophilic
fungi such as Thermomyces andMyceliophthora are still pres-
ent, confirming the role ofMycothermus as nutrient source for
growth of Agaricus. The dominant known taxa in casing are
Lecanicillium fungicola, Thermomyces lanuginosus,
Aspergillus spp., Myceliophthora spp., Sordaria spp.,
Candida subhashii, Paecilomyces niveus, and Cercophora
spp. (McGee et al. 2017). The overall abundance of unknown
fungal taxa is more than 20-fold higher than known taxa (ex-
cluding Agaricus) (McGee et al. 2017) suggesting that much
remains to be learnt about the role of these fungi in this part of
mushroom production. Interestingly, Agaricus activity (mea-
sured as ITS region cDNA abundance) reaches a maximum at
first flush and then decreases substantially, and a range of
unclassified taxa dominate the cDNA community for the re-
mainder of the cropping period. During this period, the active

taxa include L. fungicola, the causal agent of dry bubble dis-
ease (see below), suggesting that it can co-exist with Agaricus
without causing disease, and that disease induction may re-
quire specific environmental factors (McGee et al. 2017).

Fungal and bacterial pathogens of Agaricus

While many of the bacteria and fungi described in the previ-
ous section have been shown to promote hyphal elongation or
fruiting body formation of Agaricus, there has been little work
to distinguish whether these organisms are actively colonizing
the surface of the hyphae or living in the casing itself.
Mushroom fruiting bodies, by contrast, have their own dis-
tinctive microflora. The cultivable population of microorgan-
isms on button mushroom fruiting bodies includes pseudomo-
nads, bacilli, and coagulase-negative staphylococci, together
with the yeast Rhodotorula and several species of actinomy-
cetes (Rossouw and Korsten 2017; Xiang et al. 2017). While
the levels of human pathogens found on fruiting bodies are
low (Venturini et al. 2011), bacterial contamination can cause
postharvest deterioration (Beelman et al. 1989). A specific
study of enterobacteria on button mushrooms at the point of
harvest has revealed a considerable load of Ewingella
americana (Reyes et al. 2004), which was confirmed in a
recent report on microbial succession on healthy mushrooms
at point of harvest (Siyoum et al. 2016). This organism is a
potential human pathogen (Hassan et al. 2012), but it is better
known as the cause of mushroom stipe necrosis in both
Agaricus and Pleurotus (Gonzalez et al. 2012). The presence
of E. americana on healthy postharvest mushrooms highlights
the susceptibility of edible mushrooms to a variety of micro-
bial diseases that can devastate crop production (Largeteau
and Savoie 2010).

The most important of these are three fungal diseases, two
of which have been reviewed recently (Berendsen et al. 2010;
Carrasco et al. 2017). Cobweb disease (Cladobotryum
dendroides) grows as a web-like mycelium over the surface
of the fruiting bodies and produces large numbers of conidia
that are readily dispersed by aerial means (Carrasco et al.
2017). Dry bubble disease (L. fungicola) produces severe out-
breaks leading to formation of misshapen sporophores
(Berendsen et al. 2010), and a similar effect is seen for wet
bubble disease (Mycogone perniciosa), although this disease
is less widespread and has not been studied as extensively
(Khanna et al. 2003). Green mold disease (Trichoderma
aggressivum) caused extensive crop losses in both America
and Europe in the 1990s and continues to be a problematic
disease worldwide. This disease is caused by two slightly
different strains in America and Europe (T. aggressivum f.
aggressivum and T. aggressivum f. europaeum) (Samuels
et al. 2002), although the American pathovar has recently also
been reported in Europe (Hatvani et al. 2017). Pleurotus is
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also affected by green mold disease, but the disease is caused
by a related but phylogenetically different species of
Trichoderma (Kredics et al. 2009). Spores of both
L. fungicola and T. aggressivum are sticky in nature, and are
therefore mainly transmitted by insect or human vectors or in
water (Fletcher and Gaze 2008). Interestingly, spore germina-
tion and growth of L. fungicola, M. perniciosa, and T.
aggressivum are inhibited by 1-octen-3-ol, the Agaricus me-
tabolite described previously that acts as a potent inhibitor of
fruiting body formation, possibly allowing the pathogens to
time their growth to coincide with appearance of the mush-
room fruiting bodies (Berendsen et al. 2013).

Pseudomonas species play a variety of different roles in
mushroom casing. As described above, P. putida has been
identified as the key casing organism that breaks down 1-
octen-3-ol and induces fruiting body formation (Noble et al.
2009). Pseudomonas isolates have also been shown to antag-
onize Lecanicillium in casing, competing for iron and releas-
ing antifungal compounds, though this is not sufficient to pro-
tect Agaricus effectively against dry bubble disease
(Berendsen et al. 2012). Pseudomonas also cause a range of
blotch diseases of Agaricus which cause severe crop losses.
Brown blotch disease is caused by Pseudomonas tolaasii, a
species which is endemic in compost and induces symptoms
through production of an extracellular lipodepsipeptide toxin,
tolaasin [see reviews by (Largeteau and Savoie 2010) and
(Soler-Rivas et al. 1999)]. Pseudomonas reactans causes sim-
ilar symptoms, releasing a related but distinct toxin to that
produced by P. tolaasii (Wells et al. 1996). Because
P. tolaasii is ubiquitous in the compost environment, it is very
difficult to control, since it can switch rapidly between
nonvirulent and virulent forms in response to environmental
changes and possibly also in response tometabolites produced
by Agaricus (Largeteau and Savoie 2010). P. tolaasii also
attacks Pleurotus, causing yellow discolorations (Lo Cantore
and Iacobellis 2014) and Flammulina (Han et al. 2012), caus-
ing black rot. Several other Pseudomonas species also cause
commercially important diseases. Pseudomonas gingeri is the
main causal agent of ginger blotch (Wong et al. 1982), and
many different pseudomonads have similar effects, causing a
range of discolorations (Godfrey et al. 2001). Pseudomonas
agarici is responsible for drippy gill disease, degrading the
extracellular matrix of the fruiting body and producing
droplets of bacterial ooze on the lamellae of Agaricus
(Gill and Cole 2000). A range of soft rot diseases of mush-
rooms are also caused by bacterial pathogens. These in-
clude Burkholderia gladioli pv agaricicola, which attacks
a range of different edible mushroom species (Chowdhury
and Heinemann 2006; Gill and Tsuneda 1997; Lee et al.
2010), Janthinobacterium agaricidamnosum, which causes
soft rot in Agaricus (Chowdhury and Heinemann 2006;
Lincoln et al. 1999), and Pantoea species that affect
Pleurotus (Kim et al. 2015).

Control of these bacterial and fungal mushroom diseases is
essential for the mushroom industry, as outbreaks can destroy
a large proportion of the crop. Effective prevention has tradi-
tionally relied on maintaining good production hygiene, to-
gether with the strategic use of biocides and antifungals
(Fletcher and Gaze 2008). A major restriction is that only a
limited range of products have been approved for application
onto mushroom crops. Alternative methods that are being de-
veloped include the use of essential oils and antagonistic bac-
terial species as biocontrol agents (Berendsen et al. 2012;
Sokovic and van Griensven 2006), but improved molecular
methods for early detection of infection and the selection of
resistant mushroom varieties (Savoie et al. 2016) are also im-
portant in reducing the impact of these widespread pathogens.

Conclusions and outlook

Research into mushroom compost goes back at least to the
work of Waksman in the early 1930s (Waksman and Nissen
1932), with the aim of optimizing microbiological and pro-
cess parameters to maximize mushroom yields. Most of our
present understanding of mushroom compost microbiology
has come from cultivating isolates of thermophilic and cel-
lulolytic bacteria and fungi from compost, and it is only
recently that sequencing efforts have revealed that some
of the most abundant and important organisms in compost
have been overlooked by this method. High-yielding sus-
tainable production of edible mushrooms is currently pri-
marily hampered by inconsistency of the compost, caused
by variability in the quality and composition of the feed-
stocks, and by changes in the microbial communities pres-
ent. Our improved understanding of the microbiology of
compost provides renewed potential to design consortia of
bacteria and fungi that can be used in bioaugmentation to
optimize composting of lower quality feedstocks, and to
identify and validate biomarkers that can be used to assess
the quality of a compost before cropping commences. More
detailed studies are also required to explore the relationship
between microbial activity and diversity in compost and
casing during cropping. Most of the nutrients in mushroom
compost are left untouched by the mushroom crop, illus-
trated by the fact that spent mushroom compost is a valued
soil conditioner. Manipulation of microbial activity and nu-
trient availability during cropping may allow higher yields
of mushrooms in later crop flushes. Finally, a more thor-
ough understanding of the biocontrol of mushroom patho-
gens has the potential to increase the quality of the mush-
rooms produced. Mushroom compost is a completely
recycled product produced from agricultural wastes, and
the fungi and bacteria that define it allow us to enjoy mush-
rooms as truly sustainable foods.
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